1
|
Zhang Y, He S, He C, Zhou L, Xu O, Qiao L, Chen B, Cao Y, He Z. AsOBP1 is required for bioallethrin repellency in the malaria vector mosquito Anopheles sinensis. INSECT SCIENCE 2024; 31:1519-1532. [PMID: 38389031 DOI: 10.1111/1744-7917.13332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 12/31/2023] [Accepted: 01/06/2024] [Indexed: 02/24/2024]
Abstract
The use of insecticides, primarily pyrethroids, is a pivotal strategy for mosquito control globally. Bioallethrin, the first commercially available volatile pyrethroid, can elicit spatial (i.e., noncontact) repellency to mosquitoes through the coactivation of olfactory receptor neurons and sodium channels. However, the olfactory mechanism of the repellency elicited by bioallethrin in mosquitoes is still unclear. Here, we demonstrated the involvement of AsOBP1 in the bioallethrin repellency in Anopheles sinensis, one of the main vectors of vivax malaria in China and other Southeast Asian countries. The behavioral and electrophysiological analyses in AsOrco-/- mutant found that the spatial repellency elicited by bioallethrin depended on the odorant receptor (OR)-mediated olfactory pathway. Furthermore, the repellency was reduced in the AsOBP1-/- mutant and a pyrethroid-resistant strain, in which the expression of AsOBP1 was significantly decreased. Moreover, recombinant AsOBP1 protein bound to bioallethrin in an in vitro competition assay. These results indicate that activation of the AsOBP1-mediated olfactory pathway is an important component of bioallethrin repellency. Our research lays the foundation for further elucidation into the olfactory mechanism of bioallethrin repellency and the behavioral modifications of pyrethroid-resistant mosquitoes.
Collapse
Affiliation(s)
- Yongjie Zhang
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, China
| | - Shulin He
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, China
| | - Chengyin He
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, China
| | - Ling Zhou
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, China
| | - Ou Xu
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, China
| | - Liang Qiao
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, China
| | - Bin Chen
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, China
| | - Yueqing Cao
- College of Life Sciences, Chongqing University, Chongqing, China
| | - Zhengbo He
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, China
| |
Collapse
|
2
|
Huang C, Ou X, Wang Y, Zhou Y, Zhang G, Liu W, Wan F, Jiang H, Zhang Y. Genome-Wide Identification, Evolution, and Female-Biased Expression Analysis of Odorant Receptors in Tuta absoluta (Lepidoptera: Gelechiidae). Life (Basel) 2024; 14:872. [PMID: 39063624 PMCID: PMC11277591 DOI: 10.3390/life14070872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
The tomato leafminer, Tuta absoluta (Lepidoptera: Gelechiidae), is a highly destructive invasive pest targeting Solanaceae crops. Its olfactory system plays a crucial role in host location, mate finding, and other behavioral activities. However, there is a notable gap in the literature regarding the characterization of its chemosensory genes. In this study, we conducted a genome-wide identification of 58 odorant receptors (ORs) of T. absoluta. The identified ORs exhibit coding sequence (CDS) lengths ranging from 1062 bp to 1419 bp, encoding proteins of 354 to 473 amino acids. Gene structure analysis showed that the majority of these ORs consist of five, seven, eight, or nine exons, collectively representing 67% of the total ORs identified. Through chromosomal mapping, we identified several tandemly duplicate genes, including TabsOR12a, TabsOR12b, TabsOR12c, TabsOR21a, TabsOR21b, TabsOR34a, TabsOR34b, TabsOR34c, TabsOR62a, and TabsOR62b. The phylogenetic analysis indicated that six TabsORs were clustered within the lepidopteran sex pheromone receptor clade, while an expansion clade containing ten TabsORs resulted from tandem duplication events. Additionally, five TabsORs were classified into a specific OR clade in T. absoluta. Furthermore, through RNA-Seq and RT-qPCR analyses, we identified five TabsORs (TabsOR21a, TabsOR26a, TabsOR34a, TabsOR34c, and TabsOR36) exhibiting female-antennae-biased expression. Our study provides a valuable foundation to further investigations into the molecular and ecological functions of TabsORs, particularly in relation to oviposition behavior. These findings provide foundational data for the future exploration of the functions of female-biased expression OR genes in T. absoluta, thereby facilitating the further development of eco-friendly attract-and-kill techniques for the prevention and control of T. absoluta.
Collapse
Affiliation(s)
- Cong Huang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China; (C.H.); (X.O.)
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.W.); (Y.Z.); (G.Z.); (W.L.); (F.W.)
| | - Xiaolan Ou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China; (C.H.); (X.O.)
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.W.); (Y.Z.); (G.Z.); (W.L.); (F.W.)
| | - Yusheng Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.W.); (Y.Z.); (G.Z.); (W.L.); (F.W.)
| | - Yanan Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.W.); (Y.Z.); (G.Z.); (W.L.); (F.W.)
| | - Guifen Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.W.); (Y.Z.); (G.Z.); (W.L.); (F.W.)
| | - Wanxue Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.W.); (Y.Z.); (G.Z.); (W.L.); (F.W.)
| | - Fanghao Wan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.W.); (Y.Z.); (G.Z.); (W.L.); (F.W.)
| | - Hongbo Jiang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China; (C.H.); (X.O.)
| | - Yibo Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.W.); (Y.Z.); (G.Z.); (W.L.); (F.W.)
| |
Collapse
|
3
|
Zhou Y, Deng D, Chen R, Lai C, Chen Q. Effects of antennal segments defects on blood-sucking behavior in Aedes albopictus. PLoS One 2023; 18:e0276036. [PMID: 37561778 PMCID: PMC10414602 DOI: 10.1371/journal.pone.0276036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 07/23/2023] [Indexed: 08/12/2023] Open
Abstract
After mating, female mosquitoes need a blood meal to promote the reproductive process. When mosquitoes bite infected people and animals, they become infected with germs such as viruses and parasites. Mosquitoes rely on many cues for host selection and localization, among which the trace chemical cues emitted by the host into the environment are considered to be the most important, and the sense of smell is the main way to perceive these trace chemical cues. However, the current understanding of the olfactory mechanism is not enough to meet the needs of mosquito control. Unlike previous studies that focused on the olfactory receptor recognition spectrum to reveal the olfactory mechanism of mosquito host localization. In this paper, based on the observation that mosquitoes with incomplete antennae still can locate the host and complete blood feeding in the laboratory, we proposed that there may be some protection or compensation mechanism in the 13 segments of antennae flagella, and only when the antennae are missing to a certain threshold will it affect the mosquito's ability to locate the host. Through rational-designed behavioral experiments, we found that the 6th and 7th flagellomeres on the Aedes albopictus antenna are important in the olfactory detection of host searching. This study preliminarily screened antennal segments important for host localization of Ae. albopictus, and provided a reference for subsequent cell biology and molecular biology studies on these segments. Meanwhile, the morphology and distribution of sensilla on each antenna flagellomere were also analyzed and discussed in this paper.
Collapse
Affiliation(s)
- Yiyuan Zhou
- Research Center of Eugenics, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
- Department of Obstetrics, The first affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Dongyang Deng
- Research Center of Eugenics, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
- Department of Obstetrics, The first affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Rong Chen
- Research Center of Eugenics, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
- Department of Obstetrics, The first affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Chencen Lai
- Microbiology and Biochemical Pharmaceutical Engineering Research Center of Guizhou Provincial Department of Education, Guizhou Medical University, Guiyang, China
- Department of Nosocomial Infection, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Qian Chen
- Research Center of Eugenics, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
- Department of Obstetrics, The first affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|