1
|
Acharya B, Behera A, Behera S, Moharana S. Recent Advances in Nanotechnology-Based Drug Delivery Systems for the Diagnosis and Treatment of Reproductive Disorders. ACS APPLIED BIO MATERIALS 2024; 7:1336-1361. [PMID: 38412066 DOI: 10.1021/acsabm.3c01064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Over the past decade, nanotechnology has seen extensive integration into biomedical applications, playing a crucial role in biodetection, drug delivery, and diagnostic imaging. This is especially important in reproductive health care, which has become an emerging and significant area of research. Global concerns have intensified around disorders such as infertility, endometriosis, ectopic pregnancy, erectile dysfunction, benign prostate hyperplasia, sexually transmitted infections, and reproductive cancers. Nanotechnology presents promising solutions to address these concerns by introducing innovative tools and techniques, facilitating early detection, targeted drug delivery, and improved imaging capabilities. Through the utilization of nanoscale materials and devices, researchers can craft treatments that are not only more precise but also more effective, significantly enhancing outcomes in reproductive healthcare. Looking forward, the future of nanotechnology in reproductive medicine holds immense potential for reshaping diagnostics, personalized therapies, and fertility preservation. The utilization of nanotechnology-driven drug delivery systems is anticipated to elevate treatment effectiveness, minimize side effects, and offer patients therapies that are not only more precise but also more efficient. This review aims to delve into the various types, properties, and preparation techniques of nanocarriers specifically designed for drug delivery in the context of reproductive disorders, shedding light on the current landscape and potential future directions in this dynamic field.
Collapse
Affiliation(s)
- Biswajeet Acharya
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Bhubaneswar, Odisha 752050, India
| | - Amulyaratna Behera
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Bhubaneswar, Odisha 752050, India
| | | | - Srikanta Moharana
- Department of Chemistry, School of Applied Sciences, Centurion University of Technology and Management, Bhubaneswar, Odisha 752050, India
| |
Collapse
|
2
|
St John JC, Okada T, Andreas E, Penn A. The role of mtDNA in oocyte quality and embryo development. Mol Reprod Dev 2023; 90:621-633. [PMID: 35986715 PMCID: PMC10952685 DOI: 10.1002/mrd.23640] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/01/2022] [Accepted: 08/08/2022] [Indexed: 09/02/2023]
Abstract
The mitochondrial genome resides in the mitochondria present in nearly all cell types. The porcine (Sus scrofa) mitochondrial genome is circa 16.7 kb in size and exists in the multimeric format in cells. Individual cell types have different numbers of mitochondrial DNA (mtDNA) copy number based on their requirements for ATP produced by oxidative phosphorylation. The oocyte has the largest number of mtDNA of any cell type. During oogenesis, the oocyte sets mtDNA copy number in order that sufficient copies are available to support subsequent developmental events. It also initiates a program of epigenetic patterning that regulates, for example, DNA methylation levels of the nuclear genome. Once fertilized, the nuclear and mitochondrial genomes establish synchrony to ensure that the embryo and fetus can complete each developmental milestone. However, altering the oocyte's mtDNA copy number by mitochondrial supplementation can affect the programming and gene expression profiles of the developing embryo and, in oocytes deficient of mtDNA, it appears to have a positive impact on the embryo development rates and gene expression profiles. Furthermore, mtDNA haplotypes, which define common maternal origins, appear to affect developmental outcomes and certain reproductive traits. Nevertheless, the manipulation of the mitochondrial content of an oocyte might have a developmental advantage.
Collapse
Affiliation(s)
- Justin C. St John
- The Mitochondrial Genetics Group, The School of Biomedicine and The Robinson Research InstituteThe University of AdelaideAdelaideSouth AustraliaAustralia
| | - Takashi Okada
- The Mitochondrial Genetics Group, The School of Biomedicine and The Robinson Research InstituteThe University of AdelaideAdelaideSouth AustraliaAustralia
| | - Eryk Andreas
- The Mitochondrial Genetics Group, The School of Biomedicine and The Robinson Research InstituteThe University of AdelaideAdelaideSouth AustraliaAustralia
| | - Alexander Penn
- The Mitochondrial Genetics Group, The School of Biomedicine and The Robinson Research InstituteThe University of AdelaideAdelaideSouth AustraliaAustralia
| |
Collapse
|
3
|
Okada T, Penn A, St John JC. Mitochondrial DNA Supplementation of Oocytes Has Downstream Effects on the Transcriptional Profiles of Sus scrofa Adult Tissues with High mtDNA Copy Number. Int J Mol Sci 2023; 24:ijms24087545. [PMID: 37108708 PMCID: PMC10140937 DOI: 10.3390/ijms24087545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Oocytes can be supplemented with extra copies of mitochondrial DNA (mtDNA) to enhance developmental outcome. Pigs generated through supplementation with mtDNA derived from either sister (autologous) or third-party (heterologous) oocytes have been shown to exhibit only minor differences in growth, physiological and biochemical assessments, and health and well-being do not appear affected. However, it remains to be determined whether changes in gene expression identified during preimplantation development persisted and affected the gene expression of adult tissues indicative of high mtDNA copy number. It is also unknown if autologous and heterologous mtDNA supplementation resulted in different patterns of gene expression. Our transcriptome analyses revealed that genes involved in immune response and glyoxylate metabolism were commonly affected in brain, heart and liver tissues by mtDNA supplementation. The source of mtDNA influenced the expression of genes associated with oxidative phosphorylation (OXPHOS), suggesting a link between the use of third-party mtDNA and OXPHOS. We observed a significant difference in parental allele-specific imprinted gene expression in mtDNA-supplemented-derived pigs, with shifts to biallelic expression with no effect on expression levels. Overall, mtDNA supplementation influences the expression of genes in important biological processes in adult tissues. Consequently, it is important to determine the effect of these changes on animal development and health.
Collapse
Affiliation(s)
- Takashi Okada
- Mitochondrial Genetics Group, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Alexander Penn
- Mitochondrial Genetics Group, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Justin C St John
- Mitochondrial Genetics Group, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia
| |
Collapse
|
4
|
Mitochondrial DNA Deficiency and Supplementation in Sus scrofa Oocytes Influence Transcriptome Profiles in Oocytes and Blastocysts. Int J Mol Sci 2023; 24:ijms24043783. [PMID: 36835193 PMCID: PMC9963854 DOI: 10.3390/ijms24043783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Mitochondrial DNA (mtDNA) deficiency correlates with poor oocyte quality and fertilisation failure. However, the supplementation of mtDNA deficient oocytes with extra copies of mtDNA improves fertilisation rates and embryo development. The molecular mechanisms associated with oocyte developmental incompetence, and the effects of mtDNA supplementation on embryo development are largely unknown. We investigated the association between the developmental competence of Sus scrofa oocytes, assessed with Brilliant Cresyl Blue, and transcriptome profiles. We also analysed the effects of mtDNA supplementation on the developmental transition from the oocyte to the blastocyst by longitudinal transcriptome analysis. mtDNA deficient oocytes revealed downregulation of genes associated with RNA metabolism and oxidative phosphorylation, including 56 small nucleolar RNA genes and 13 mtDNA protein coding genes. We also identified the downregulation of a large subset of genes for meiotic and mitotic cell cycle process, suggesting that developmental competence affects the completion of meiosis II and first embryonic cell division. The supplementation of oocytes with mtDNA in combination with fertilisation improves the maintenance of the expression of several key developmental genes and the patterns of parental allele-specific imprinting gene expression in blastocysts. These results suggest associations between mtDNA deficiency and meiotic cell cycle and the developmental effects of mtDNA supplementation on Sus scrofa blastocysts.
Collapse
|
5
|
McIlfatrick S, O’Leary S, Okada T, Penn A, Nguyen VHT, McKenny L, Huang SY, Andreas E, Finnie J, Kirkwood R, St. John JC. Does supplementation of oocytes with additional mtDNA influence developmental outcome? iScience 2023; 26:105956. [PMID: 36711242 PMCID: PMC9876745 DOI: 10.1016/j.isci.2023.105956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 11/07/2022] [Accepted: 01/06/2023] [Indexed: 01/13/2023] Open
Abstract
Introducing extra mitochondrial DNA (mtDNA) into oocytes at fertilization can rescue poor quality oocytes. However, supplementation alters DNA methylation and gene expression profiles of preimplantation embryos. To determine if these alterations impacted offspring, we introduced mtDNA from failed-to-mature sister (autologous) or third party (heterologous) oocytes into mature oocytes and transferred zygotes into surrogates. Founders exhibited significantly greater daily weight gain (heterologous) and growth rates (heterologous and autologous) to controls. In weaners, cholesterol, bilirubin (heterologous and autologous), anion gap, and lymphocyte count (autologous) were elevated. In mature pigs, potassium (heterologous) and bicarbonate (autologous) were altered. mtDNA and imprinted gene analyses did not reveal aberrant profiles. Neither group exhibited gross anatomical, morphological, or histopathological differences that would lead to clinically significant lesions. Female founders were fertile and their offspring exhibited modified weight and height gain, biochemical, and hematological profiles. mtDNA supplementation induced minor differences that did not affect health and well-being.
Collapse
Affiliation(s)
- Stephen McIlfatrick
- Mitochondrial Genetics Group, School of Biomedicine, Faculty of Health and Medical Sciences, and Robinson Research Institute, The University of Adelaide, Adelaide Health and Medical Sciences Building, Adelaide, SA 5000, Australia
| | - Sean O’Leary
- Mitochondrial Genetics Group, School of Biomedicine, Faculty of Health and Medical Sciences, and Robinson Research Institute, The University of Adelaide, Adelaide Health and Medical Sciences Building, Adelaide, SA 5000, Australia
| | - Takashi Okada
- Mitochondrial Genetics Group, School of Biomedicine, Faculty of Health and Medical Sciences, and Robinson Research Institute, The University of Adelaide, Adelaide Health and Medical Sciences Building, Adelaide, SA 5000, Australia
| | - Alexander Penn
- Mitochondrial Genetics Group, School of Biomedicine, Faculty of Health and Medical Sciences, and Robinson Research Institute, The University of Adelaide, Adelaide Health and Medical Sciences Building, Adelaide, SA 5000, Australia
| | - Vy Hoang Thao Nguyen
- Mitochondrial Genetics Group, School of Biomedicine, Faculty of Health and Medical Sciences, and Robinson Research Institute, The University of Adelaide, Adelaide Health and Medical Sciences Building, Adelaide, SA 5000, Australia
| | - Lisa McKenny
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy Campus, Roseworthy, SA 5371, Australia
| | - Shang-Yu Huang
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital-Linkou Medical Center, Taoyuan, Taiwan,Chang Gung University, College of Medicine, Taoyuan, Taiwan
| | - Eryk Andreas
- Mitochondrial Genetics Group, School of Biomedicine, Faculty of Health and Medical Sciences, and Robinson Research Institute, The University of Adelaide, Adelaide Health and Medical Sciences Building, Adelaide, SA 5000, Australia
| | - John Finnie
- University Veterinarian & AWO, Office of the Deputy Vice-Chancellor (Research), The University of Adelaide, Adelaide Health and Medical Sciences Building, Adelaide, SA 5000, Australia
| | - Roy Kirkwood
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy Campus, Roseworthy, SA 5371, Australia
| | - Justin C. St. John
- Mitochondrial Genetics Group, School of Biomedicine, Faculty of Health and Medical Sciences, and Robinson Research Institute, The University of Adelaide, Adelaide Health and Medical Sciences Building, Adelaide, SA 5000, Australia,Corresponding author
| |
Collapse
|
6
|
Leclercq A, Ranefall P, Sjunnesson YCB, Hallberg I. Occurrence of late-apoptotic symptoms in porcine preimplantation embryos upon exposure of oocytes to perfluoroalkyl substances (PFASs) under in vitro meiotic maturation. PLoS One 2022; 17:e0279551. [PMID: 36576940 PMCID: PMC9797085 DOI: 10.1371/journal.pone.0279551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 12/09/2022] [Indexed: 12/29/2022] Open
Abstract
The objectives of this study were to evaluate the effect of perfluoroalkyl substances on early embryonic development and apoptosis in blastocysts using a porcine in vitro model. Porcine oocytes (N = 855) collected from abattoir ovaries were subjected to perfluorooctane sulfonic acid (PFOS) (0.1 μg/ml) and perfluorohexane sulfonic acid (PFHxS) (40 μg/ml) during in vitro maturation (IVM) for 45 h. The gametes were then fertilized and cultured in vitro, and developmental parameters were recorded. After 6 days of culture, resulting blastocysts (N = 146) were stained using a terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay and imaged as stacks using confocal laser scanning microscopy. Proportion of apoptotic cells as well as total numbers of nuclei in each blastocyst were analyzed using objective image analysis. The experiment was run in 9 replicates, always with a control present. Effects on developmental parameters were analyzed using logistic regression, and effects on apoptosis and total numbers of nuclei were analyzed using linear regression. Higher cell count was associated with lower proportion of apoptotic cells, i.e., larger blastocysts contained less apoptotic cells. Upon PFAS exposure during IVM, PFHxS tended to result in higher blastocyst rates on day 5 post fertilization (p = 0.07) and on day 6 post fertilization (p = 0.05) as well as in higher apoptosis rates in blastocysts (p = 0.06). PFHxS resulted in higher total cell counts in blastocysts (p = 0.002). No effects attributable to the concentration of PFOS used here was seen. These findings add to the evidence that some perfluoroalkyl substances may affect female reproduction. More studies are needed to better understand potential implications for continued development as well as for human health.
Collapse
Affiliation(s)
- Anna Leclercq
- Division of Reproduction, Department of Clinical Sciences & the Centre for Reproductive biology in Uppsala, Swedish University of Agricultural Sciences, Uppsala, Sweden
- * E-mail:
| | - Petter Ranefall
- Department of Information Technology, and SciLifeLab BioImage Informatics Facility, Uppsala University, Uppsala, Sweden
| | - Ylva Cecilia Björnsdotter Sjunnesson
- Division of Reproduction, Department of Clinical Sciences & the Centre for Reproductive biology in Uppsala, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Ida Hallberg
- Division of Reproduction, Department of Clinical Sciences & the Centre for Reproductive biology in Uppsala, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|