1
|
Sati L, Varela L, Horvath TL, McGrath J. Creation of true interspecies hybrids: Rescue of hybrid class with hybrid cytoplasm affecting growth and metabolism. SCIENCE ADVANCES 2024; 10:eadq4339. [PMID: 39441922 PMCID: PMC11498210 DOI: 10.1126/sciadv.adq4339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/18/2024] [Indexed: 10/25/2024]
Abstract
Interspecies hybrids have nuclear contributions from two species but oocyte cytoplasm from only one. Species discordance may lead to altered nuclear reprogramming of the foreign paternal genome. We reasoned that initial reprogramming in same species cytoplasm plus creation of hybrids with zygote cytoplasm from both species, which we describe here, might enhance nuclear reprogramming and promote hybrid development. We report in Mus species that (i) mammalian nuclear/cytoplasmic hybrids can be created, (ii) they allow development and viability of a previously missing and uncharacterized hybrid class, (iii) different oocyte cytoplasm environments lead to different phenotypes of same nuclear hybrid genotype, and (iv) the novel hybrids exhibit sex ratio distortion with the absence of female progeny and represent a mammalian exception to Haldane's rule. Our results emphasize that interspecies hybrid phenotypes are not only the result of nuclear gene epistatic interactions but also cytonuclear interactions and that the latter have major impacts on fetal and placental growth and development.
Collapse
Affiliation(s)
- Leyla Sati
- Department of Histology and Embryology, Akdeniz University School of Medicine, 07070 Antalya, Turkey
| | - Luis Varela
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
- Laboratory of Glia-Neuron Interactions in the Control of Hunger, Achucarro Basque Center for Neuroscience, 48940 Leioa, Vizcaya, Spain
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Vizcaya, Spain
| | - Tamas L. Horvath
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
- Laboratory of Glia-Neuron Interactions in the Control of Hunger, Achucarro Basque Center for Neuroscience, 48940 Leioa, Vizcaya, Spain
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Vizcaya, Spain
| | - James McGrath
- Departments of Comparative Medicine and Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
2
|
Soliman HK, Coughlan JM. United by conflict: Convergent signatures of parental conflict in angiosperms and placental mammals. J Hered 2024; 115:625-642. [PMID: 38366852 PMCID: PMC11498613 DOI: 10.1093/jhered/esae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/13/2024] [Indexed: 02/18/2024] Open
Abstract
Endosperm in angiosperms and placenta in eutherians are convergent innovations for efficient embryonic nutrient transfer. Despite advantages, this reproductive strategy incurs metabolic costs that maternal parents disproportionately shoulder, leading to potential inter-parental conflict over optimal offspring investment. Genomic imprinting-parent-of-origin-biased gene expression-is fundamental for endosperm and placenta development and has convergently evolved in angiosperms and mammals, in part, to resolve parental conflict. Here, we review the mechanisms of genomic imprinting in these taxa. Despite differences in the timing and spatial extent of imprinting, these taxa exhibit remarkable convergence in the molecular machinery and genes governing imprinting. We then assess the role of parental conflict in shaping evolution within angiosperms and eutherians using four criteria: 1) Do differences in the extent of sibling relatedness cause differences in the inferred strength of parental conflict? 2) Do reciprocal crosses between taxa with different inferred histories of parental conflict exhibit parent-of-origin growth effects? 3) Are these parent-of-origin growth effects caused by dosage-sensitive mechanisms and do these loci exhibit signals of positive selection? 4) Can normal development be restored by genomic perturbations that restore stoichiometric balance in the endosperm/placenta? Although we find evidence for all criteria in angiosperms and eutherians, suggesting that parental conflict may help shape their evolution, many questions remain. Additionally, myriad differences between the two taxa suggest that their respective biologies may shape how/when/where/to what extent parental conflict manifests. Lastly, we discuss outstanding questions, highlighting the power of comparative work in quantifying the role of parental conflict in evolution.
Collapse
Affiliation(s)
- Hagar K Soliman
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT 06511, United States
- Department of Biotechnology, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Jenn M Coughlan
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT 06511, United States
| |
Collapse
|
3
|
Newman T, Bond DM, Ishihara T, Rizzoli P, Gouil Q, Hore TA, Shaw G, Renfree MB. PRKACB is a novel imprinted gene in marsupials. Epigenetics Chromatin 2024; 17:29. [PMID: 39342354 PMCID: PMC11438212 DOI: 10.1186/s13072-024-00552-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/22/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Genomic imprinting results in parent-of-origin-specific gene expression and, among vertebrates, is found only in therian mammals: marsupials and eutherians. A differentially methylated region (DMR), in which the methylation status of CpG dinucleotides differs between the two alleles, can mark the parental identity of imprinted genes. We developed a computational pipeline that detected CpG islands (CGIs) marked by both methylated and unmethylated signals in whole genome bisulfite sequencing data. This approach identified candidate marsupial DMRs in a publicly available koala methylome. One of these candidate DMRs was associated with PRKACB, a gene encoding the protein kinase A catalytic subunit beta. Nothing is known about the imprinting status of PRKACB in eutherian mammals although mutations of this gene are associated with endocrine neoplasia and other developmental disorders. RESULTS In the tammar wallaby and brushtail possum there was parent-of-origin-specific DNA methylation in the PRKACB DMR in which the maternal allele was methylated and the paternal allele was unmethylated. There were multiple RNAs transcribed from this locus. Allele-specific expression analysis identified paternal expression of a PRKACB lncRNA and an mRNA isoform. Comparison of the PRKACB gene start site between marsupials and eutherians demonstrated that the CGI is longer in marsupials. The PRKACB gene product functions in the same signalling pathway as the guanine nucleotide-binding protein alpha subunit encoded at the GNAS locus, a known eutherian imprinted gene. In a mouse methylome Gnas had three differentially methylated CGIs, while in the koala methylome the GNAS locus had two unmethylated CGIs. CONCLUSIONS We conclude that PRKACB is a novel, DMR-associated marsupial imprinted gene. Imprinting of PRKACB in marsupials and GNAS in eutherians may indicate a conserved selection pressure for imprinting of the protein kinase A signalling pathway in therians with the two lineages adapting by imprinting different genes.
Collapse
Affiliation(s)
- Trent Newman
- School of BioSciences, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Donna M Bond
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Teruhito Ishihara
- School of BioSciences, The University of Melbourne, Melbourne, VIC, 3010, Australia
- Epigenetics Programme, Babraham Institute, Cambridge, CB22 3AT, UK
| | - Phoebe Rizzoli
- School of BioSciences, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Quentin Gouil
- Epigenetics and Development Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3010, Australia
| | - Timothy A Hore
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Geoff Shaw
- School of BioSciences, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Marilyn B Renfree
- School of BioSciences, The University of Melbourne, Melbourne, VIC, 3010, Australia.
| |
Collapse
|
4
|
Zhao X, Wu S, Yun Y, Du Z, Liu S, Bo C, Gao Y, Yang L, Song L, Bai C, Su G, Li G. Integrating Transcriptomics, Proteomics, and Metabolomics to Investigate the Mechanism of Fetal Placental Overgrowth in Somatic Cell Nuclear Transfer Cattle. Int J Mol Sci 2024; 25:9388. [PMID: 39273344 PMCID: PMC11395630 DOI: 10.3390/ijms25179388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
A major factor limiting the development of somatic cell nuclear transfer (SCNT) technology is the low success rate of pregnancy, mainly due to placental abnormalities disrupting the maternal-fetal balance during pregnancy. Although there has been some progress in research on the abnormal enlargement of cloned bovine placenta, there are still few reports on the direct regulatory mechanisms of enlarged cloned bovine placenta tissue. In this study, we conducted sequencing and analysis of transcriptomics, proteomics, and metabolomics of placental tissues from SCNT cattle (n = 3) and control (CON) cattle (n = 3). The omics analysis results indicate abnormalities in biological functions such as protein digestion and absorption, glycolysis/gluconeogenesis, the regulation of lipid breakdown, as well as glycerolipid metabolism, and arginine and proline metabolism in the placenta of SCNT cattle. Integrating these analyses highlights critical metabolic pathways affecting SCNT cattle placenta, including choline metabolism and unsaturated fatty acid biosynthesis. These findings suggest that aberrant expressions of genes, proteins, and metabolites in SCNT placentas affect key pathways in protein digestion, growth hormone function, and energy metabolism. Our results suggest that abnormal protein synthesis, growth hormone function, and energy metabolism in SCNT bovine placental tissues contribute to placental hypertrophy. These findings offer valuable insights for further investigation into the mechanisms underlying SCNT bovine placental abnormalities.
Collapse
Affiliation(s)
- Xiaoyu Zhao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China
- College of Life Sciences, Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China
| | - Shanshan Wu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Yuan Yun
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China
- College of Life Sciences, Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China
| | - Zhiwen Du
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China
- College of Life Sciences, Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China
| | - Shuqin Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China
- College of Life Sciences, Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China
| | - Chunjie Bo
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China
- College of Life Sciences, Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China
| | - Yuxin Gao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China
- College of Life Sciences, Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China
| | - Lei Yang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China
- College of Life Sciences, Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China
| | - Lishuang Song
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China
- College of Life Sciences, Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China
| | - Chunling Bai
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China
- College of Life Sciences, Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China
| | - Guanghua Su
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China
- College of Life Sciences, Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China
| | - Guangpeng Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China
- College of Life Sciences, Inner Mongolia University, 24 Zhaojun Rd., Hohhot 010070, China
| |
Collapse
|
5
|
Newman T, Ishihara T, Shaw G, Renfree MB. The structure of the TH/INS locus and the parental allele expressed are not conserved between mammals. Heredity (Edinb) 2024; 133:21-32. [PMID: 38834866 PMCID: PMC11222543 DOI: 10.1038/s41437-024-00689-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 05/01/2024] [Accepted: 05/07/2024] [Indexed: 06/06/2024] Open
Abstract
Parent-of-origin-specific expression of imprinted genes is critical for successful mammalian growth and development. Insulin, coded by the INS gene, is an important growth factor expressed from the paternal allele in the yolk sac placenta of therian mammals. The tyrosine hydroxylase gene TH encodes an enzyme involved in dopamine synthesis. TH and INS are closely associated in most vertebrates, but the mouse orthologues, Th and Ins2, are separated by repeated DNA. In mice, Th is expressed from the maternal allele, but the parental origin of expression is not known for any other mammal so it is unclear whether the maternal expression observed in the mouse represents an evolutionary divergence or an ancestral condition. We compared the length of the DNA segment between TH and INS across species and show that separation of these genes occurred in the rodent lineage with an accumulation of repeated DNA. We found that the region containing TH and INS in the tammar wallaby produces at least five distinct RNA transcripts: TH, TH-INS1, TH-INS2, lncINS and INS. Using allele-specific expression analysis, we show that the TH/INS locus is expressed from the paternal allele in pre- and postnatal tammar wallaby tissues. Determining the imprinting pattern of TH/INS in other mammals might clarify if paternal expression is the ancestral condition which has been flipped to maternal expression in rodents by the accumulation of repeat sequences.
Collapse
Affiliation(s)
- Trent Newman
- School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Teruhito Ishihara
- School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia
- Epigenetics Programme, Babraham Institute, Cambridge, CB22 3AT, UK
| | - Geoff Shaw
- School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Marilyn B Renfree
- School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
6
|
Ishihara T, Suzuki S, Newman TA, Fenelon JC, Griffith OW, Shaw G, Renfree MB. Marsupials have monoallelic MEST expression with a conserved antisense lncRNA but MEST is not imprinted. Heredity (Edinb) 2024; 132:5-17. [PMID: 37952041 PMCID: PMC10798977 DOI: 10.1038/s41437-023-00656-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 11/14/2023] Open
Abstract
The imprinted isoform of the Mest gene in mice is involved in key mammalian traits such as placental and fetal growth, maternal care and mammary gland maturation. The imprinted isoform has a distinct differentially methylated region (DMR) at its promoter in eutherian mammals but in marsupials, there are no differentially methylated CpG islands between the parental alleles. Here, we examined similarities and differences in the MEST gene locus across mammals using a marsupial, the tammar wallaby, a monotreme, the platypus, and a eutherian, the mouse, to investigate how imprinting of this gene evolved in mammals. By confirming the presence of the short isoform in all mammalian groups (which is imprinted in eutherians), this study suggests that an alternative promoter for the short isoform evolved at the MEST gene locus in the common ancestor of mammals. In the tammar, the short isoform of MEST shared the putative promoter CpG island with an antisense lncRNA previously identified in humans and an isoform of a neighbouring gene CEP41. The antisense lncRNA was expressed in tammar sperm, as seen in humans. This suggested that the conserved lncRNA might be important in the establishment of MEST imprinting in therian mammals, but it was not imprinted in the tammar. In contrast to previous studies, this study shows that MEST is not imprinted in marsupials. MEST imprinting in eutherians, therefore must have occurred after the marsupial-eutherian split with the acquisition of a key epigenetic imprinting control region, the differentially methylated CpG islands between the parental alleles.
Collapse
Affiliation(s)
- Teruhito Ishihara
- School of BioSciences, The University of Melbourne, Melbourne, VIC, 3010, Australia
- Epigenetics Programme, The Babraham Institute, Cambridge, CB22 3AT, UK
| | - Shunsuke Suzuki
- Department of Agricultural and Life Sciences, Shinshu University, Nagano, Japan
| | - Trent A Newman
- School of BioSciences, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Jane C Fenelon
- School of BioSciences, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Oliver W Griffith
- Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Geoff Shaw
- School of BioSciences, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Marilyn B Renfree
- School of BioSciences, The University of Melbourne, Melbourne, VIC, 3010, Australia.
| |
Collapse
|
7
|
Pierron F, Daramy F, Heroin D, Daffe G, Barré A, Bouchez O, Nikolski M. Sex-specific DNA methylation and transcription of zbtb38 and effects of gene-environment interactions on its natural antisense transcript in zebrafish. Epigenetics 2023; 18:2260963. [PMID: 37782752 PMCID: PMC10547075 DOI: 10.1080/15592294.2023.2260963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/06/2023] [Indexed: 10/04/2023] Open
Abstract
There is increasing evidence for the involvement of epigenetics in sex determination, maintenance, and plasticity, from plants to humans. In our previous work, we reported a transgenerational feminization of a zebrafish population for which the first generation was exposed to cadmium, a metal with endocrine disrupting effects. In this study, starting from the previously performed whole methylome analysis, we focused on the zbtb38 gene and hypothesized that it could be involved in sex differentiation and Cd-induced offspring feminization. We observed sex-specific patterns of both DNA methylation and RNA transcription levels of zbtb38. We also discovered that the non-coding exon 3 of zbtb38 encodes for a natural antisense transcript (NAT). The activity of this NAT was found to be influenced by both genetic and environmental factors. Furthermore, increasing transcription levels of this NAT in parental gametes was highly correlated with offspring sex ratios. Since zbtb38 itself encodes for a transcription factor that binds methylated DNA, our results support a non-negligible role of zbtb38 not only in orchestrating the sex-specific transcriptome (i.e., sex differentiation) but also, via its NAT, offspring sex ratios.
Collapse
Affiliation(s)
| | - Flore Daramy
- Univ Bordeaux, CNRS, Bordeaux INP, Pessac, France
| | | | | | - Aurélien Barré
- Univ Bordeaux, Bordeaux Bioinformatics Center, Bordeaux, France
| | - Olivier Bouchez
- INRAE, US 1426, GeT-PlaGe, Genotoul, Castanet-Tolosan, France
| | - Macha Nikolski
- Univ Bordeaux, Bordeaux Bioinformatics Center, Bordeaux, France
- Univ Bordeaux, CNRS, IBGC, Bordeaux, France
| |
Collapse
|
8
|
Richard Albert J, Kobayashi T, Inoue A, Monteagudo-Sánchez A, Kumamoto S, Takashima T, Miura A, Oikawa M, Miura F, Takada S, Hirabayashi M, Korthauer K, Kurimoto K, Greenberg MVC, Lorincz M, Kobayashi H. Conservation and divergence of canonical and non-canonical imprinting in murids. Genome Biol 2023; 24:48. [PMID: 36918927 PMCID: PMC10012579 DOI: 10.1186/s13059-023-02869-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 02/09/2023] [Indexed: 03/15/2023] Open
Abstract
BACKGROUND Genomic imprinting affects gene expression in a parent-of-origin manner and has a profound impact on complex traits including growth and behavior. While the rat is widely used to model human pathophysiology, few imprinted genes have been identified in this murid. To systematically identify imprinted genes and genomic imprints in the rat, we use low input methods for genome-wide analyses of gene expression and DNA methylation to profile embryonic and extraembryonic tissues at allele-specific resolution. RESULTS We identify 14 and 26 imprinted genes in these tissues, respectively, with 10 of these genes imprinted in both tissues. Comparative analyses with mouse reveal that orthologous imprinted gene expression and associated canonical DNA methylation imprints are conserved in the embryo proper of the Muridae family. However, only 3 paternally expressed imprinted genes are conserved in the extraembryonic tissue of murids, all of which are associated with non-canonical H3K27me3 imprints. The discovery of 8 novel non-canonical imprinted genes unique to the rat is consistent with more rapid evolution of extraembryonic imprinting. Meta-analysis of novel imprinted genes reveals multiple mechanisms by which species-specific imprinted expression may be established, including H3K27me3 deposition in the oocyte, the appearance of ZFP57 binding motifs, and the insertion of endogenous retroviral promoters. CONCLUSIONS In summary, we provide an expanded list of imprinted loci in the rat, reveal the extent of conservation of imprinted gene expression, and identify potential mechanisms responsible for the evolution of species-specific imprinting.
Collapse
Affiliation(s)
| | - Toshihiro Kobayashi
- Division of Mammalian Embryology, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Azusa Inoue
- YCI Laboratory for Metabolic Epigenetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | | | - Soichiro Kumamoto
- NODAI Genome Research Center, Tokyo University of Agriculture, Tokyo, Japan
| | | | - Asuka Miura
- NODAI Genome Research Center, Tokyo University of Agriculture, Tokyo, Japan
| | - Mami Oikawa
- Division of Mammalian Embryology, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Fumihito Miura
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Shuji Takada
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Masumi Hirabayashi
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, Japan
| | - Keegan Korthauer
- Department of Statistics, University of British Columbia, Vancouver, Canada
- BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Kazuki Kurimoto
- Department of Embryology, Nara Medical University, Nara, Japan
| | | | - Matthew Lorincz
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|