1
|
Köster PC, Figueiredo AM, Maloney JG, Dashti A, Bailo B, Torres RT, Fonseca C, Mysterud A, Habela MÁ, Rivero-Juarez A, Vicente J, Serrano E, Arnal MC, de Luco DF, Armenteros JA, Balseiro A, Cardona GA, Carvalho J, Hipólito D, Fernandes J, Palmeira JD, Calero-Bernal R, González-Barrio D, Santin M, Carmena D. Blastocystis occurrence and subtype diversity in European wild boar (Sus scrofa) from the Iberian Peninsula. Vet Res 2024; 55:133. [PMID: 39375799 PMCID: PMC11460206 DOI: 10.1186/s13567-024-01385-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/03/2024] [Indexed: 10/09/2024] Open
Abstract
The ongoing increase in wild boar populations across Europe has fostered human-wildlife conflicts, including the transmission of emerging pathogens with zoonotic importance. Blastocystis is a ubiquitous, faecal-oral transmitted protist that can cause gastrointestinal illnesses and is observed in humans and animals worldwide. The role of wildlife in the epidemiology of Blastocystis is insufficiently understood. Thus, we investigated the occurrence and subtype diversity of Blastocystis in free-ranging wild boars from the Iberian Peninsula using conventional PCR and next-generation amplicon sequencing of a fragment of the ssu RNA gene. A total of 459 wild boar faecal samples were collected across Spain (n = 360) and Portugal (n = 99) between 2014 and 2021. Blastocystis was present in 15.3% (70/459; 95% CI 12.1-18.9) of the wild boars analysed, and its occurrence was significantly higher in Portugal (34.3%, 34/99; 95% CI 25.1-44.6) than in Spain (10.0%, 36/360; 95% CI 7.1-13.6). Seven Blastocystis subtypes (ST5, ST10b, ST13-ST15, ST24b, and ST43) were detected among the surveyed wild boar populations, with greater variability detected in Portuguese samples. ST5 was identified in all the Blastocystis-positive animals, whereas 14.3% of them harboured ST mixed colonisations. Our results demonstrate that Blastocystis ST5 is particularly adapted to infect wild boars. The additional identification of zoonotic STs reinforces the role of wild boars as spreaders of zoonotic infections with public health significance.
Collapse
Affiliation(s)
- Pamela C Köster
- Parasitology Reference and Research Laboratory, Spanish National Centre for Microbiology, Health Institute Carlos III, Majadahonda, Madrid, Spain
- Faculty of Health Sciences, Alfonso X El Sabio University (UAX), Villanueva de la Cañada, Madrid, Spain
- Faculty of Medicine, Alfonso X El Sabio University (UAX), Villanueva de la Cañada, Madrid, Spain
| | - Ana M Figueiredo
- Department of Biology and CESAM, University of Aveiro, Aveiro, Portugal
- Centre for Ecological and Evolutionary Synthesis, Department of Bioscience, University of Oslo, Oslo, Norway
| | - Jenny G Maloney
- Environmental Microbial and Food Safety Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, USA
| | - Alejandro Dashti
- Parasitology Reference and Research Laboratory, Spanish National Centre for Microbiology, Health Institute Carlos III, Majadahonda, Madrid, Spain
| | - Begoña Bailo
- Parasitology Reference and Research Laboratory, Spanish National Centre for Microbiology, Health Institute Carlos III, Majadahonda, Madrid, Spain
| | - Rita T Torres
- Department of Biology and CESAM, University of Aveiro, Aveiro, Portugal
| | - Carlos Fonseca
- Department of Biology and CESAM, University of Aveiro, Aveiro, Portugal
- ForestWISE-Collaborative Laboratory for Integrated Forest & Fire Management, Vila Real, Portugal
| | - Atle Mysterud
- Centre for Ecological and Evolutionary Synthesis, Department of Bioscience, University of Oslo, Oslo, Norway
| | - Miguel Á Habela
- Department of Animal Health, Veterinary Sciences Faculty, Extremadura University, Caceres, Spain
| | - Antonio Rivero-Juarez
- Infectious Diseases Unit, Maimonides Institute for Biomedical Research (IMIBIC), University Hospital Reina Sofía, University of Córdoba, Córdoba, Spain
- Center for Biomedical Research Network in Infectious Diseases (CIBERINFEC), Health Institute Carlos III, Madrid, Spain
| | - Joaquín Vicente
- SaBio Group, Institute for Game and Wildlife Research, IREC (UCLM-CSIC-JCCM), Ciudad Real, Spain
| | - Emmanuel Serrano
- Wildlife Ecology & Health Group (WE&H), Wildlife Environmental Pathology Service (SEFaS), Department of Animal Medicine and Surgery, Autonomous University of Barcelona, Bellaterra, Spain
| | - Maria C Arnal
- Department of Animal Pathology, Veterinary Faculty, University of Zaragoza, Saragossa, Spain
| | | | - José A Armenteros
- Council of Development, Territory Planning and the Environment of the Principado de Asturias, Oviedo, Spain
| | - Ana Balseiro
- Animal Health Department, Veterinary School, University of León, León, Spain
- Animal Health Department, Mountain Livestock Institute (CSIC-University of León), León, Spain
| | | | - João Carvalho
- Department of Biology and CESAM, University of Aveiro, Aveiro, Portugal
| | - Dário Hipólito
- Department of Biology and CESAM, University of Aveiro, Aveiro, Portugal
- Veterinary Biology Unit, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000, Zagreb, Croatia
| | - Joana Fernandes
- Department of Biology and CESAM, University of Aveiro, Aveiro, Portugal
- Center for Evolutionary Hologenomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Josman D Palmeira
- Department of Biology and CESAM, University of Aveiro, Aveiro, Portugal
| | - Rafael Calero-Bernal
- SALUVET, Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
| | - David González-Barrio
- Parasitology Reference and Research Laboratory, Spanish National Centre for Microbiology, Health Institute Carlos III, Majadahonda, Madrid, Spain.
| | - Monica Santin
- Environmental Microbial and Food Safety Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, USA.
| | - David Carmena
- Parasitology Reference and Research Laboratory, Spanish National Centre for Microbiology, Health Institute Carlos III, Majadahonda, Madrid, Spain
- Center for Biomedical Research Network in Infectious Diseases (CIBERINFEC), Health Institute Carlos III, Madrid, Spain
| |
Collapse
|
2
|
Sun Y, Nan H, Zhang C, Yang X, Zhao Y, Feng G, Ma L. Genetic characteristics of Blastocystis sp. in cattle from Hebei Province, China. Microb Pathog 2024; 190:106629. [PMID: 38522492 DOI: 10.1016/j.micpath.2024.106629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 03/26/2024]
Abstract
Blastocystis sp. is a protozoan parasite that infects the intestines of humans and animals, causing chronic diseases such as skin rashes, abdominal pain, and irritable bowel syndrome. A survey was conducted to determine the prevalence and genetic diversity of Blastocystis sp. infection in cattle, in Hebei Province, China. 2746 cattle fecal samples were collected from 11 cities in Hebei Province and analyzed using polymerase chain reaction targeting the Blastocystis sp. barcoding gene. MEGA, PhyloSuite, and PopART were used to analyze the subtype, sequence signature, pairwise genetic distance, and genetic diversity indices. The results showed that the Blastocystis sp. detection rate was 12.60% (346/2746). The infection rate in different herds was affected by region, age, breeding mode, and variety; that is, the infection rates in areas of southern Hebei, cattle under one year old, intensive raising, and dairy cattle were higher than the infection rates in northern Hebei, cattle over one year old, scatter feeding, and beef cattle. Seven Blastocystis subtypes were identified, namely, ST1, ST2, ST5, ST10, ST14, ST21, and ST26; ST10 was the dominant subtype, and ST14 was the second most common subtype. A total of 374 polymorphic and conserved sites were obtained, including 273 invariable (monomorphic) sites and 101 variable (polymorphic) sites, accounting for 27.01% of all nucleotides. The nucleotide diversity index (Pi) was 0.07749, and the haplotype (gene) diversity index (Hd) was 0.946. This study provides the first comprehensive information on the epidemiological situation of Blastocystis sp. infection in cattle from Hebei Province, China, and revealed rich genetic diversity of Blastocystis sp.
Collapse
Affiliation(s)
- Yuxin Sun
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Huizhu Nan
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Chao Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Xin Yang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Yan Zhao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Gang Feng
- Tangshan Municipal Administration Center of Zoo, Tangshan, 063000, China
| | - Lei Ma
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China.
| |
Collapse
|
3
|
Figueiredo AM, Santín M, Köster PC, Dashti A, Maloney JG, Torres RT, Fonseca C, Mysterud A, Carvalho J, Hipólito D, Rossa M, Palmeira JD, González-Barrio D, Calero-Bernal R, Carmena D. Molecular detection and characterization of Blastocystis in herbivore livestock species in Portugal. Vet Parasitol 2024; 327:110147. [PMID: 38364349 DOI: 10.1016/j.vetpar.2024.110147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/03/2024] [Accepted: 02/08/2024] [Indexed: 02/18/2024]
Abstract
Blastocystis is a ubiquitous intestinal protist in humans and animals worldwide. The traditional livestock free-roaming raising system in rural communities increases the risk of infection with contact with a wider range of pathogens transmitted via the faecal-oral route associated with that wildlife-livestock-human interface. However, no studies have been conducted to determine the occurrence and subtype distribution of Blastocystis in livestock in Portugal. Here, we collected 180 faecal samples from herbivore livestock (cattle, goats, horses, and sheep) in different regions of the country to investigate Blastocystis prevalence and subtype diversity using PCR and next-generation amplicon sequencing. Blastocystis was present in 40.6% (73/180; 95% CI: 33.31-48.11) of the samples (goats, 81.0%; sheep, 60.9%; cattle, 32.2%). None of the horse samples were Blastocystis-positive. Eighteen subtypes were detected (ST1-ST3, ST5-ST7, ST10, ST13, ST14, ST21, ST23-ST26, ST30, ST42-ST44). Mixed infections were detected in 97.3% of the Blastocystis-positive samples. Potentially zoonotic subtypes were identified in 75.0%, 96.4%, and 100% of the Blastocystis-positive specimens collected from cattle, sheep, and goats, respectively. These results demonstrate that cattle, sheep, and goats harbour a high diversity of Blastocystis subtypes in the study regions. Importantly, our data provide novel molecular evidence strongly suggesting that some Blastocystis STs/ST subgroups may have differential host specificity.
Collapse
Affiliation(s)
- Ana M Figueiredo
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal; Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Blindern, Oslo, Norway
| | - Mónica Santín
- Environmental Microbial and Food Safety Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, USA.
| | - Pamela C Köster
- Parasitology Reference and Research Laboratory, Spanish National Centre for Microbiology, Majadahonda, Spain; Faculty of Health Sciences, Alfonso X El Sabio University (UAX), Villanueva de la Cañada, Madrid, Spain; Faculty of Medicine, Alfonso X El Sabio University (UAX), Villanueva de la Cañada, Madrid, Spain
| | - Alejandro Dashti
- Parasitology Reference and Research Laboratory, Spanish National Centre for Microbiology, Majadahonda, Spain
| | - Jenny G Maloney
- Environmental Microbial and Food Safety Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, USA
| | - Rita T Torres
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Carlos Fonseca
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal; ForestWISE - Collaborative Laboratory for Integrated Forest & Fire Management, Vila Real, Portugal
| | - Atle Mysterud
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Blindern, Oslo, Norway
| | - João Carvalho
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Dário Hipólito
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal; Veterinary Biology Unit, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Mariana Rossa
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Josman D Palmeira
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - David González-Barrio
- Parasitology Reference and Research Laboratory, Spanish National Centre for Microbiology, Majadahonda, Spain
| | - Rafael Calero-Bernal
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Madrid, Spain
| | - David Carmena
- Parasitology Reference and Research Laboratory, Spanish National Centre for Microbiology, Majadahonda, Spain; CIBER Infectious Diseases (CIBERINFEC), Health Institute Carlos III, Madrid, Spain.
| |
Collapse
|
4
|
Ryckman M, Gantois N, Dominguez RG, Desramaut J, Li LL, Even G, Audebert C, Devos DP, Chabé M, Certad G, Monchy S, Viscogliosi E. Molecular Identification and Subtype Analysis of Blastocystis sp. Isolates from Wild Mussels ( Mytilus edulis) in Northern France. Microorganisms 2024; 12:710. [PMID: 38674653 PMCID: PMC11051716 DOI: 10.3390/microorganisms12040710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
Blastocystis sp. is the most common single-celled eukaryote colonizing the human gastrointestinal tract worldwide. Because of the proven zoonotic potential of this protozoan, sustained research is therefore focused on identifying various reservoirs of transmission to humans, and in particular animal sources. Numerous groups of animals are considered to be such reservoirs due to their handling or consumption. However, some of them, including mollusks, remain underexplored. Therefore, a molecular epidemiological survey conducted in wild mussels was carried out in Northern France (Hauts-de-France region) to evaluate the frequency and subtypes (STs) distribution of Blastocystis sp. in these bivalve mollusks. For this purpose, 100 mussels (Mytilus edulis) were randomly collected in two sampling sites (Wimereux and Dannes) located in the vicinity of Boulogne-sur-Mer. The gills and gastrointestinal tract of each mussel were screened for the presence of Blastocystis sp. by real-time polymerase chain reaction (qPCR) assay followed by direct sequencing of positive PCR products and subtyping through phylogenetic analysis. In parallel, sequences of potential representative Blastocystis sp. isolates that were previously obtained from temporal surveys of seawater samples at marine stations offshore of Wimereux were integrated in the present analysis. By taking into account the qPCR results from all mussels, the overall prevalence of the parasite was shown to reach 62.0%. In total, more than 55% of the positive samples presented mixed infections. In the remaining mussel samples with a single sequence, various STs including ST3, ST7, ST14, ST23, ST26 and ST44 were reported with varying frequencies. Such distribution of STs coupled with the absence of a predominant ST specific to these bivalves strongly suggested that mussels might not be natural hosts of Blastocystis sp. and might rather be carriers of parasite isolates from both human and animal (bovid and birds) waste. These data from mussels together with the molecular identification of isolates from marine stations were subsequently discussed along with the local geographical context in order to clarify the circulation of this protozoan in this area. The identification of human and animal STs of Blastocystis sp. in mussels emphasized the active circulation of this protozoan in mollusks and suggested a significant environmental contamination of fecal origin. This study has provided new insights into the host/carrier range and transmission of Blastocystis sp. and emphasized its potential as an effective sentinel species for water quality and environmental contamination.
Collapse
Affiliation(s)
- Manon Ryckman
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019–UMR 9017–CIIL–Centre d’Infection et d’Immunité de Lille, University of Lille, F-59000 Lille, France; (M.R.); (N.G.); (J.D.); (D.P.D.); (M.C.); (G.C.)
- Université du Littoral Côte d’Opale, CNRS, University Lille, UMR 8187, LOG, Laboratoire d’Océanologie et de Géosciences, F-62930 Wimereux, France; (L.-L.L.); (S.M.)
| | - Nausicaa Gantois
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019–UMR 9017–CIIL–Centre d’Infection et d’Immunité de Lille, University of Lille, F-59000 Lille, France; (M.R.); (N.G.); (J.D.); (D.P.D.); (M.C.); (G.C.)
| | - Ruben Garcia Dominguez
- Centro Andaluz de Biología del Desarrollo, CSIC, Universidad Pablo de Olavide, 41013 Sevilla, Spain;
| | - Jeremy Desramaut
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019–UMR 9017–CIIL–Centre d’Infection et d’Immunité de Lille, University of Lille, F-59000 Lille, France; (M.R.); (N.G.); (J.D.); (D.P.D.); (M.C.); (G.C.)
| | - Luen-Luen Li
- Université du Littoral Côte d’Opale, CNRS, University Lille, UMR 8187, LOG, Laboratoire d’Océanologie et de Géosciences, F-62930 Wimereux, France; (L.-L.L.); (S.M.)
| | - Gaël Even
- GD Biotech—Gènes Diffusion, F-59000 Lille, France; (G.E.); (C.A.)
- PEGASE-Biosciences (Plateforme d’Expertises Génomiques Appliquées aux Sciences Expérimentales), Institut Pasteur de Lille, F-59000 Lille, France
| | - Christophe Audebert
- GD Biotech—Gènes Diffusion, F-59000 Lille, France; (G.E.); (C.A.)
- PEGASE-Biosciences (Plateforme d’Expertises Génomiques Appliquées aux Sciences Expérimentales), Institut Pasteur de Lille, F-59000 Lille, France
| | - Damien Paul Devos
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019–UMR 9017–CIIL–Centre d’Infection et d’Immunité de Lille, University of Lille, F-59000 Lille, France; (M.R.); (N.G.); (J.D.); (D.P.D.); (M.C.); (G.C.)
- Centro Andaluz de Biología del Desarrollo, CSIC, Universidad Pablo de Olavide, 41013 Sevilla, Spain;
| | - Magali Chabé
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019–UMR 9017–CIIL–Centre d’Infection et d’Immunité de Lille, University of Lille, F-59000 Lille, France; (M.R.); (N.G.); (J.D.); (D.P.D.); (M.C.); (G.C.)
| | - Gabriela Certad
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019–UMR 9017–CIIL–Centre d’Infection et d’Immunité de Lille, University of Lille, F-59000 Lille, France; (M.R.); (N.G.); (J.D.); (D.P.D.); (M.C.); (G.C.)
- Délégation à la Recherche Clinique et à l’Innovation, Groupement des Hôpitaux de l’Institut Catholique de Lille, F-59000 Lille, France
| | - Sébastien Monchy
- Université du Littoral Côte d’Opale, CNRS, University Lille, UMR 8187, LOG, Laboratoire d’Océanologie et de Géosciences, F-62930 Wimereux, France; (L.-L.L.); (S.M.)
| | - Eric Viscogliosi
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019–UMR 9017–CIIL–Centre d’Infection et d’Immunité de Lille, University of Lille, F-59000 Lille, France; (M.R.); (N.G.); (J.D.); (D.P.D.); (M.C.); (G.C.)
| |
Collapse
|
5
|
Santin M, Figueiredo A, Molokin A, George NS, Köster PC, Dashti A, González-Barrio D, Carmena D, Maloney JG. Division of Blastocystis ST10 into three new subtypes: ST42-ST44. J Eukaryot Microbiol 2024; 71:e12998. [PMID: 37658622 DOI: 10.1111/jeu.12998] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 09/03/2023]
Abstract
The Blastocystis subtype ST10 has been recognized to contain a great deal of diversity at the sequence level, potentially indicating the presence of multiple new STs within the clade. However, the data needed to validate these new STs were not available. To help resolve this diversity, full-length small subunit (SSU) rRNA gene reference sequences were generated using Oxford Nanopore MinION long-read sequencing from 21 samples representing multiple domestic and wild hosts and geographic regions and covering the sequence diversity previously described using fragments of the SSU rRNA gene. Phylogenetic and pairwise distance analyses were used to compare full-length sequences of the SSU rRNA gene generated in this study with all other valid STs of Blastocystis. We present data supporting the division of ST10/ST23 cluster into five subtypes, ST10, ST23, and three new subtypes with the proposed ST designations of ST42, ST43, and ST44. As the host range of Blastocystis continues to expand with new subtypes and new hosts being frequently identified, the reference sequences provided in this study will assist in accurate sequence classification and help to clarify the epidemiology of this common intestinal microeukaryote.
Collapse
Affiliation(s)
- Monica Santin
- Environmental Microbial and Food Safety Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, Maryland, USA
| | - Ana Figueiredo
- Department of Biology and CESAM, University of Aveiro, Aveiro, Portugal
- Department of Bioscience, Centre for Ecological and Evolutionary Synthesis, University of Oslo, Oslo, Norway
| | - Aleksey Molokin
- Environmental Microbial and Food Safety Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, Maryland, USA
| | - Nadja S George
- Environmental Microbial and Food Safety Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, Maryland, USA
| | - Pamela C Köster
- Parasitology Reference and Research Laboratory, Spanish National Centre for Microbiology, Madrid, Spain
| | - Alejandro Dashti
- Parasitology Reference and Research Laboratory, Spanish National Centre for Microbiology, Madrid, Spain
| | - David González-Barrio
- Parasitology Reference and Research Laboratory, Spanish National Centre for Microbiology, Madrid, Spain
| | - David Carmena
- Parasitology Reference and Research Laboratory, Spanish National Centre for Microbiology, Madrid, Spain
- CIBER Infectious Diseases (CIBERINFEC), Health Institute Carlos III, Madrid, Spain
| | - Jenny G Maloney
- Environmental Microbial and Food Safety Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, Maryland, USA
| |
Collapse
|