1
|
Wang Y, Li J, Zhu J, Ma H, Zhuang B, Zhao J, Zhang F, Yu L. TgMIC6 inhibition of autophagy is partially responsible for the phenotypic differences between Chinese 1 Toxoplasma gondii strains. Int Immunopharmacol 2024; 140:112857. [PMID: 39116491 DOI: 10.1016/j.intimp.2024.112857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024]
Abstract
Chinese1 is the predominant Toxoplasma gondii lineage in China, and significant phenotypic differences are observed within the lineage. WH3 and WH6 are two representative strains of Chinese 1, which exhibit divergent virulence and pathogenicity in mice. However, virulence determinants and their modulating mechanisms remain elusive. A global genome expression analysis of the WH3 and WH6 transcriptional profiles identified microneme secretory protein 6 (MIC6), which may be associated with the phenotypic difference observed in WH3. In the present study, the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 genome-editing technique was used to generate a T. gondii microneme secretory protein (TgMIC6) knockout in WH3. Wild-type mice and different mouse and human cell lines were infected with the WH3, WH3-Δmic6, and WH6 strains. The survival rate of mice, related cytokine levels in serum, and the proliferation of parasites were observed. These results suggested that TgMIC6 is an important effector molecule that determines the differential virulence of WH3 in vivo and in vitro. Furthermore, MIC6 may enhance WH3 virulence via inhibition of host cell autophagy and activation of key molecules in the epidermal growth factor receptor (EGFR)-Akt-mammalian target of rapamycin (mTOR) classical autophagy pathway. CD40L was cleared in vivo by i.p injection of CD40L monoclonal antibody, and it was found that the virulence of WH3-Δmic6 to mice was restored to a certain extent in the absence of CD40L. This study elucidates the virulence determinants and immune escape strategies of Toxoplasma gondii in China. Moreover, these data will aid the development of effective strategies for the prevention and control of toxoplasmosis.
Collapse
Affiliation(s)
- Yang Wang
- Department of Microbiology and Parasitology, Anhui Province Key Laboratory of Zoonoses, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Jingyang Li
- Department of Microbiology and Parasitology, Anhui Province Key Laboratory of Zoonoses, School of Basic Medical Sciences, Anhui Medical University, Hefei, China; Department of Medical Laboratory, The Third People's Hospital of Hefei, The Third Clinical Medical College of Hefei of Anhui Medical University, Hefei, China
| | - Jinjin Zhu
- Department of Microbiology and Parasitology, Anhui Province Key Laboratory of Zoonoses, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Haiyang Ma
- Department of Microbiology and Parasitology, Anhui Province Key Laboratory of Zoonoses, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Baocan Zhuang
- Department of Microbiology and Parasitology, Anhui Province Key Laboratory of Zoonoses, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Ji Zhao
- Department of Microbiology and Parasitology, Anhui Province Key Laboratory of Zoonoses, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Famin Zhang
- Department of Microbiology and Parasitology, Anhui Province Key Laboratory of Zoonoses, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Li Yu
- Department of Microbiology and Parasitology, Anhui Province Key Laboratory of Zoonoses, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| |
Collapse
|
2
|
Chen J, Zhang C, Yang Z, Wu W, Zou W, Xin Z, Zheng S, Liu R, Yang L, Peng H. Intestinal microbiota imbalance resulted by anti-Toxoplasma gondii immune responses aggravate gut and brain injury. Parasit Vectors 2024; 17:284. [PMID: 38956725 PMCID: PMC11221008 DOI: 10.1186/s13071-024-06349-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 06/10/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Toxoplasma gondii infection affects a significant portion of the global population, leading to severe toxoplasmosis and, in immunocompromised patients, even death. During T. gondii infection, disruption of gut microbiota further exacerbates the damage to intestinal and brain barriers. Therefore, identifying imbalanced probiotics during infection and restoring their equilibrium can regulate the balance of gut microbiota metabolites, thereby alleviating tissue damage. METHODS Vimentin gene knockout (vim-/-) mice were employed as an immunocompromised model to evaluate the influence of host immune responses on gut microbiota balance during T. gondii infection. Behavioral experiments were performed to assess changes in cognitive levels and depressive tendencies between chronically infected vim-/- and wild-type (WT) mice. Fecal samples were subjected to 16S ribosomal RNA (rRNA) sequencing, and serum metabolites were analyzed to identify potential gut probiotics and their metabolites for the treatment of T. gondii infection. RESULTS Compared to the immunocompetent WT sv129 mice, the immunocompromised mice exhibited lower levels of neuronal apoptosis and fewer neurobehavioral abnormalities during chronic infection. 16S rRNA sequencing revealed a significant decrease in the abundance of probiotics, including several species of Lactobacillus, in WT mice. Restoring this balance through the administration of Lactobacillus murinus and Lactobacillus gasseri significantly suppressed the T. gondii burden in the intestine, liver, and brain. Moreover, transplantation of these two Lactobacillus spp. significantly improved intestinal barrier damage and alleviated inflammation and neuronal apoptosis in the central nervous system. Metabolite detection studies revealed that the levels of various Lactobacillus-related metabolites, including indole-3-lactic acid (ILA) in serum, decreased significantly after T. gondii infection. We confirmed that L. gasseri secreted much more ILA than L. murinus. Notably, ILA can activate the aromatic hydrocarbon receptor signaling pathway in intestinal epithelial cells, promoting the activation of CD8+ T cells and the secretion of interferon-gamma. CONCLUSION Our study revealed that host immune responses against T. gondii infection severely disrupted the balance of gut microbiota, resulting in intestinal and brain damage. Lactobacillus spp. play a crucial role in immune regulation, and the metabolite ILA is a promising therapeutic compound for efficient and safe treatment of T. gondii infection.
Collapse
Affiliation(s)
- Jiating Chen
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Diseases Research, School of Public Health, Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Southern Medical University, 1023-1063 South Shatai Rd, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Chi Zhang
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Diseases Research, School of Public Health, Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Southern Medical University, 1023-1063 South Shatai Rd, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Zihan Yang
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Diseases Research, School of Public Health, Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Southern Medical University, 1023-1063 South Shatai Rd, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Weiling Wu
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Diseases Research, School of Public Health, Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Southern Medical University, 1023-1063 South Shatai Rd, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Weihao Zou
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Diseases Research, School of Public Health, Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Southern Medical University, 1023-1063 South Shatai Rd, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Zixuan Xin
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Diseases Research, School of Public Health, Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Southern Medical University, 1023-1063 South Shatai Rd, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Shuyu Zheng
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Diseases Research, School of Public Health, Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Southern Medical University, 1023-1063 South Shatai Rd, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Runchun Liu
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Diseases Research, School of Public Health, Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Southern Medical University, 1023-1063 South Shatai Rd, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Lili Yang
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Diseases Research, School of Public Health, Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Southern Medical University, 1023-1063 South Shatai Rd, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Hongjuan Peng
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Diseases Research, School of Public Health, Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Southern Medical University, 1023-1063 South Shatai Rd, Guangzhou, 510515, Guangdong, People's Republic of China.
| |
Collapse
|
3
|
Yang D, Wu M, Zou N, Tang Y, Tao Q, Liu L, Jin M, Yu L, Du J, Luo Q, Shen J, Chu D, Qin K. Knockdown of DJ-1 Exacerbates Neuron Apoptosis Induced by TgCtwh3 through the NF-κB Pathway. Mol Neurobiol 2024:10.1007/s12035-024-04265-7. [PMID: 38831169 DOI: 10.1007/s12035-024-04265-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/25/2024] [Indexed: 06/05/2024]
Abstract
Mutations or loss of function of DJ-1 and Toxoplasma gondii (T. gondii) infection has been linked to neurodegenerative diseases, which are often caused by oxidative stress. However, the relationship between DJ-1 and T. gondii infection is not yet fully understood. Therefore, this study aimed to investigate the expression of DJ-1 in the hippocampus tissue of mice or in HT22 infected with T. gondii Chinese 1 genotype Wh3 strain (TgCtwh3) and the effect of DJ-1 knockdown on neuronal apoptosis induced by TgCtwh3 tachyzoite, as well as the underlying mechanism at the cellular and molecular level. Firstly, we detected DJ-1 protein expression and cell apoptosis in the hippocampal tissue of mice infected by TgCtwh3. Then, we examined DJ-1 expression and apoptosis in HT22 challenged with TgCtwh3. Finally, we evaluated the apoptosis in HT22 with DJ-1 knockdown which was infected with TgCtwh3 and assayed the expression of NF-κBp65 and p-NF-κBp65. Our results showed that DJ-1 expression was reduced and neurons underwent apoptosis in the hippocampus of mice infected with TgCtwh3 tachyzoites. Additionally, the knockdown of DJ-1 followed by infection with TgCtwh3 tachyzoites led to increased apoptosis in HT22 cells through the NF-κB signaling pathway. Therefore, this study suggests that DJ-1 is an important target for preventing apoptosis caused by T. gondii TgCtwh3.
Collapse
Affiliation(s)
- Di Yang
- Department of Pathogen Biology, Anhui Province Key Laboratory of Microbiology & Parasitology, Anhui Provincial Laboratory of Zoonoses of High Institutions, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Minmin Wu
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Nian Zou
- Second School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Yiru Tang
- School of Public Health, Anhui Medical University, Hefei, China
| | - Qing Tao
- Center for Translational Medicine, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Lei Liu
- Department of Blood Transfusion, Division of Life Sciences and Medicine, the First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Mengmeng Jin
- Maternity and Child Health Hospital of Anhui Province, the Affiliated Maternity and Child Health Hospital of Anhui Medical University, Hefei, China
| | - Li Yu
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Provincial Laboratory of Zoonoses of High Institutions, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Jian Du
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Qingli Luo
- Department of Pathogen Biology, Anhui Province Key Laboratory of Microbiology & Parasitology, Anhui Provincial Laboratory of Zoonoses of High Institutions, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Jilong Shen
- Department of Pathogen Biology, Anhui Province Key Laboratory of Microbiology & Parasitology, Anhui Provincial Laboratory of Zoonoses of High Institutions, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Deyong Chu
- Department of Pathogen Biology, Anhui Province Key Laboratory of Microbiology & Parasitology, Anhui Provincial Laboratory of Zoonoses of High Institutions, School of Basic Medicine, Anhui Medical University, Hefei, China.
| | - Kunpeng Qin
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
- Department of Orthopaedics, Anhui Public Health Clinical Center, Hefei, Anhui, China.
| |
Collapse
|
4
|
Liu Z, Wang H, Zhang Z, Ma Y, Jing Q, Zhang S, Han J, Chen J, Xiang Y, Kou Y, Wei Y, Wang L, Wang Y. Fam96a is essential for the host control of Toxoplasma gondii infection by fine-tuning macrophage polarization via an iron-dependent mechanism. PLoS Negl Trop Dis 2024; 18:e0012163. [PMID: 38713713 PMCID: PMC11101080 DOI: 10.1371/journal.pntd.0012163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 05/17/2024] [Accepted: 04/22/2024] [Indexed: 05/09/2024] Open
Abstract
BACKGROUND Toxoplasmosis affects a quarter of the world's population. Toxoplasma gondii (T.gondii) is an intracellular parasitic protozoa. Macrophages are necessary for proliferation and spread of T.gondii by regulating immunity and metabolism. Family with sequence similarity 96A (Fam96a; formally named Ciao2a) is an evolutionarily conserved protein that is highly expressed in macrophages, but whether it play a role in control of T. gondii infection is unknown. METHODOLOGY/PRINCIPAL FINDINGS In this study, we utilized myeloid cell-specific knockout mice to test its role in anti-T. gondii immunity. The results showed that myeloid cell-specific deletion of Fam96a led to exacerbate both acute and chronic toxoplasmosis after exposure to T. gondii. This was related to a defectively reprogrammed polarization in Fam96a-deficient macrophages inhibited the induction of immune effector molecules, including iNOS, by suppressing interferon/STAT1 signaling. Fam96a regulated macrophage polarization process was in part dependent on its ability to fine-tuning intracellular iron (Fe) homeostasis in response to inflammatory stimuli. In addition, Fam96a regulated the mitochondrial oxidative phosphorylation or related events that involved in control of T. gondii. CONCLUSIONS/SIGNIFICANCE All these findings suggest that Fam96a ablation in macrophages disrupts iron homeostasis and inhibits immune effector molecules, which may aggravate both acute and chronic toxoplasmosis. It highlights that Fam96a may autonomously act as a critical gatekeeper of T. gondii control in macrophages.
Collapse
Affiliation(s)
- Zhuanzhuan Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Hanying Wang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Zhiwei Zhang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Yulu Ma
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Qiyue Jing
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Shenghai Zhang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Jinzhi Han
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Junru Chen
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Yaoyao Xiang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Yanbo Kou
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Yanxia Wei
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Lu Wang
- Peking University Center for Human Disease Genomics, Beijing, China
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Yugang Wang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| |
Collapse
|
5
|
Liu S, Yan Z, Peng Y, Liu Y, Li Y, Xu D, Gong Y, Cui Z, Wu Y, Zhang Y, Wang D, Pan W, Yang X. Lentinan has a beneficial effect on cognitive deficits induced by chronic Toxoplasma gondii infection in mice. Parasit Vectors 2023; 16:454. [PMID: 38093309 PMCID: PMC10717010 DOI: 10.1186/s13071-023-06023-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 10/19/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Toxoplasma gondii (T. gondii) is increasingly considered a risk factor for neurodegenerative diseases. However, there is only limited information on the development of drugs for T. gondii infection. Lentinan from Lentinula edodes is a bioactive ingredient with the potential to enhance anti-infective immunity. The present study aimed to investigate the neuroprotective effect of lentinan on T. gondii-associated cognitive deficits in mice. METHODS A chronic T. gondii infection mouse model was established by administering 10 cysts of T. gondii by gavage. Lentinan was intraperitoneally administered 2 weeks before infection. Behavioral tests, RNA sequencing, immunofluorescence, transmission electron microscopy and Golgi-Cox staining were performed to assess the effect of lentinan on cognitive deficits and neuropathology in vivo. In vitro, the direct and indirect effects of lentinan on the proliferation of T. gondii tachyzoites were evaluated in the absence and presence of BV-2 cells, respectively. RESULTS Lentinan prevented T. gondii-induced cognitive deficits and altered the transcriptome profile of genes related to neuroinflammation, microglial activation, synaptic function, neural development and cognitive behavior in the hippocampus of infected mice. Moreover, lentinan reduced the infection-induced accumulation of microglia and downregulated the mRNA expression of proinflammatory cytokines. In addition, the neurite and synaptic ultrastructural damage in the hippocampal CA1 region due to infection was ameliorated by lentinan administration. Lentinan decreased the cyst burden in the brains of infected mice, which was correlated with behavioral performance. In line with this finding, lentinan could significantly inhibit the proliferation of T. gondii tachyzoites in the microglial cell line BV2, although lentinan had no direct inhibitory effect on parasite growth. CONCLUSIONS Lentinan prevents cognitive deficits via the improvement of neurite impairment and synaptic loss induced by T. gondii infection, which may be associated with decreased cyst burden in the brain. Overall, our findings indicate that lentinan can ameliorate T. gondii-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Shuxi Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- The First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
- National Experimental Demonstration Center for Basic Medicine Education, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ziyi Yan
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- The First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
- National Experimental Demonstration Center for Basic Medicine Education, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yuan Peng
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Yunqiu Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Yiling Li
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- The First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Daxiang Xu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Yuying Gong
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Zeyu Cui
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- The Second Clinical Medical College, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Yongshui Wu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- The First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yumei Zhang
- Department of Pathogenic Biology, Binzhou Medical University, Binzhou, 256603, Shandong, China
| | - Dahui Wang
- Liangshan College (Li Shui) China, Lishui University, Lishui, 323000, Zhejiang, China.
| | - Wei Pan
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
- National Experimental Demonstration Center for Basic Medicine Education, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Xiaoying Yang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
- National Experimental Demonstration Center for Basic Medicine Education, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
6
|
Xie L, Xing Y, Yang J, Liu M, Cai Y. Toxoplasma gondii Reactivation Aggravating Cardiac Function Impairment in Mice. Pathogens 2023; 12:1025. [PMID: 37623985 PMCID: PMC10458591 DOI: 10.3390/pathogens12081025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/05/2023] [Accepted: 08/07/2023] [Indexed: 08/26/2023] Open
Abstract
BACKGROUND Toxoplasma gondii (T. gondii) reactivation is common, especially among immunocompromised individuals, such as AIDS patients. The cardiac involvement associated with toxoplasmosis, however, is usually obscured by neurological deterioration. The aim of this study was to observe the alterations in cardiac functions in various landmark periods after infection and to assess whether reactivation more seriously damages the heart. METHODS We established three infection models in mice using TgCtwh6, a major strain of T. gondii prevalent in China. The groups included an acute group, chronic latent group, and reactivation group. We evaluated the cardiac function impairment via H & E staining, Masson staining, echocardiography, myocardial enzyme profiles, and cardiac troponin, and detected the expression of inflammatory factors and antioxidant factors with Western blotting. Immunofluorescence was used to detect the expression of the macrophage marker F4/80. RESULTS Our results showed that damage to the heart occurred in the acute and reactivation groups. Impaired cardiac function manifested as a decrease in heart rate and a compensatory increase in left ventricular systolic function. Serum levels of cardiac enzymes also increased dramatically. In the chronic phase, myocardial fibrosis developed, diastolic functions became severely impaired, inflammation persisted, and macrophage expression was slightly reduced. Ultimately, reactivation infection exacerbated damage to cardiac function in mice, potentially leading to diastolic heart failure. Macrophages were strongly activated, and myocardial fibrosis was increased. In addition, the antioxidant capacity of the heart was severely affected by the infection. CONCLUSIONS Taken together, these results suggested that the reactivation of T. gondii infection could aggravate injury to the heart, which could be associated with a host-cell-mediated immune response and strong cytokine production by macrophages, thus representing a novel insight into the pathogenic mechanism of toxoplasmosis.
Collapse
Affiliation(s)
- Linding Xie
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei 230032, China
- Department of Microbiology and Parasitology, the Provincial Laboratory of Pathogen Biology of Anhui, and the Key Laboratory of Zoonoses of Anhui, Anhui Medical University, Hefei 230032, China
| | - Yien Xing
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei 230032, China
- Department of Microbiology and Parasitology, the Provincial Laboratory of Pathogen Biology of Anhui, and the Key Laboratory of Zoonoses of Anhui, Anhui Medical University, Hefei 230032, China
| | - Jun Yang
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei 230032, China
- Department of Microbiology and Parasitology, the Provincial Laboratory of Pathogen Biology of Anhui, and the Key Laboratory of Zoonoses of Anhui, Anhui Medical University, Hefei 230032, China
| | - Min Liu
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei 230032, China
- Department of Microbiology and Parasitology, the Provincial Laboratory of Pathogen Biology of Anhui, and the Key Laboratory of Zoonoses of Anhui, Anhui Medical University, Hefei 230032, China
| | - Yihong Cai
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei 230032, China
- Department of Microbiology and Parasitology, the Provincial Laboratory of Pathogen Biology of Anhui, and the Key Laboratory of Zoonoses of Anhui, Anhui Medical University, Hefei 230032, China
| |
Collapse
|