1
|
Krasiļņikova M, Marques CA, Briggs EM, Lapsley C, Hamilton G, Beraldi D, Crouch K, McCulloch R. Nanopore sequencing reveals that DNA replication compartmentalisation dictates genome stability and instability in Trypanosoma brucei. Nat Commun 2025; 16:751. [PMID: 39820334 PMCID: PMC11739655 DOI: 10.1038/s41467-025-56087-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 01/07/2025] [Indexed: 01/19/2025] Open
Abstract
The Trypanosoma brucei genome is structurally complex. Eleven megabase-sized chromosomes each comprise a transcribed core flanked by silent subtelomeres, housing thousands of Variant Surface Glycoprotein (VSG) genes. Additionally, hundreds of sub-megabase chromosomes contain 177 bp repeats of unknown function, and VSG transcription sites localise to many telomeres. DNA replication dynamics have only been described in the megabase chromosome cores, and in the single active VSG transcription site. Using a Nanopore genome assembly, we show that megabase chromosome subtelomeres display a paucity of replication initiation events relative to the core, correlating with increased instability. In addition, replication of the active VSG transcription site is shown to originate from the telomere, likely causing targeted VSG recombination. Lastly, we provide evidence that the 177 bp repeats act as conserved DNA replication origins, explaining submegabase chromosome stability. Compartmentalized DNA replication therefore explains how T. brucei balances stable genome transmission with localised instability driving immune evasion.
Collapse
Affiliation(s)
- Marija Krasiļņikova
- University of Glasgow Centre for Parasitology, The Wellcome Centre for Integrative Parasitology, University of Glasgow, School of Infection and Immunity, Sir Graeme Davies Building, 120 University Place, Glasgow, G12 8TA, United Kingdom
| | - Catarina A Marques
- University of Glasgow Centre for Parasitology, The Wellcome Centre for Integrative Parasitology, University of Glasgow, School of Infection and Immunity, Sir Graeme Davies Building, 120 University Place, Glasgow, G12 8TA, United Kingdom.
| | - Emma M Briggs
- University of Glasgow Centre for Parasitology, The Wellcome Centre for Integrative Parasitology, University of Glasgow, School of Infection and Immunity, Sir Graeme Davies Building, 120 University Place, Glasgow, G12 8TA, United Kingdom
- University of Edinburgh, Institute for Immunology and Infection Research, School of Biological Sciences, Edinburgh, United Kingdom
- Biosciences Institute, Cookson Building, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Craig Lapsley
- University of Glasgow Centre for Parasitology, The Wellcome Centre for Integrative Parasitology, University of Glasgow, School of Infection and Immunity, Sir Graeme Davies Building, 120 University Place, Glasgow, G12 8TA, United Kingdom
| | - Graham Hamilton
- MVLS Research Facilities, University of Glasgow, Wolfson Wohl Cancer Research Centre, Garscube Estate, Switchback Rd, Bearsden, Glasgow, G61 1QH, United Kingdom
| | - Dario Beraldi
- University of Glasgow Centre for Parasitology, The Wellcome Centre for Integrative Parasitology, University of Glasgow, School of Infection and Immunity, Sir Graeme Davies Building, 120 University Place, Glasgow, G12 8TA, United Kingdom
| | - Kathryn Crouch
- University of Glasgow Centre for Parasitology, The Wellcome Centre for Integrative Parasitology, University of Glasgow, School of Infection and Immunity, Sir Graeme Davies Building, 120 University Place, Glasgow, G12 8TA, United Kingdom
| | - Richard McCulloch
- University of Glasgow Centre for Parasitology, The Wellcome Centre for Integrative Parasitology, University of Glasgow, School of Infection and Immunity, Sir Graeme Davies Building, 120 University Place, Glasgow, G12 8TA, United Kingdom.
| |
Collapse
|
2
|
Kieft R, Cliffe L, Yan H, Schmitz RJ, Hajduk SL, Sabatini R. Mono-allelic epigenetic regulation of polycistronic transcription initiation by RNA polymerase II in Trypanosoma brucei. mBio 2024:e0232824. [PMID: 39704500 DOI: 10.1128/mbio.02328-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 11/27/2024] [Indexed: 12/21/2024] Open
Abstract
Unique for a eukaryote, protein-coding genes in trypanosomes are arranged in polycistronic transcription units (PTUs). This genome arrangement has led to a model where Pol II transcription of PTUs is unregulated and changes in gene expression are entirely post-transcriptional. Trypanosoma brucei brucei is unable to infect humans because of its susceptibility to an innate immune complex, trypanosome lytic factor (TLF) in the circulation of humans. The initial step in TLF-mediated lysis of T.b.brucei requires high affinity haptoglobin/hemoglobin receptor (HpHbR) binding. Here, we demonstrate that by in vitro selection with TLF, resistance is obtained in a stepwise process correlating with loss of HpHbR expression at an allelic level. RNA-seq, Pol II ChIP, and run-on analysis indicate HpHbR silencing is at the transcriptional level, where loss of Pol II binding at the promoter region specifically shuts down transcription of the HpHbR-containing gene cluster and the adjacent opposing gene cluster. Reversible transcriptional silencing of the divergent PTUs correlates with DNA base J modification of the shared promoter region. Base J function in establishing transcriptional silencing, rather than maintenance, is suggested by the maintenance of PTU silencing following the inhibition of J-biosynthesis and subsequent loss of the modified DNA base. Therefore, we show that epigenetic mechanisms exist to regulate gene expression via Pol II transcription initiation of gene clusters in a mono-allelic fashion. These findings suggest epigenetic chromatin-based regulation of gene expression is deeply conserved among eukaryotes, including early divergent eukaryotes that rely on polycistronic transcription.IMPORTANCEThe single-cell parasite Trypanosoma brucei causes lethal diseases in both humans and livestock. T. brucei undergoes multiple developmental changes to adapt in different environments during its digenetic life cycle. With protein-coding genes organized as polycistronic transcription and apparent absence of promoter-mediated regulation of transcription initiation, it is believed that developmental gene regulation in trypanosomes is essentially post-transcriptional. In this study, we found reversible Pol II transcriptional silencing of two adjacent polycistronic gene arrays that correlate with the novel DNA base J modification of the shared promoter region. Our findings support epigenetic regulation of Pol II transcription initiation as a viable mechanism of gene expression control in T. brucei. This has implications for our understanding how trypanosomes utilize polycistronic genome organization to regulate gene expression during its life cycle.
Collapse
Affiliation(s)
- Rudo Kieft
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Laura Cliffe
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Haidong Yan
- Department of Genetics, University of Georgia, Athens, Georgia, USA
| | - Robert J Schmitz
- Department of Genetics, University of Georgia, Athens, Georgia, USA
| | - Stephen L Hajduk
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Robert Sabatini
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
3
|
Kieft R, Cliffe L, Yan H, Schmitz RJ, Hajduk SL, Sabatini R. Mono-allelic epigenetic regulation of bi-directional silencing of RNA Polymerase II polycistronic transcription initiation in Trypanosoma brucei. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.21.600114. [PMID: 38948844 PMCID: PMC11213002 DOI: 10.1101/2024.06.21.600114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Unique for a eukaryote, protein-coding genes in trypanosomes are arranged in polycistronic units (PTUs). This genome arrangement has led to a model where Pol II transcription of PTUs is unregulated and that changes in gene expression are entirely post-transcriptional. Trypanosoma brucei brucei is unable to infect humans because of its susceptibility to an innate immune complex, trypanosome lytic factor (TLF) in the circulation of humans. The initial step in TLF mediated lysis of T.b.brucei requires high affinity haptoglobin/hemoglobin receptor (HpHbR) binding. Here we demonstrate that by in vitro selection with TLF, resistance is obtained in a stepwise process correlating with loss of HpHbR expression at an allelic level. RNA-seq, Pol II ChIP and run-on analysis indicate HpHbR silencing is at the transcriptional level, where loss of Pol II binding at the promoter region specifically shuts down transcription of the HpHbR containing gene cluster and the adjacent opposing gene cluster. Reversible transcriptional silencing of the divergent PTUs correlates with DNA base J modification of the shared promoter region. Therefore, we show that epigenetic mechanisms, including base J modification, are involved in regulating gene expression via Pol II transcription initiation of gene clusters in a mono-allelic fashion. These findings suggest epigenetic chromatin-based regulation of gene expression is deeply conserved among eukaryotes, including early divergent eukaryotes that rely on polycistronic transcription. IMPORTANCE The single-cell parasite Trypanosoma brucei causes lethal diseases in both humans and livestock. T. brucei undergoes multiple developmental changes to adapt in different environments during its digenetic life cycle. With protein-coding genes organized as polycistronic transcription and apparent absence of promoter-mediated regulation of transcription initiation, it is believed that developmental gene regulation in trypanosomes is essentially post-transcriptional. In this study, we found reversible Pol II transcriptional silencing of two adjacent polycistronic gene arrays that correlates with the novel DNA base J modification of the shared promoter region. Our findings support epigenetic regulation of Pol II transcription initiation as a viable mechanism of gene expression control in T. brucei . This has implications for our understanding how trypanosomes utilize polycistronic genome organization to regulate gene expression during its life cycle.
Collapse
|
4
|
Beati P, Massimino Stepñicka M, Vilchez Larrea SC, Smircich P, Alonso GD, Ocampo J. Improving genome-wide mapping of nucleosomes in Trypanosome cruzi. PLoS One 2023; 18:e0293809. [PMID: 37988351 PMCID: PMC10662739 DOI: 10.1371/journal.pone.0293809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 10/19/2023] [Indexed: 11/23/2023] Open
Abstract
In Trypanosoma cruzi DNA is packaged into chromatin by octamers of histone proteins that form nucleosomes. Transcription of protein coding genes in trypanosomes is constitutive producing polycistronic units and gene expression is primarily regulated post-transcriptionally. However, chromatin organization influences DNA dependent processes. Hence, determining nucleosome position is of uppermost importance to understand the peculiarities found in trypanosomes. To map nucleosomes genome-wide in several organisms, digestion of chromatin with micrococcal nuclease followed by deep sequencing has been applied. Nonetheless, the special requirements for cell manipulation and the uniqueness of the chromatin organization in trypanosomes entails a customized analytical approach. In this work, we adjusted this broadly used method to the hybrid reference strain, CL Brener. Particularly, we implemented an exhaustive and thorough computational workflow to overcome the difficulties imposed by this complex genome. We tested the performance of two aligners, Bowtie2 and HISAT2, and discuss their advantages and caveats. Specifically, we highlight the relevance of using the whole genome as a reference instead of the commonly used Esmeraldo-like haplotype to avoid spurious alignments. Additionally, we show that using the whole genome refines the average nucleosome representation, but also the quality of mapping for every region represented. Moreover, we show that the average nucleosome organization around trans-splicing acceptor site described before, is not just an average since the same chromatin pattern is detected for most of the represented regions. In addition, we extended the study to a non-hybrid strain applying the experimental and analytical approach to Sylvio-X10 strain. Furthermore, we provide a source code for the construction of 2D plots and heatmaps which are easy to adapt to any T. cruzi strain.
Collapse
Affiliation(s)
- Paula Beati
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Milena Massimino Stepñicka
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Salomé C. Vilchez Larrea
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Pablo Smircich
- Laboratorio de Bioinformática, Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
- Sección Genómica Funcional, Facultad de Ciencias, Universidad de la República (UdelaR), Montevideo, Uruguay
| | - Guillermo D. Alonso
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Josefina Ocampo
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| |
Collapse
|
5
|
Deák G, Wapenaar H, Sandoval G, Chen R, Taylor MRD, Burdett H, Watson J, Tuijtel M, Webb S, Wilson M. Histone divergence in trypanosomes results in unique alterations to nucleosome structure. Nucleic Acids Res 2023; 51:7882-7899. [PMID: 37427792 PMCID: PMC10450195 DOI: 10.1093/nar/gkad577] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/02/2023] [Accepted: 06/26/2023] [Indexed: 07/11/2023] Open
Abstract
Eukaryotes have a multitude of diverse mechanisms for organising and using their genomes, but the histones that make up chromatin are highly conserved. Unusually, histones from kinetoplastids are highly divergent. The structural and functional consequences of this variation are unknown. Here, we have biochemically and structurally characterised nucleosome core particles (NCPs) from the kinetoplastid parasite Trypanosoma brucei. A structure of the T. brucei NCP reveals that global histone architecture is conserved, but specific sequence alterations lead to distinct DNA and protein interaction interfaces. The T. brucei NCP is unstable and has weakened overall DNA binding. However, dramatic changes at the H2A-H2B interface introduce local reinforcement of DNA contacts. The T. brucei acidic patch has altered topology and is refractory to known binders, indicating that the nature of chromatin interactions in T. brucei may be unique. Overall, our results provide a detailed molecular basis for understanding evolutionary divergence in chromatin structure.
Collapse
Affiliation(s)
- Gauri Deák
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| | - Hannah Wapenaar
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| | - Gorka Sandoval
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| | - Ruofan Chen
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| | - Mark R D Taylor
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| | - Hayden Burdett
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| | - James A Watson
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| | - Maarten W Tuijtel
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany
| | - Shaun Webb
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| | - Marcus D Wilson
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| |
Collapse
|
6
|
Menezes AP, Murillo AM, de Castro CG, Bellini NK, Tosi LRO, Thiemann OH, Elias MC, Silber AM, da Cunha JPC. Navigating the boundaries between metabolism and epigenetics in trypanosomes. Trends Parasitol 2023; 39:682-695. [PMID: 37349193 DOI: 10.1016/j.pt.2023.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/24/2023] [Accepted: 05/24/2023] [Indexed: 06/24/2023]
Abstract
Epigenetic marks enable cells to acquire new biological features that favor their adaptation to environmental changes. These marks are chemical modifications on chromatin-associated proteins and nucleic acids that lead to changes in the chromatin landscape and may eventually affect gene expression. The chemical tags of these epigenetic marks are comprised of intermediate cellular metabolites. The number of discovered associations between metabolism and epigenetics has increased, revealing how environment influences gene regulation and phenotype diversity. This connection is relevant to all organisms but underappreciated in digenetic parasites, which must adapt to different environments as they progress through their life cycles. This review speculates and proposes associations between epigenetics and metabolism in trypanosomes, which are protozoan parasites that cause human and livestock diseases.
Collapse
Affiliation(s)
- Ana Paula Menezes
- Laboratório de Ciclo Celular - Instituto Butantan, São Paulo-SP, Brazil; Centro de Toxinas, Resposta Imune e Sinalização Celular (CeTICS), Instituto Butantan, São Paulo, Brazil
| | - Ana Milena Murillo
- Laboratório de Bioquímica de Tryps - LabTryps, Departamento de Parasitologia, Universidade de São Paulo, São Paulo-SP, Brazil
| | - Camila Gachet de Castro
- Laboratório de Ciclo Celular - Instituto Butantan, São Paulo-SP, Brazil; Centro de Toxinas, Resposta Imune e Sinalização Celular (CeTICS), Instituto Butantan, São Paulo, Brazil
| | - Natalia Karla Bellini
- Laboratório de Ciclo Celular - Instituto Butantan, São Paulo-SP, Brazil; Centro de Toxinas, Resposta Imune e Sinalização Celular (CeTICS), Instituto Butantan, São Paulo, Brazil
| | | | | | - Maria Carolina Elias
- Laboratório de Ciclo Celular - Instituto Butantan, São Paulo-SP, Brazil; Centro de Toxinas, Resposta Imune e Sinalização Celular (CeTICS), Instituto Butantan, São Paulo, Brazil
| | - Ariel Mariano Silber
- Laboratório de Bioquímica de Tryps - LabTryps, Departamento de Parasitologia, Universidade de São Paulo, São Paulo-SP, Brazil.
| | - Julia Pinheiro Chagas da Cunha
- Laboratório de Ciclo Celular - Instituto Butantan, São Paulo-SP, Brazil; Centro de Toxinas, Resposta Imune e Sinalização Celular (CeTICS), Instituto Butantan, São Paulo, Brazil.
| |
Collapse
|
7
|
Gómez-Liñán C, Gómez-Díaz E, Ceballos-Pérez G, Fernández-Moya S, Estévez AM. The RNA-binding protein RBP33 dampens non-productive transcription in trypanosomes. Nucleic Acids Res 2022; 50:12251-12265. [PMID: 36454008 PMCID: PMC9757043 DOI: 10.1093/nar/gkac1123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 11/01/2022] [Accepted: 11/09/2022] [Indexed: 12/02/2022] Open
Abstract
In-depth analysis of the transcriptomes of several model organisms has revealed that genomes are pervasively transcribed, giving rise to an abundance of non-canonical and mainly antisense RNA polymerase II-derived transcripts that are produced from almost any genomic context. Pervasive RNAs are degraded by surveillance mechanisms, but the repertoire of proteins that control the fate of these non-productive transcripts is still incomplete. Trypanosomes are single-celled eukaryotes that show constitutive RNA polymerase II transcription and in which initiation and termination of transcription occur at a limited number of sites per chromosome. It is not known whether pervasive transcription exists in organisms with unregulated RNA polymerase II activity, and which factors could be involved in the process. We show here that depletion of RBP33 results in overexpression of ∼40% of all annotated genes in the genome, with a marked accumulation of sense and antisense transcripts derived from silenced regions. RBP33 loss does not result in a significant increase in chromatin accessibility. Finally, we have found that transcripts that increase in abundance upon RBP33 knockdown are significantly more stable in RBP33-depleted trypanosomes, and that the exosome complex is responsible for their degradation. Our results provide strong evidence that RBP33 dampens non-productive transcription in trypanosomes.
Collapse
Affiliation(s)
- Claudia Gómez-Liñán
- Instituto de Parasitología y Biomedicina ‘López-Neyra’ (IPBLN), CSIC, Parque Tecnológico de Ciencias de la Salud, Avda. del Conocimiento 17, 18016, Armilla, Granada, Spain
| | - Elena Gómez-Díaz
- Instituto de Parasitología y Biomedicina ‘López-Neyra’ (IPBLN), CSIC, Parque Tecnológico de Ciencias de la Salud, Avda. del Conocimiento 17, 18016, Armilla, Granada, Spain
| | - Gloria Ceballos-Pérez
- Instituto de Parasitología y Biomedicina ‘López-Neyra’ (IPBLN), CSIC, Parque Tecnológico de Ciencias de la Salud, Avda. del Conocimiento 17, 18016, Armilla, Granada, Spain
| | - Sandra M Fernández-Moya
- Instituto de Parasitología y Biomedicina ‘López-Neyra’ (IPBLN), CSIC, Parque Tecnológico de Ciencias de la Salud, Avda. del Conocimiento 17, 18016, Armilla, Granada, Spain
| | - Antonio M Estévez
- To whom correspondence should be addressed. Tel: +34 958 181652; Fax: +34 958 181632;
| |
Collapse
|
8
|
Maree JP, Tvardovskiy A, Ravnsborg T, Jensen ON, Rudenko G, Patterton HG. Trypanosoma brucei histones are heavily modified with combinatorial post-translational modifications and mark Pol II transcription start regions with hyperacetylated H2A. Nucleic Acids Res 2022; 50:9705-9723. [PMID: 36095123 PMCID: PMC9508842 DOI: 10.1093/nar/gkac759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 08/09/2022] [Accepted: 08/30/2022] [Indexed: 11/12/2022] Open
Abstract
Trypanosomes diverged from the main eukaryotic lineage about 600 million years ago, and display some unusual genomic and epigenetic properties that provide valuable insight into the early processes employed by eukaryotic ancestors to regulate chromatin-mediated functions. We analysed Trypanosoma brucei core histones by high mass accuracy middle-down mass spectrometry to map core histone post-translational modifications (PTMs) and elucidate cis-histone combinatorial PTMs (cPTMs). T. brucei histones are heavily modified and display intricate cPTMs patterns, with numerous hypermodified cPTMs that could contribute to the formation of non-repressive euchromatic states. The Trypanosoma brucei H2A C-terminal tail is hyperacetylated, containing up to five acetylated lysine residues. MNase-ChIP-seq revealed a striking enrichment of hyperacetylated H2A at Pol II transcription start regions, and showed that H2A histones that are hyperacetylated in different combinations localised to different genomic regions, suggesting distinct epigenetic functions. Our genomics and proteomics data provide insight into the complex epigenetic mechanisms used by this parasite to regulate a genome that lacks the transcriptional control mechanisms found in later-branched eukaryotes. The findings further demonstrate the complexity of epigenetic mechanisms that were probably shared with the last eukaryotic common ancestor.
Collapse
Affiliation(s)
- Johannes P Maree
- Department of Biochemistry, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Andrey Tvardovskiy
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, and Center for Epigenetics, University of Southern Denmark, Odense M DK-5230, Denmark
| | - Tina Ravnsborg
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, and Center for Epigenetics, University of Southern Denmark, Odense M DK-5230, Denmark
| | - Ole N Jensen
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, and Center for Epigenetics, University of Southern Denmark, Odense M DK-5230, Denmark
| | - Gloria Rudenko
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Hugh-G Patterton
- Center for Bioinformatics and Computational Biology, Stellenbosch University, Stellenbosch 7600, South Africa
| |
Collapse
|
9
|
Davies C, Ooi CP, Sioutas G, Hall BS, Sidhu H, Butter F, Alsford S, Wickstead B, Rudenko G. TbSAP is a novel chromatin protein repressing metacyclic variant surface glycoprotein expression sites in bloodstream form Trypanosoma brucei. Nucleic Acids Res 2021; 49:3242-3262. [PMID: 33660774 PMCID: PMC8034637 DOI: 10.1093/nar/gkab109] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/02/2021] [Accepted: 02/11/2021] [Indexed: 12/13/2022] Open
Abstract
The African trypanosome Trypanosoma brucei is a unicellular eukaryote, which relies on a protective variant surface glycoprotein (VSG) coat for survival in the mammalian host. A single trypanosome has >2000 VSG genes and pseudogenes of which only one is expressed from one of ∼15 telomeric bloodstream form expression sites (BESs). Infectious metacyclic trypanosomes present within the tsetse fly vector also express VSG from a separate set of telomeric metacyclic ESs (MESs). All MESs are silenced in bloodstream form T. brucei. As very little is known about how this is mediated, we performed a whole genome RNAi library screen to identify MES repressors. This allowed us to identify a novel SAP domain containing DNA binding protein which we called TbSAP. TbSAP is enriched at the nuclear periphery and binds both MESs and BESs. Knockdown of TbSAP in bloodstream form trypanosomes did not result in cells becoming more ‘metacyclic-like'. Instead, there was extensive global upregulation of transcripts including MES VSGs, VSGs within the silent VSG arrays as well as genes immediately downstream of BES promoters. TbSAP therefore appears to be a novel chromatin protein playing an important role in silencing the extensive VSG repertoire of bloodstream form T. brucei.
Collapse
Affiliation(s)
- Carys Davies
- Sir Alexander Fleming Building, Department of Life Sciences, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - Cher-Pheng Ooi
- Sir Alexander Fleming Building, Department of Life Sciences, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - Georgios Sioutas
- Sir Alexander Fleming Building, Department of Life Sciences, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - Belinda S Hall
- Sir Alexander Fleming Building, Department of Life Sciences, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - Haneesh Sidhu
- Sir Alexander Fleming Building, Department of Life Sciences, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - Falk Butter
- Institute of Molecular Biology, Ackermannweg 4, 55128 Mainz, Germany
| | - Sam Alsford
- London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Bill Wickstead
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | - Gloria Rudenko
- Sir Alexander Fleming Building, Department of Life Sciences, Imperial College London, South Kensington, London SW7 2AZ, UK
| |
Collapse
|
10
|
Lima ARJ, de Araujo CB, Bispo S, Patané J, Silber AM, Elias MC, da Cunha JPC. Nucleosome landscape reflects phenotypic differences in Trypanosoma cruzi life forms. PLoS Pathog 2021; 17:e1009272. [PMID: 33497423 PMCID: PMC7864430 DOI: 10.1371/journal.ppat.1009272] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 02/05/2021] [Accepted: 01/04/2021] [Indexed: 11/25/2022] Open
Abstract
Trypanosoma cruzi alternates between replicative and nonreplicative life forms, accompanied by a shift in global transcription levels and by changes in the nuclear architecture, the chromatin proteome and histone posttranslational modifications. To gain further insights into the epigenetic regulation that accompanies life form changes, we performed genome-wide high-resolution nucleosome mapping using two T. cruzi life forms (epimastigotes and cellular trypomastigotes). By combining a powerful pipeline that allowed us to faithfully compare nucleosome positioning and occupancy, more than 125 thousand nucleosomes were mapped, and approximately 20% of them differed between replicative and nonreplicative forms. The nonreplicative forms have less dynamic nucleosomes, possibly reflecting their lower global transcription levels and DNA replication arrest. However, dynamic nucleosomes are enriched at nonreplicative regulatory transcription initiation regions and at multigenic family members, which are associated with infective-stage and virulence factors. Strikingly, dynamic nucleosome regions are associated with GO terms related to nuclear division, translation, gene regulation and metabolism and, notably, associated with transcripts with different expression levels among life forms. Finally, the nucleosome landscape reflects the steady-state transcription expression: more abundant genes have a more deeply nucleosome-depleted region at putative 5' splice sites, likely associated with trans-splicing efficiency. Taken together, our results indicate that chromatin architecture, defined primarily by nucleosome positioning and occupancy, reflects the phenotypic differences found among T. cruzi life forms despite the lack of a canonical transcriptional control context.
Collapse
Affiliation(s)
- Alex R. J. Lima
- Laboratório de Ciclo Celular, Instituto Butantan, São Paulo, Brazil
- Center of Toxins, Immune Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, Brazil
| | - Christiane B. de Araujo
- Laboratório de Ciclo Celular, Instituto Butantan, São Paulo, Brazil
- Center of Toxins, Immune Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, Brazil
| | - Saloe Bispo
- Laboratório de Ciclo Celular, Instituto Butantan, São Paulo, Brazil
- Center of Toxins, Immune Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, Brazil
| | - José Patané
- Laboratório de Ciclo Celular, Instituto Butantan, São Paulo, Brazil
- Center of Toxins, Immune Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, Brazil
| | - Ariel M. Silber
- Laboratory of Biochemistry of Tryps–LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo, Brazil
| | - M. Carolina Elias
- Laboratório de Ciclo Celular, Instituto Butantan, São Paulo, Brazil
- Center of Toxins, Immune Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, Brazil
- * E-mail: (MCE); (JPCC)
| | - Julia P. C. da Cunha
- Laboratório de Ciclo Celular, Instituto Butantan, São Paulo, Brazil
- Center of Toxins, Immune Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, Brazil
- * E-mail: (MCE); (JPCC)
| |
Collapse
|
11
|
Damasceno JD, Marques CA, Black J, Briggs E, McCulloch R. Read, Write, Adapt: Challenges and Opportunities during Kinetoplastid Genome Replication. Trends Genet 2020; 37:21-34. [PMID: 32993968 PMCID: PMC9213392 DOI: 10.1016/j.tig.2020.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 12/31/2022]
Abstract
The genomes of all organisms are read throughout their growth and development, generating new copies during cell division and encoding the cellular activities dictated by the genome’s content. However, genomes are not invariant information stores but are purposefully altered in minor and major ways, adapting cellular behaviour and driving evolution. Kinetoplastids are eukaryotic microbes that display a wide range of such read–write genome activities, in many cases affecting critical aspects of their biology, such as host adaptation. Here we discuss the range of read–write genome changes found in two well-studied kinetoplastid parasites, Trypanosoma brucei and Leishmania, focusing on recent work that suggests such adaptive genome variation is linked to novel strategies the parasites use to replicate their unconventional genomes. Polycistronic transcription dominates and shapes kinetoplastid genomes, inevitably leading to clashes with DNA replication. By harnessing the resultant DNA damage for adaptation, kinetoplastids have huge potential for dynamic read–write genome variation. Major origins of DNA replication are confined to the boundaries of polycistronic transcription units in the Trypanosoma brucei and Leishmania genomes, putatively limiting DNA damage. Subtelomeres may lack this arrangement, generating read–write hotspots. In T. brucei, early replication of the highly transcribed subtelomeric variant surface glycoprotein (VSG) expression site may ensure replication-transcription clashes within this site to trigger DNA recombination, an event critical for antigenic variation. Leishmania genomes show extensive aneuploidy and copy number variation. Notably, DNA replication requires recombination factors and relies on post-S phase replication of subtelomeres. Evolution of compartmentalised DNA replication programmes underpin important aspects of genome biology in kinetoplastids, illustrating the consolidation of genome maintenance strategies to promote genome plasticity.
Collapse
Affiliation(s)
- Jeziel D Damasceno
- The Wellcome Centre for Integrative Parasitology, University of Glasgow, Institute of Infection, Immunity and Inflammation, Sir Graeme Davies Building, 120 University Place, Glasgow, G12 8TA, UK.
| | - Catarina A Marques
- The Wellcome Centre for Integrative Parasitology, University of Glasgow, Institute of Infection, Immunity and Inflammation, Sir Graeme Davies Building, 120 University Place, Glasgow, G12 8TA, UK
| | - Jennifer Black
- The Wellcome Centre for Integrative Parasitology, University of Glasgow, Institute of Infection, Immunity and Inflammation, Sir Graeme Davies Building, 120 University Place, Glasgow, G12 8TA, UK
| | - Emma Briggs
- The Wellcome Centre for Integrative Parasitology, University of Glasgow, Institute of Infection, Immunity and Inflammation, Sir Graeme Davies Building, 120 University Place, Glasgow, G12 8TA, UK; Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Richard McCulloch
- The Wellcome Centre for Integrative Parasitology, University of Glasgow, Institute of Infection, Immunity and Inflammation, Sir Graeme Davies Building, 120 University Place, Glasgow, G12 8TA, UK.
| |
Collapse
|
12
|
Bañuelos CP, Levy GV, Níttolo AG, Roser LG, Tekiel V, Sánchez DO. The Trypanosoma brucei RNA-Binding Protein TbRRM1 is Involved in the Transcription of a Subset of RNA Pol II-Dependent Genes. J Eukaryot Microbiol 2019; 66:719-729. [PMID: 30730083 DOI: 10.1111/jeu.12716] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/11/2019] [Accepted: 01/25/2019] [Indexed: 11/30/2022]
Abstract
It has been long thought that RNA Polymerase (Pol) II transcriptional regulation does not operate in trypanosomes. However, recent reports have suggested that these organisms could regulate RNA Pol II transcription by epigenetic mechanisms. In this paper, we investigated the role of TbRRM1 in transcriptional regulation of RNA Pol II-dependent genes by focusing both in genes located in a particular polycistronic transcription unit (PTU) and in the monocistronic units of the SL-RNA genes. We showed that TbRRM1 is recruited throughout the PTU, with a higher presence on genes than intergenic regions. However, its depletion leads both to the decrease of nascent RNA and to chromatin compaction only of regions located distal to the main transcription start site. These findings suggest that TbRRM1 facilitates the RNA Pol II transcriptional elongation step by collaborating to maintain an open chromatin state in particular regions of the genome. Interestingly, the SL-RNA genes do not recruit TbRRM1 and, after TbRRM1 knockdown, nascent SL-RNAs accumulate while the chromatin state of these regions remains unchanged. Although it was previously suggested that TbRRM1 could regulate RNA Pol II-driven genes, we provide here the first experimental evidence which involves TbRRM1 to transcriptional regulation.
Collapse
Affiliation(s)
- Carolina P Bañuelos
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (IIB-UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 25 de Mayo y Francia, San Martín, Buenos Aires, Argentina
| | - Gabriela V Levy
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (IIB-UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 25 de Mayo y Francia, San Martín, Buenos Aires, Argentina
| | - Analía G Níttolo
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (IIB-UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 25 de Mayo y Francia, San Martín, Buenos Aires, Argentina
| | - Leandro G Roser
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (IIB-UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 25 de Mayo y Francia, San Martín, Buenos Aires, Argentina
| | - Valeria Tekiel
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (IIB-UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 25 de Mayo y Francia, San Martín, Buenos Aires, Argentina
| | - Daniel O Sánchez
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (IIB-UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 25 de Mayo y Francia, San Martín, Buenos Aires, Argentina
| |
Collapse
|
13
|
Recent advances in trypanosomatid research: genome organization, expression, metabolism, taxonomy and evolution. Parasitology 2018; 146:1-27. [PMID: 29898792 DOI: 10.1017/s0031182018000951] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Unicellular flagellates of the family Trypanosomatidae are obligatory parasites of invertebrates, vertebrates and plants. Dixenous species are aetiological agents of a number of diseases in humans, domestic animals and plants. Their monoxenous relatives are restricted to insects. Because of the high biological diversity, adaptability to dramatically different environmental conditions, and omnipresence, these protists have major impact on all biotic communities that still needs to be fully elucidated. In addition, as these organisms represent a highly divergent evolutionary lineage, they are strikingly different from the common 'model system' eukaryotes, such as some mammals, plants or fungi. A number of excellent reviews, published over the past decade, were dedicated to specialized topics from the areas of trypanosomatid molecular and cell biology, biochemistry, host-parasite relationships or other aspects of these fascinating organisms. However, there is a need for a more comprehensive review that summarizing recent advances in the studies of trypanosomatids in the last 30 years, a task, which we tried to accomplish with the current paper.
Collapse
|
14
|
Iribarren PA, Di Marzio LA, Berazategui MA, De Gaudenzi JG, Alvarez VE. SUMO polymeric chains are involved in nuclear foci formation and chromatin organization in Trypanosoma brucei procyclic forms. PLoS One 2018; 13:e0193528. [PMID: 29474435 PMCID: PMC5825156 DOI: 10.1371/journal.pone.0193528] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 02/13/2018] [Indexed: 01/10/2023] Open
Abstract
SUMOylation is a post-translational modification conserved in eukaryotic organisms that involves the covalent attachment of the small ubiquitin-like protein SUMO to internal lysine residues in target proteins. This tag usually alters the interaction surface of the modified protein and can be translated into changes in its biological activity, stability or subcellular localization, among other possible outputs. SUMO can be attached as a single moiety or as SUMO polymers in case there are internal acceptor sites in SUMO itself. These chains have been shown to be important for proteasomal degradation as well as for the formation of subnuclear structures such as the synaptonemal complex in Saccharomyces cerevisiae or promyelocytic leukemia nuclear bodies in mammals. In this work, we have examined SUMO chain formation in the protozoan parasite Trypanosoma brucei. Using a recently developed bacterial strain engineered to produce SUMOylated proteins we confirmed the ability of TbSUMO to form polymers and determined the type of linkage using site-directed mutational analysis. By generating transgenic procyclic parasites unable to form chains we demonstrated that although not essential for normal growth, SUMO polymerization determines the localization of the modified proteins in the nucleus. In addition, FISH analysis of telomeres showed a differential positioning depending on the polySUMOylation abilities of the cells. Thus, our observations suggest that TbSUMO chains might play a role in establishing interaction platforms contributing to chromatin organization.
Collapse
Affiliation(s)
- Paula Ana Iribarren
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde—Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM)—Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Campus Miguelete, Av. 25 de Mayo y Francia, San Martín, Buenos Aires, Argentina
| | - Lucía Ayelén Di Marzio
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde—Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM)—Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Campus Miguelete, Av. 25 de Mayo y Francia, San Martín, Buenos Aires, Argentina
| | - María Agustina Berazategui
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde—Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM)—Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Campus Miguelete, Av. 25 de Mayo y Francia, San Martín, Buenos Aires, Argentina
| | - Javier Gerardo De Gaudenzi
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde—Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM)—Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Campus Miguelete, Av. 25 de Mayo y Francia, San Martín, Buenos Aires, Argentina
- * E-mail: (VEA); (JGDG)
| | - Vanina Eder Alvarez
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde—Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM)—Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Campus Miguelete, Av. 25 de Mayo y Francia, San Martín, Buenos Aires, Argentina
- * E-mail: (VEA); (JGDG)
| |
Collapse
|
15
|
How to create coats for all seasons: elucidating antigenic variation in African trypanosomes. Emerg Top Life Sci 2017; 1:593-600. [PMID: 33525853 PMCID: PMC7289013 DOI: 10.1042/etls20170105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 11/08/2017] [Accepted: 11/10/2017] [Indexed: 11/17/2022]
Abstract
Extracellular parasites of the mammalian bloodstream face considerable challenges including incessant assault by the immune system. African trypanosomes are consummate survivors in this inclement environment and are renowned for their supremely sophisticated strategy of antigenic variation of their protective surface coat during the course of chronic infections. Recent developments are making us realize how complex this antigenic machinery is and are allowing us to tackle previously intractable problems. However, many of the simplest (and arguably the most important) questions still remain unanswered!
Collapse
|