1
|
Wu DQ, Guo YF, Zou Y, Tang XT, Zhang WY, Di WD. Immune modulation of buffalo peripheral blood mononuclear cells by two asparaginyl endopeptidases from Fasciola gigantica. Parasit Vectors 2024; 17:516. [PMID: 39696651 DOI: 10.1186/s13071-024-06570-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/04/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Fascioliasis is a zoonotic parasitic disease caused by Fasciola hepatica and Fasciola gigantica, which poses a serious threat to global public health and livestock farming. Fasciola gigantica secretes and excretes various components to manipulate the immune response, thereby enhancing its invasion, migration, and survival in vivo. However, the roles of specific components in immune modulation, such as asparagine endopeptidase, remain unknown. METHODS The transcriptional abundance of members of the asparagine endopeptidase family (also known as the legumain family) from F. gigantica was analyzed. Two highly transcribed asparagine endopeptidases in metacercariae, juveniles and adults were cloned, and their recombinant proteins-recombinant F. gigantica legumain (rFgLGMN-1) and (rFgLGMN-2)-were expressed in prokaryotic expression system. Their regulatory effects on buffalo peripheral blood mononuclear cells (PBMCs), including proliferation, migration, total nitric oxide (NO) production, cytokine secretion, and phagocytosis were explored in vitro. RESULTS Ten members of the legumain family were detected in F. gigantica, among of which FgLGMN-1 and FgLGMN-2 exhibited high transcription levels in juveniles and adults. The isolation of sequences indicated that FgLGMN-1 encodes 409 amino acids, while FgLGMN-2 encodes 403 amino acids. Both recombinant FgLGMN-1 (rFgLGMN-1) and rFgLGMN-2 were recognized by serum from buffaloes infected with F. gigantica. Both rFgLGMN-1 and rFgLGMN-2 inhibited the proliferation of PBMCs, and rFgLGMN-1 also inhibited the migration of PBMCs. While rFgLGMN-1 increased the production of total NO, rFgLGMN-2 decreased NO production. Both rFgLGMN-1 and rFgLGMN-2 increased the transcription of the cytokines interleukin-10 and transforming growth factor β. The effect of rFgLGMN-1 and rFgLGMN-2 on the phagocytosis of PBMCs varied depending on their concentrations. CONCLUSIONS rFgLGMN-1 and rFgLGMN-2 modulate several cellular and immunological functions of PBMCs, and exhibited distinct regulatory effects on these in vitro, which indicated that they may play roles in immune modulation and facilitate fluke development. However, due to uncertainties associated with in vitro experiments, further studies are necessary to elucidate the precise functions of these legumains.
Collapse
Affiliation(s)
- Dong-Qi Wu
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Yan-Feng Guo
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Yu Zou
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xiao-Ting Tang
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Wei-Yu Zhang
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Wen-Da Di
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, Guangxi Zhuang Autonomous Region, People's Republic of China.
| |
Collapse
|
2
|
Zheng M, Kong X, Jiang X, Yang Y, Fu S, Wen C, Zhang W, Di W. Qualitative analysis of Fasciola gigantica excretory and secretory products coimmunoprecipitated with buffalo secondary infection sera shows dissimilar components from primary infection sera. Acta Trop 2024; 260:107391. [PMID: 39278520 DOI: 10.1016/j.actatropica.2024.107391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/30/2024] [Accepted: 09/07/2024] [Indexed: 09/18/2024]
Abstract
Buffaloes cannot mount a robust adaptive immune response to secondary infection by Fasciola gigantica. Even if excretory and secretory products (ESPs) exhibit potent immunoregulatory effects during primary infection, research on ESPs in secondary infection is lacking, even though the ESP components that are excreted/secreted during secondary infection are unknown. Therefore, qualitative analysis of ESP during secondary infection was performed and compared with that of primary infection to deepen the recognition of secondary infection and facilitate immunoregulatory molecules screening. Buffaloes were divided into three groups: A (n = 3, noninfected), B (n = 3, primary infection) and C (n = 3, secondary infection). Buffaloes in the primary (0 weeks post infection; wpi) and secondary (-4 and 0 wpi) infection groups were infected with 250 metacercariae by oral administration. Then, sera were collected from groups at different wpi, and interacting proteins were precipitated by coimmunoprecipitation (Co-IP), qualitatively analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS), and annotated by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses to infer their potential functions. In group C, 324 proteins were identified, of which 76 proteins were consistently identified across 7 time points (1, 3, 6, 8, 10, 13, and 16 wpi). Compared with 87 proteins consistently identified in group B, 22 proteins were identified in group C. Meanwhile, 34 proteins were only identified in group C compared to 200 proteins identified in group B. Protein pathway analysis indicated that these proteins were mainly involved in the cellular processes and metabolism of F. gigantica. Among them, 14-3-3θ was consistently identified in group C and may be involved in various cellular processes and innate immune signalling pathways. Members of the HSP family were identified in both groups B and C and may function in both primary and secondary infection processes. The proteins discovered in the present study will help to deepen the understanding of the molecular interactions between F. gigantica and buffalo during secondary infection and facilitate the identification of new potential immunoregulatory molecules.
Collapse
Affiliation(s)
- Mengwei Zheng
- College of Animal Science and Technology, Guangxi University, Nanning, 530005, PR China
| | - Xinping Kong
- College of Animal Science and Technology, Guangxi University, Nanning, 530005, PR China
| | - Xuelian Jiang
- College of Animal Science and Technology, Guangxi University, Nanning, 530005, PR China
| | - Yankun Yang
- College of Animal Science and Technology, Guangxi University, Nanning, 530005, PR China
| | - Shishi Fu
- College of Animal Science and Technology, Guangxi University, Nanning, 530005, PR China
| | - Chongli Wen
- Guangxi Buffalo Research Institute, Chinese Academy Agricultural Sciences, Nanning, 530001, PR China.
| | - Weiyu Zhang
- College of Animal Science and Technology, Guangxi University, Nanning, 530005, PR China.
| | - Wenda Di
- College of Animal Science and Technology, Guangxi University, Nanning, 530005, PR China.
| |
Collapse
|
3
|
Ehsan M, Hu RS, Wang M, Hou JL, Rashid M, Malik MI. Immune modulation of goat monocytes by Fasciola gigantica Legumain-1 protein (Fg-LGMN-1). Exp Parasitol 2024; 256:108671. [PMID: 38081528 DOI: 10.1016/j.exppara.2023.108671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/27/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
Legumains belonging to C_13 peptidase family of proteins, and are ubiquitously disseminated among all vertebrate and invertebrate organisms, and have been implicated in innumerable biological and cellular functionality. Herein, we characterized and evaluated immunoregulatory characteristics of Legumain-1 from Fasciola gigantica (Fg-LGMN-1) during its interaction with host immune cells. The isopropyl-ß-d-thiogalactopyranoside (IPTG) stimulated RFg-LGMN-1 protein was positively detected by rat serum containing anti-RFg-LGMN-1 polyclonal antibodies. Furthermore, the uptake of RFg-LGMN-1 by goat monocytes was successfully confirmed using Immunofluorescence Assay (IFA). The immunohistochemical analysis revealed the native localization of LGMN-1 protein on the periphery and internal structures such as suckers, pharynx, and genital pore of the adult parasite, thereby validating its presence in excretory-secretory (ES) products of F. gigantica. The RFg-LGMN-1 co-incubated with concanavalin-A (Con-A) stimulated the increase of interleukin 2 (IL-2), IL-10, and IL-17 in monocytes derived from peripheral blood mononuclear cells (PBMCs) in the concentration-dependent manner. However, the IL-4 cytokine in response to the RFg-LGMN-1 protein declined. These results illuminated the role of LGMN-1 during the parasite-host interface. Our findings elaborated additional evidence that Legumain protein play a role in the manipulating host immune responses during parasite infections. However, further evaluation of RFg-LGMN-1 protein in context of its immunomodulatory roles should be conducted to enhance our understandings of the mechanisms employed by F. gigantica to evade host immune responses.
Collapse
Affiliation(s)
- Muhammad Ehsan
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, China; Department of Parasitology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Punjab Province 63100, Pakistan.
| | - Rui-Si Hu
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, China.
| | - Meng Wang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, China.
| | - Jun-Ling Hou
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, China.
| | - Muhammad Rashid
- Department of Parasitology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Punjab Province 63100, Pakistan.
| | - Muhammad Irfan Malik
- Department of Parasitology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Punjab Province 63100, Pakistan.
| |
Collapse
|
4
|
The 22nd Chromatography Component of the Fasciola gigantica Excretory-Secretory Products Decreased the Proliferation of Peripheral Blood Mononuclear Cells from Buffalo. Animals (Basel) 2023; 13:ani13040564. [PMID: 36830351 PMCID: PMC9951737 DOI: 10.3390/ani13040564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 02/08/2023] Open
Abstract
The 22nd chromatography component (F22) of the Fasciola gigantica excretory-secretory products (FgESP) shows better diagnostic value than the FgESP, and diagnostic methods based on F22 have also been established. Thus, exploring its immunomodulatory function and potential as a molecular vaccine candidate is attractive. In the present study, the effect of F22 on the mitogen-induced proliferation of buffalo peripheral blood mononuclear cells (PBMCs) in the innate immune response was preliminarily studied using the FgESP as a control. PBMCs were incubated with concanavalin A (ConA) and phytohemagglutinin (PHA) at optimal (1 µg/well) or suboptimal (0.25 µg/well) doses coupled with FgESP and F22 at different doses (1-16 µg/well). Cell proliferation was then assessed by microenzyme reaction colorimetry (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium (MTT) assay). In addition, the components of F22 were also explored by mass spectrometry and then subjected to Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis to infer their functions. The results indicated that FgESP decreased the proliferation of PBMCs stimulated with ConA and PHA at specific doses, whereas F22 significantly decreased the proliferation of PBMCs stimulated with ConA and PHA at both optimal and suboptimal doses (p < 0.05). Two hundred and sixteen proteins were identified in F22, and these included 86 proteins that could be assigned to more than one pathway and some with robust immunomodulatory ability. Further studies should be performed to investigate the immunomodulatory function of F22 in the adaptive immune response, and the components of F22 can be further studied as potential vaccine candidate molecules.
Collapse
|
5
|
Das KC, Konhar R, Biswal DK. Fasciola gigantica vaccine construct: an in silico approach towards identification and design of a multi-epitope subunit vaccine using calcium binding EF-hand proteins. BMC Immunol 2023; 24:1. [PMID: 36604615 PMCID: PMC9813462 DOI: 10.1186/s12865-022-00535-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 12/21/2022] [Indexed: 01/07/2023] Open
Abstract
Continuous attempts have been made to pinpoint candidate vaccine molecules and evaluate their effectiveness in order to commercialise such vaccines for the treatment of tropical fascioliasis in livestock. The pathophysiology of fascioliasis can be related to liver damage brought on by immature flukes that migrate and feed, as well as immunological reactions to chemicals produced by the parasites and alarm signals brought on by tissue damage. Future research should, in our opinion, concentrate on the biology of invasive parasites and the resulting immune responses, particularly in the early stages of infection. The goal of the current study was to use the calcium-binding proteins from F. gigantica to create a multi-epitope subunit vaccine. The adjuvant, B-cell epitopes, CTL epitopes, and HTL epitopes that make up the vaccine construct are all connected by certain linkers. The antigenicity, allergenicity, and physiochemical properties of the vaccine construct were examined. The vaccine construct was docked with toll-like receptor 2, and simulations of the molecular dynamics of the complex's stability, interaction, and dynamics were run. After performing in silico cloning and immunosimulation, it was discovered that the construct was suitable for further investigation. New vaccination technologies and adjuvant development are advancing our food safety procedures since vaccines are seen as safe and are accepted by the user community. This research is also applicable to the F. hepatica system.
Collapse
Affiliation(s)
- Kanhu Charan Das
- grid.412227.00000 0001 2173 057XBioinformatics Centre, North-Eastern Hill University, Shillong, Meghalaya India
| | - Ruchishree Konhar
- grid.412227.00000 0001 2173 057XBioinformatics Centre, North-Eastern Hill University, Shillong, Meghalaya India ,grid.417639.eInformatics and Big Data, CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Devendra Kumar Biswal
- grid.412227.00000 0001 2173 057XBioinformatics Centre, North-Eastern Hill University, Shillong, Meghalaya India
| |
Collapse
|
6
|
Zheng M, Jiang X, Kong X, Guo Y, Zhang W, Di W. Proteomic analysis of Fasciola gigantica excretory and secretory products ( FgESPs) co-immunoprecipitated using a time course of infected buffalo sera. Front Microbiol 2022; 13:1089394. [PMID: 36620027 PMCID: PMC9816151 DOI: 10.3389/fmicb.2022.1089394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction Widespread Fasciola gigantica infection in buffaloes has caused great economic losses in buffalo farming. Studies on F. gigantica excretory and secretory products (FgESP) have highlighted their importance in F. gigantica parasitism and their potential in vaccine development. Identifying FgESP components involved in F. gigantica-buffalo interactions during different periods is important for developing effective strategies against fasciolosis. Methods Buffaloes were assigned to non-infection (n = 3, as control group) and infection (n = 3) groups. The infection group was orally administrated 250 metacercariae. Sera were collected at 3, 10, and 16 weeks post-infection (wpi) for the non-infection group and at 0 (pre-infection), 1, 3, 6, 8, 10, 13, and 16 wpi for the infection group. FgESP components interacting with sera from the non-infection and infection groups assay were pulled down by co-IP and identified using LC-MS/MS. Interacting FgESP components in infection group were subjected to Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathway and gene ontology (GO) functional annotation to infer their potential functions. Results and discussion Proteins of FgESP components identified in the non-infection group at 3, 10, and 16 wpi accounted for 80.5%, 84.3%, and 82.1% of all proteins identified in these three time points, respectively, indicating surroundings did not affect buffalo immune response during maintenance. Four hundred and ninety proteins were identified in the infection group, of which 87 were consistently identified at 7 time points. Following GO analysis showed that most of these 87 proteins were in biological processes, while KEGG analysis showed they mainly functioned in metabolism and cellular processing, some of which were thought to functions throughout the infection process. The numbers of specific interactors identified for each week were 1 (n = 12), 3 (n = 5), 6 (n = 8), 8 (n = 15), 10 (n = 23), 13 (n = 22), and 16 (n = 14) wpi, some of which were thought to functions in specific infection process. This study screened the antigenic targets in FgESP during a dense time course over a long period. These findings may enhance the understanding of molecular F. gigantica-buffalo interactions and help identify new potential vaccine and drug target candidates.
Collapse
Affiliation(s)
- Mengwei Zheng
- College of Animal Science and Technology, Guangxi University, Nanning, China,Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China,Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China,Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, China
| | - Xuelian Jiang
- College of Animal Science and Technology, Guangxi University, Nanning, China,Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China,Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China,Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, China
| | - Xinping Kong
- College of Animal Science and Technology, Guangxi University, Nanning, China,Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China,Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China,Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, China
| | - Yanfeng Guo
- College of Animal Science and Technology, Guangxi University, Nanning, China,Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China,Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China,Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, China
| | - Weiyu Zhang
- College of Animal Science and Technology, Guangxi University, Nanning, China,Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China,Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China,Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, China,*Correspondence: Weiyu Zhang, ✉
| | - Wenda Di
- College of Animal Science and Technology, Guangxi University, Nanning, China,Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China,Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China,Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, China,Wenda Di, ✉
| |
Collapse
|
7
|
Becerro-Recio D, Serrat J, López-García M, Sotillo J, Simón F, González-Miguel J, Siles-Lucas M. Proteomics coupled with in vitro model to study the early crosstalk occurring between newly excysted juveniles of Fasciola hepatica and host intestinal cells. PLoS Negl Trop Dis 2022; 16:e0010811. [PMID: 36223411 PMCID: PMC9555655 DOI: 10.1371/journal.pntd.0010811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 09/14/2022] [Indexed: 11/18/2022] Open
Abstract
Fasciolosis caused by the trematode Fasciola hepatica is a zoonotic neglected disease affecting animals and humans worldwide. Infection occurs upon ingestion of aquatic plants or water contaminated with metacercariae. These release the newly excysted juveniles (FhNEJ) in the host duodenum, where they establish contact with the epithelium and cross the intestinal barrier to reach the peritoneum within 2-3 h after infection. Juveniles crawl up the peritoneum towards the liver, and migrate through the hepatic tissue before reaching their definitive location inside the major biliary ducts, where they mature into adult worms. Fasciolosis is treated with triclabendazole, although resistant isolates of the parasite are increasingly being reported. This, together with the limited efficacy of the assayed vaccines against this infection, poses fasciolosis as a veterinary and human health problem of growing concern. In this context, the study of early host-parasite interactions is of paramount importance for the definition of new targets for the treatment and prevention of fasciolosis. Here, we develop a new in vitro model that replicates the first interaction between FhNEJ and mouse primary small intestinal epithelial cells (MPSIEC). FhNEJ and MPSIEC were co-incubated for 3 h and protein extracts (tegument and soma of FhNEJ and membrane and cytosol of MPSIEC) were subjected to quantitative SWATH-MS proteomics and compared to respective controls (MPSIEC and FhNEJ left alone for 3h in culture medium) to evaluate protein expression changes in both the parasite and the host. Results show that the interaction between FhNEJ and MPSIEC triggers a rapid protein expression change of FhNEJ in response to the host epithelial barrier, including cathepsins L3 and L4 and several immunoregulatory proteins. Regarding MPSIEC, stimulation with FhNEJ results in alterations in the protein profile related to immunomodulation and cell-cell interactions, together with a drastic reduction in the expression of proteins linked with ribosome function. The molecules identified in this model of early host-parasite interactions could help define new tools against fasciolosis.
Collapse
Affiliation(s)
- David Becerro-Recio
- Parasitology Unit, Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Salamanca, Spain
| | - Judit Serrat
- Parasitology Unit, Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Salamanca, Spain
| | - Marta López-García
- Parasitology Unit, Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Salamanca, Spain
| | - Javier Sotillo
- Parasitology Reference and Research Laboratory, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Fernando Simón
- Laboratory of Parasitology, Faculty of Pharmacy, University of Salamanca, Salamanca, Spain
| | - Javier González-Miguel
- Parasitology Unit, Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Salamanca, Spain
- Molecular Parasitology Laboratory, Centre of One Health (COH), Ryan Institute, National University of Ireland, Galway, Ireland
- * E-mail: (JG-M); (MS-L)
| | - Mar Siles-Lucas
- Parasitology Unit, Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Salamanca, Spain
- * E-mail: (JG-M); (MS-L)
| |
Collapse
|