1
|
Yao X, Ouyang S, Lian Y, Peng Q, Zhou X, Huang F, Hu X, Shi F, Xia J. PheSeq, a Bayesian deep learning model to enhance and interpret the gene-disease association studies. Genome Med 2024; 16:56. [PMID: 38627848 PMCID: PMC11020195 DOI: 10.1186/s13073-024-01330-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 04/02/2024] [Indexed: 04/19/2024] Open
Abstract
Despite the abundance of genotype-phenotype association studies, the resulting association outcomes often lack robustness and interpretations. To address these challenges, we introduce PheSeq, a Bayesian deep learning model that enhances and interprets association studies through the integration and perception of phenotype descriptions. By implementing the PheSeq model in three case studies on Alzheimer's disease, breast cancer, and lung cancer, we identify 1024 priority genes for Alzheimer's disease and 818 and 566 genes for breast cancer and lung cancer, respectively. Benefiting from data fusion, these findings represent moderate positive rates, high recall rates, and interpretation in gene-disease association studies.
Collapse
Affiliation(s)
- Xinzhi Yao
- College of Informatics, Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, China
| | - Sizhuo Ouyang
- College of Informatics, Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, China
| | - Yulong Lian
- College of Science, Huazhong Agricultural University, Wuhan, China
| | - Qianqian Peng
- College of Informatics, Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, China
| | - Xionghui Zhou
- College of Informatics, Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, China
| | - Feier Huang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xuehai Hu
- College of Informatics, Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, China
| | - Feng Shi
- College of Science, Huazhong Agricultural University, Wuhan, China
| | - Jingbo Xia
- College of Informatics, Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, China.
- Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
2
|
Kulshreshtha S, Chaudhary V, Goswami GK, Mathur N. Computational approaches for predicting mutant protein stability. J Comput Aided Mol Des 2016; 30:401-12. [DOI: 10.1007/s10822-016-9914-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 05/02/2016] [Indexed: 11/24/2022]
|