1
|
Yan AP, Salnikov PA, Gridina MM, Belokopytova PS, Fishman VS. Towards Development of the 4C-Based Method Detecting Interactions of Plasmid DNA with Host Genome. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:653-662. [PMID: 38831502 DOI: 10.1134/s0006297924040059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/01/2024] [Accepted: 03/02/2024] [Indexed: 06/05/2024]
Abstract
Chromosome conformation capture techniques have revolutionized our understanding of chromatin architecture and dynamics at the genome-wide scale. In recent years, these methods have been applied to a diverse array of species, revealing fundamental principles of chromosomal organization. However, structural organization of the extrachromosomal entities, like viral genomes or plasmids, and their interactions with the host genome, remain relatively underexplored. In this work, we introduce an enhanced 4C-protocol tailored for probing plasmid DNA interactions. We design specific plasmid vector and optimize protocol to allow high detection rate of contacts between the plasmid and host DNA.
Collapse
Affiliation(s)
- Alexandra P Yan
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.
- Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Paul A Salnikov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
- Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Maria M Gridina
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
- Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Polina S Belokopytova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
- Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Veniamin S Fishman
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.
- Novosibirsk State University, Novosibirsk, 630090, Russia
| |
Collapse
|
2
|
Gridina MM, Stepanchuk YK, Nurridinov MA, Lagunov TA, Torgunakov NY, Shadsky AA, Ryabova AI, Vasiliev NV, Vtorushin SV, Gerashchenko TS, Denisov EV, Travin MA, Korolev MA, Fishman VS. Modification of the Hi-C Technology for Molecular Genetic Analysis of Formalin-Fixed Paraffin-Embedded Sections of Tumor Tissues. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:637-652. [PMID: 38831501 DOI: 10.1134/s0006297924040047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 06/05/2024]
Abstract
Molecular genetic analysis of tumor tissues is the most important step towards understanding the mechanisms of cancer development; it is also necessary for the choice of targeted therapy. The Hi-C (high-throughput chromatin conformation capture) technology can be used to detect various types of genomic variants, including balanced chromosomal rearrangements, such as inversions and translocations. We propose a modification of the Hi-C method for the analysis of chromatin contacts in formalin-fixed paraffin-embedded (FFPE) sections of tumor tissues. The developed protocol allows to generate high-quality Hi-C data and detect all types of chromosomal rearrangements. We have analyzed various databases to compile a comprehensive list of translocations that hold clinical importance for the targeted therapy selection. The practical value of molecular genetic testing is its ability to influence the treatment strategies and to provide prognostic insights. Detecting specific chromosomal rearrangements can guide the choice of the targeted therapies, which is a critical aspect of personalized medicine in oncology.
Collapse
Affiliation(s)
- Maria M Gridina
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.
- Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Yana K Stepanchuk
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
- Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Miroslav A Nurridinov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
- Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Timofey A Lagunov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
- Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Nikita Yu Torgunakov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
- Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Artem A Shadsky
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
- Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Anastasia I Ryabova
- Research Institute of Oncology, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634009, Russia
| | - Nikolay V Vasiliev
- Research Institute of Oncology, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634009, Russia
| | - Sergey V Vtorushin
- Research Institute of Oncology, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634009, Russia
- Siberian State Medical University, Ministry of Health of Russia, Tomsk, 634050, Russia
| | - Tatyana S Gerashchenko
- Research Institute of Oncology, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634009, Russia
| | - Evgeny V Denisov
- Research Institute of Oncology, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634009, Russia
| | - Mikhail A Travin
- Research Institute of Clinical and Experimental Lymphology, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630117, Russia
| | - Maxim A Korolev
- Research Institute of Clinical and Experimental Lymphology, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630117, Russia
| | - Veniamin S Fishman
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
- Novosibirsk State University, Novosibirsk, 630090, Russia
| |
Collapse
|
3
|
Maria G, Andrey P, Artem S, Nikita T, Andrey K, Evgeny K, Oxana R, Maxim F, Veniamin F. Expanding the list of sequence-agnostic enzymes for chromatin conformation capture assays with S1 nuclease. Epigenetics Chromatin 2023; 16:48. [PMID: 38072950 PMCID: PMC10712037 DOI: 10.1186/s13072-023-00524-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
This study presents a novel approach for mapping global chromatin interactions using S1 nuclease, a sequence-agnostic enzyme. We develop and outline a protocol that leverages S1 nuclease's ability to effectively introduce breaks into both open and closed chromatin regions, allowing for comprehensive profiling of chromatin properties. Our S1 Hi-C method enables the preparation of high-quality Hi-C libraries, marking a significant advancement over previously established DNase I Hi-C protocols. Moreover, S1 nuclease's capability to fragment chromatin to mono-nucleosomes suggests the potential for mapping the three-dimensional organization of the genome at high resolution. This methodology holds promise for an improved understanding of chromatin state-dependent activities and may facilitate the development of new genomic methods.
Collapse
Affiliation(s)
- Gridina Maria
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Popov Andrey
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Shadskiy Artem
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Torgunakov Nikita
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Kechin Andrey
- Novosibirsk State University, Novosibirsk, Russia
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
| | - Khrapov Evgeny
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
| | | | - Filipenko Maxim
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
| | - Fishman Veniamin
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia.
- Novosibirsk State University, Novosibirsk, Russia.
- Artificial Intelligence Research Institute, AIRI, Moscow, Russia.
| |
Collapse
|
4
|
Kabirova E, Nurislamov A, Shadskiy A, Smirnov A, Popov A, Salnikov P, Battulin N, Fishman V. Function and Evolution of the Loop Extrusion Machinery in Animals. Int J Mol Sci 2023; 24:5017. [PMID: 36902449 PMCID: PMC10003631 DOI: 10.3390/ijms24055017] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/25/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Structural maintenance of chromosomes (SMC) complexes are essential proteins found in genomes of all cellular organisms. Essential functions of these proteins, such as mitotic chromosome formation and sister chromatid cohesion, were discovered a long time ago. Recent advances in chromatin biology showed that SMC proteins are involved in many other genomic processes, acting as active motors extruding DNA, which leads to the formation of chromatin loops. Some loops formed by SMC proteins are highly cell type and developmental stage specific, such as SMC-mediated DNA loops required for VDJ recombination in B-cell progenitors, or dosage compensation in Caenorhabditis elegans and X-chromosome inactivation in mice. In this review, we focus on the extrusion-based mechanisms that are common for multiple cell types and species. We will first describe an anatomy of SMC complexes and their accessory proteins. Next, we provide biochemical details of the extrusion process. We follow this by the sections describing the role of SMC complexes in gene regulation, DNA repair, and chromatin topology.
Collapse
Affiliation(s)
- Evelyn Kabirova
- Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Artem Nurislamov
- Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Artem Shadskiy
- Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Alexander Smirnov
- Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Andrey Popov
- Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Pavel Salnikov
- Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Nariman Battulin
- Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Veniamin Fishman
- Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
- Artificial Intelligence Research Institute (AIRI), 121108 Moscow, Russia
| |
Collapse
|
5
|
Gridina MM, Vesna E, Minzhenkova ME, Shilova NV, Ryzhkova OP, Nazarenko LP, Belyaeva EO, Lebedev IN, Fishman VS. Influence of human peripheral blood samples preprocessing on the quality of Hi-C libraries. Vavilovskii Zhurnal Genet Selektsii 2023; 27:83-87. [PMID: 36923477 PMCID: PMC10009481 DOI: 10.18699/vjgb-23-11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 03/18/2023] Open
Abstract
The genome-wide variant of the chromatin conformation capture technique (Hi-C) is a powerful tool for revealing patterns of genome spatial organization, as well as for understanding the effects of their disturbance on disease development. In addition, Hi-C can be used to detect chromosomal rearrangements, including balanced translocations and inversions. The use of the Hi-C method for the detection of chromosomal rearrangements is becoming more widespread. Modern high-throughput methods of genome analysis can effectively reveal point mutations and unbalanced chromosomal rearrangements. However, their sensitivity for determining translocations and inversions remains rather low. The storage of whole blood samples can affect the amount and integrity of genomic DNA, and it can distort the results of subsequent analyses if the storage was not under proper conditions. The Hi-C method is extremely demanding on the input material. The necessary condition for successfully applying Hi-C and obtaining high-quality data is the preservation of the spatial chromatin organization within the nucleus. The purpose of this study was to determine the optimal storage conditions of blood samples for subsequent Hi-C analysis. We selected 10 different conditions for blood storage and sample processing. For each condition, we prepared and sequenced Hi-C libraries. The quality of the obtained data was compared. As a result of the work, we formulated the requirements for the storage and processing of samples to obtain high-quality Hi-C data. We have established the minimum volume of blood sufficient for conducting Hi-C analysis. In addition, we have identified the most suitable methods for isolation of peripheral blood mononuclear cells and their long-term storage. The main requirement we have formulated is not to freeze whole blood.
Collapse
Affiliation(s)
- M M Gridina
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - E Vesna
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | | | - N V Shilova
- Research Centre for Medical Genetics, Moscow, Russia
| | - O P Ryzhkova
- Research Centre for Medical Genetics, Moscow, Russia
| | - L P Nazarenko
- Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - E O Belyaeva
- Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - I N Lebedev
- Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - V S Fishman
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
6
|
Khabarova A, Koksharova G, Salnikov P, Belokopytova P, Mungalov R, Pristyazhnuk I, Nurislamov A, Gridina M, Fishman V. A Cre-LoxP-based approach for combinatorial chromosome rearrangements in human HAP1 cells. Chromosome Res 2023; 31:11. [PMID: 36842155 DOI: 10.1007/s10577-023-09719-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/02/2023] [Accepted: 02/09/2023] [Indexed: 02/27/2023]
Abstract
Alterations of human karyotype caused by chromosomal rearrangements are often associated with considerable phenotypic effects. Studying molecular mechanisms underlying these effects requires an efficient and scalable experimental model. Here, we propose a Cre-LoxP-based approach for the generation of combinatorial diversity of chromosomal rearrangements. We demonstrate that using the developed system, both intra- and inter-chromosomal rearrangements can be induced in the human haploid HAP1 cells, although the latter is significantly less effective. The obtained genetically modified HAP1 cell line can be used to dissect genomic effects associated with intra-chromosomal structural variations.
Collapse
Affiliation(s)
| | - Galina Koksharova
- Institute of Cytology and Genetics, Novosibirsk, Russia.
- Novosibirsk State University, Novosibirsk, Russia.
| | - Pavel Salnikov
- Institute of Cytology and Genetics, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Polina Belokopytova
- Institute of Cytology and Genetics, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | | | | | - Artem Nurislamov
- Institute of Cytology and Genetics, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Maria Gridina
- Institute of Cytology and Genetics, Novosibirsk, Russia
| | - Veniamin Fishman
- Institute of Cytology and Genetics, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
- Artificial Intelligence Research Institute, AIRI, Moscow, Russia
| |
Collapse
|
7
|
Viesná Е, Fishman V. FastContext: A tool for identification of adapters and other sequence patterns in next generation sequencing (NGS) data. Vavilovskii Zhurnal Genet Selektsii 2022; 26:806-809. [PMID: 36694721 PMCID: PMC9837158 DOI: 10.18699/vjgb-22-97] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/02/2022] [Accepted: 09/07/2022] [Indexed: 01/06/2023] Open
Abstract
The development of next generation sequencing (NGS) methods has created the need for detailed analysis and control of each protocol step. NGS library preparation protocols may include steps with incorporation of various service sequences, such as sequencing adapters, primers, sample-, cell-, and molecule-specific barcodes. Despite a fairly high level of current knowledge, during the protocol development process researches often have to deal with various kinds of unexpected experiment outcomes, which result either from lack of information, lack of knowledge, or defects in reagent manufacturing. Detection and analysis of service sequences, their distribution and linkage may provide important information for protocol optimization. Here we introduce FastContext, a tool designed to analyze NGS read structure, based on sequence features found in reads, and their relative position in the read. The algorithm is able to create human readable read structures with user-specified patterns, to calculate counts and percentage of every read structure. Despite the simplicity of the algorithm, FastContext may be useful in read structure analysis and, as a result, can help better understand molecular processes that take place at different stages of NGS library preparation. The project is open-source software, distributed under GNU GPL v3, entirely written in the programming language Python, and based on well-maintained packages and commonly used data formats. Thus, it is cross-platform, may be patched or upgraded by the user if necessary. The FastContext package is available at the Python Package Index (https://pypi.org/project/FastContext), the source code is available at GitHub (https://github.com/regnveig/FastContext).
Collapse
Affiliation(s)
- Е. Viesná
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, RussiaNovosibirsk State University, Novosibirsk, Russia
| | - V. Fishman
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, RussiaNovosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
8
|
Gridina M, Taskina A, Lagunov T, Nurislamov A, Kulikova T, Krasikova A, Fishman V. Comparison and critical assessment of single-cell Hi-C protocols. Heliyon 2022; 8:e11023. [PMID: 36281413 PMCID: PMC9587272 DOI: 10.1016/j.heliyon.2022.e11023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/13/2022] [Accepted: 10/06/2022] [Indexed: 01/24/2023] Open
Abstract
Advances in single-cell sequencing technologies make it possible to study the genome architecture in single cells. The rapid growth of the field has been fueled by the development of innovative single-cell Hi-C protocols. However, the protocols vary considerably in their efficiency, bias, scale and costs, and their relative advantages for different applications are unclear. Here, we compare the two most commonly used single-cell Hi-C protocols. We use long-read sequencing to analyze molecular products of the Hi-C assay and show that whole-genome amplification step results in increased number of artifacts, larger coverage biases, and increased amount of noise compared to PCR-based amplification. Our comparison provides guidance for researchers studying chromatin architecture in individual cells.
Collapse
|
9
|
Lukyanchikova V, Nuriddinov M, Belokopytova P, Taskina A, Liang J, Reijnders MJMF, Ruzzante L, Feron R, Waterhouse RM, Wu Y, Mao C, Tu Z, Sharakhov IV, Fishman V. Anopheles mosquitoes reveal new principles of 3D genome organization in insects. Nat Commun 2022; 13:1960. [PMID: 35413948 PMCID: PMC9005712 DOI: 10.1038/s41467-022-29599-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 03/24/2022] [Indexed: 11/24/2022] Open
Abstract
Chromosomes are hierarchically folded within cell nuclei into territories, domains and subdomains, but the functional importance and evolutionary dynamics of these hierarchies are poorly defined. Here, we comprehensively profile genome organizations of five Anopheles mosquito species and show how different levels of chromatin architecture influence each other. Patterns observed on Hi-C maps are associated with known cytological structures, epigenetic profiles, and gene expression levels. Evolutionary analysis reveals conservation of chromatin architecture within synteny blocks for tens of millions of years and enrichment of synteny breakpoints in regions with increased genomic insulation. However, in-depth analysis shows a confounding effect of gene density on both insulation and distribution of synteny breakpoints, suggesting limited causal relationship between breakpoints and regions with increased genomic insulation. At the level of individual loci, we identify specific, extremely long-ranged looping interactions, conserved for ~100 million years. We demonstrate that the mechanisms underlying these looping contacts differ from previously described Polycomb-dependent interactions and clustering of active chromatin.
Collapse
Affiliation(s)
- Varvara Lukyanchikova
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
- Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Miroslav Nuriddinov
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Polina Belokopytova
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Alena Taskina
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Jiangtao Liang
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
- Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Maarten J M F Reijnders
- Department of Ecology and Evolution, University of Lausanne and Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Livio Ruzzante
- Department of Ecology and Evolution, University of Lausanne and Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Romain Feron
- Department of Ecology and Evolution, University of Lausanne and Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Robert M Waterhouse
- Department of Ecology and Evolution, University of Lausanne and Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Yang Wu
- Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
- Department of Pathogen Biology, School of Public Health, Southern Medical University, 510515, Guangzhou, Guangdong, China
| | - Chunhong Mao
- Biocomplexity Institute & Initiative, University of Virginia, Charlottesville, VA, 22911, USA
| | - Zhijian Tu
- Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Igor V Sharakhov
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA.
- Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA.
- Department of Genetics and Cell Biology, Tomsk State University, Tomsk, Russia.
| | - Veniamin Fishman
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia.
- Novosibirsk State University, Novosibirsk, Russia.
- AIRI, Moscow, Russia.
| |
Collapse
|
10
|
Bylino OV, Ibragimov AN, Pravednikova AE, Shidlovskii YV. Investigation of the Basic Steps in the Chromosome Conformation Capture Procedure. Front Genet 2021; 12:733937. [PMID: 34616432 PMCID: PMC8488379 DOI: 10.3389/fgene.2021.733937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/16/2021] [Indexed: 12/05/2022] Open
Abstract
A constellation of chromosome conformation capture methods (С-methods) are an important tool for biochemical analysis of the spatial interactions between DNA regions that are separated in the primary sequence. All these methods are based on the long sequence of basic steps of treating cells, nuclei, chromatin, and finally DNA, thus representing a significant technical challenge. Here, we present an in-depth study of the basic steps in the chromatin conformation capture procedure (3С), which was performed using Drosophila Schneider 2 cells as a model. We investigated the steps of cell lysis, nuclei washing, nucleoplasm extraction, chromatin treatment with SDS/Triton X-100, restriction enzyme digestion, chromatin ligation, reversion of cross-links, DNA extraction, treatment of a 3C library with RNases, and purification of the 3C library. Several options were studied, and optimal conditions were found. Our work contributes to the understanding of the 3C basic steps and provides a useful guide to the 3C procedure.
Collapse
Affiliation(s)
- Oleg V. Bylino
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Airat N. Ibragimov
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Anna E. Pravednikova
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Yulii V. Shidlovskii
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Department of Biology and General Genetics, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|