1
|
Ji SR, Byun HR, Rieu MS, Han SW, Nam HY, Seo S, Park SY, Kang HY, Choi CY, Cho SY, Hwang BY, Chae JS. First detection of Bandavirus dabieense in ticks collected from migratory birds in the Republic of Korea. Acta Trop 2024; 257:107279. [PMID: 38871069 DOI: 10.1016/j.actatropica.2024.107279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/15/2024]
Abstract
The causative agent of severe fever with thrombocytopenia syndrome (SFTS) is Bandavirus dabieense, an emerging tick-borne zoonotic pathogen. Migratory birds have often been suggested as potential carriers of ticks that can transmit Bandavirus dabieense; however, their role remains unclear. The Republic of Korea (ROK) holds an important position as a stopover on the East Asian-Australasian Flyway. The present study aimed to investigate the potential involvement of migratory birds in the transmission of the SFTS virus (SFTSV) in the ROK. A total of 4,497 ticks were collected across various regions, including Heuksando and Daecheongdo, in the ROK, from bird migration seasons in 2022 and 2023. Genetic analysis of the SFTSV was performed for 96 ticks collected from 20 different species of migratory birds. Polymerase chain reaction (PCR) fragments of SFTSV were detected in one Haemaphysalis concinna nymph collected from a Black-faced Bunting (Emberiza spodocephala) and one Ixodes turdus nymph collected from an Olive-backed Pipit (Anthus hodgsoni) on Daecheongdo and Heuksando, respectively, during their northward migration in two spring seasons. This finding suggests that migratory birds can be considered as possible carriers and long-distance dispersers of ticks and associated tick-borne diseases. This study highlights the importance of clarifying the role and impact of migratory birds in the rapid expansion of tick-borne diseases, facilitating enhanced preparedness and the development of mitigation measures against emerging SFTS across and beyond East Asia.
Collapse
Affiliation(s)
- Seong-Ryeong Ji
- Laboratory of Veterinary Internal Medicine, BK21 FOUR Future Veterinary Medicine Leading Education and Research Center, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Hye-Ryung Byun
- Laboratory of Veterinary Internal Medicine, BK21 FOUR Future Veterinary Medicine Leading Education and Research Center, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Mi-Sun Rieu
- Laboratory of Veterinary Internal Medicine, BK21 FOUR Future Veterinary Medicine Leading Education and Research Center, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Sun-Woo Han
- Laboratory of Veterinary Internal Medicine, BK21 FOUR Future Veterinary Medicine Leading Education and Research Center, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Hyun-Young Nam
- The Research Institute of Basic Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Seulgi Seo
- Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Se-Young Park
- Department of Agriculture, Forestry, and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Hwa-Yeon Kang
- Department of Agriculture, Forestry, and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Chang-Yong Choi
- Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Department of Agriculture, Forestry, and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - So-Yeon Cho
- Bird Research Center, Korea National Park Research Institute, Shinan County, Jeonnam 58863, Republic of Korea
| | - Bo-Yeon Hwang
- Bird Research Center, Korea National Park Research Institute, Shinan County, Jeonnam 58863, Republic of Korea
| | - Joon-Seok Chae
- Laboratory of Veterinary Internal Medicine, BK21 FOUR Future Veterinary Medicine Leading Education and Research Center, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
2
|
Halajian A, Cuozzo FP, Heyne H, Sauther ML, Linden B, Linden J, Tordiffe AS, Rampedi KM, Hornok S. Hard ticks (Acari: Ixodidae) parasitizing bushbabies (Mammalia: Galagidae) in a biodiversity hotspot of northern South Africa. Ticks Tick Borne Dis 2024; 15:102313. [PMID: 38278012 DOI: 10.1016/j.ttbdis.2024.102313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/07/2024] [Accepted: 01/15/2024] [Indexed: 01/28/2024]
Abstract
South Africa has six species of primates, three of which are bushbabies (family Galagidae). Very little information is available on their parasites due to the lack of longitudinal studies, although Rhipicephalus appendiculatus, Amblyomma hebraeum and Haemaphysalis elliptica were previously reported from the brown greater galago (Otolemur crassicaudatus) in South Africa. During 2014-2019, 83 O. crassicaudatus (70 live-trapped and 13 deceased animals) were checked for the presence of hard ticks, all from Limpopo Province, South Africa. Seventy-three of 83 (88 %) galagos were found to be tick-infested. Among ixodid genera, Haemaphysalis had the highest prevalence (46 % of the bushbabies), followed by Rhipicephalus (25 %) and Ixodes (18 %). In total, ten tick species were identified. Importantly, all infestations were monospecific. Ticks occurred on various body parts of bushbabies, thus no predilection site was noted. In conclusion, while previously only three ixodid species were known to infest bushbabies in South Africa, the present study showed that these animals can be parasitized by a much broader range of hard ticks.
Collapse
Affiliation(s)
- Ali Halajian
- Research Administration and Development, University of Limpopo, Private Bag X1106, Sovenga 0727, South Africa.
| | - Frank P Cuozzo
- Mammal Research Institute, University of Pretoria, Pretoria 0028, South Africa
| | - Heloise Heyne
- 3 Kappertjie Crescent, Doornpoort, Pretoria 0186 South Africa
| | - Michelle L Sauther
- Department of Anthropology, University of Colorado, Campus Box 233, Boulder, CO 80509, United States
| | - Birthe Linden
- SARChI Chair on Biodiversity Value and Change, Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou 0950 South Africa
| | - Jabu Linden
- P. O. Box 1536 Louis Trichardt Makhado, South Africa
| | - Adrian Sw Tordiffe
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa; Department of Research and Scientific Services, National Zoological Gardens of South Africa, Pretoria, South Africa; Centre for Human Metabolomics, Faculty of Natural Sciences, North-West University, Potchefstroom, South Africa
| | | | - Sándor Hornok
- Department of Parasitology and Zoology, University of Veterinary Medicine, 1078 Budapest, Hungary; HUN-REN-UVMB Climate Change: New Blood-sucking Parasites and Vector-borne Pathogens Research Group, 1078 Budapest, Hungary.
| |
Collapse
|