1
|
Madhava Reddy M, Desikan R, Naik S, Kumar S, Kumar D T, Priya Doss C G, Sivaramakrishna A. Designing, Synthesis, and Anti-Breast Cancer Activity of a Series of New Quinazolin-4(1H)-one Derivatives. Chem Biodivers 2022; 19:e202200662. [PMID: 36261320 DOI: 10.1002/cbdv.202200662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/19/2022] [Indexed: 12/27/2022]
Abstract
The inhibition of phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA) protein could be a promising treatment for breast cancer. In this regard, docking studies were accomplished on various functionalized organic molecules. Among them, several derivatives of quinazolin-4(1H)-one exhibited anti-breast cancer activity and satisfied the drug likeliness properties. Further, the in vitro inhibitory studies by a series of 2-(2-phenoxyquinolin-3-yl)-2,3-dihydroquinazolin-4(1H)-one molecules showed strong anti-cancer activity than the currently available drug, wortmannin. The MTT cytotoxicity assay was used to predict the anti-proliferative activity of these drugs against MCF-7 cancer cells by inhibiting the PIK3CA protein. The dose-dependent analysis showed a striking decrease in cancer cell viability at 24 h with inhibitory concentrations (IC50 ) of 3b, 3c, 3d, 3f and 3m are 15±1, 17±1, 8±1, 10±1 and 60±1 (nanomoles), respectively. This is the first report in the literature on the inhibition of PIK3CA protein by quinazolinone derivatives that can be used in the treatment of cancer. Quinazolinone analogs have the potential to be safe and economically feasible scaffolds if they are produced using a chemical technique that is both straightforward and amenable to modification. From the cancer research perspective, this study can eventually offer better care for cancer patients.
Collapse
Affiliation(s)
- Manne Madhava Reddy
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Rajagopal Desikan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Sanjay Naik
- Center for Bioseparation Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Sanjit Kumar
- Center for Bioseparation Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Thirumal Kumar D
- Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - George Priya Doss C
- Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Akella Sivaramakrishna
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| |
Collapse
|
2
|
Kader T, Zethoven M, Gorringe KL. Evaluating statistical approaches to define clonal origin of tumours using bulk DNA sequencing: context is everything. Genome Biol 2022; 23:43. [PMID: 35109903 PMCID: PMC8809045 DOI: 10.1186/s13059-022-02600-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 01/03/2022] [Indexed: 12/19/2022] Open
Abstract
Clonal analysis of tumour sequencing data enables the evaluation of the relationship of histologically distinct synchronous lesions, such as co-existing benign areas, and temporally distinct tumours, such as primary-recurrence comparisons. In this review, we summarise statistical approaches that are commonly employed to define tumour clonal relatedness using data from bulk DNA technologies. We discuss approaches using total copy number, allele-specific copy number and mutation data, and the relative genomic resolution required for analysis and summarise some of the current tools for inferring clonal relationships. We argue that the impact of the biological context is critical in selecting any particular approach, such as the relative genomic complexity of the lesions being compared, and we recommend considering this context before employing any method to a new dataset.
Collapse
Affiliation(s)
- Tanjina Kader
- , Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, 3000, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3010, Australia
| | - Magnus Zethoven
- , Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, 3000, Australia
| | - Kylie L Gorringe
- , Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, 3000, Australia.
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3010, Australia.
| |
Collapse
|
3
|
Nuñez DL, González FC, Ibargüengoitia MC, Fuentes Corona RE, Hernández Villegas AC, Zubiate ML, Vázquez Manjarrez SE, Ruiz Velasco CC. Papillary lesions of the breast: a review. BREAST CANCER MANAGEMENT 2020. [DOI: 10.2217/bmt-2020-0028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Papillary breast lesions are rare breast tumors that comprise a broad spectrum of diseases. Pathologically they present as mass-like projections attached to the wall of the ducts, supported by fibrovascular stalks lined by epithelial cells. On mammogram they appear as masses that can be associated with microcalcifications. Ultrasound is the most used imaging modality. On ultrasound papillary lesions appear as homogeneous solid lesions or complex intracystic lesions. A nonparallel orientation, an echogenic halo or posterior acoustic enhancement associated with microcalcifications are highly suggestive of malignancy. MRI has proven to be useful to establish the extent of the lesion. Core needle biopsy is the gold standard for diagnosis. Surgical excision is usually recommended, although treatment for papillomas without atypia is still controversial.
Collapse
Affiliation(s)
- Denny Lara Nuñez
- Department of Radiology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Fernando Candanedo González
- Department of Pathology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Mónica Chapa Ibargüengoitia
- Department of Radiology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | | | | | - Mariana Licano Zubiate
- Department of Radiology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | | | - Carlos Casian Ruiz Velasco
- Department of Radiology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| |
Collapse
|
4
|
Kutasovic JR, McCart Reed AE, Sokolova A, Lakhani SR, Simpson PT. Morphologic and Genomic Heterogeneity in the Evolution and Progression of Breast Cancer. Cancers (Basel) 2020; 12:E848. [PMID: 32244556 PMCID: PMC7226487 DOI: 10.3390/cancers12040848] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 12/13/2022] Open
Abstract
: Breast cancer is a remarkably complex and diverse disease. Subtyping based on morphology, genomics, biomarkers and/or clinical parameters seeks to stratify optimal approaches for management, but it is clear that every breast cancer is fundamentally unique. Intra-tumour heterogeneity adds further complexity and impacts a patient's response to neoadjuvant or adjuvant therapy. Here, we review some established and more recent evidence related to the complex nature of breast cancer evolution. We describe morphologic and genomic diversity as it arises spontaneously during the early stages of tumour evolution, and also in the context of treatment where the changing subclonal architecture of a tumour is driven by the inherent adaptability of tumour cells to evolve and resist the selective pressures of therapy.
Collapse
Affiliation(s)
- Jamie R. Kutasovic
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, Brisbane 4029, Australia; (J.R.K.); (A.E.M.R.); (A.S.); (S.R.L.)
- QIMR Berghofer Medical Research Institute, Herston 4006, Australia
| | - Amy E. McCart Reed
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, Brisbane 4029, Australia; (J.R.K.); (A.E.M.R.); (A.S.); (S.R.L.)
- QIMR Berghofer Medical Research Institute, Herston 4006, Australia
| | - Anna Sokolova
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, Brisbane 4029, Australia; (J.R.K.); (A.E.M.R.); (A.S.); (S.R.L.)
- Pathology Queensland, The Royal Brisbane & Women’s Hospital, Herston, Brisbane 4029, Australia
| | - Sunil R. Lakhani
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, Brisbane 4029, Australia; (J.R.K.); (A.E.M.R.); (A.S.); (S.R.L.)
- Pathology Queensland, The Royal Brisbane & Women’s Hospital, Herston, Brisbane 4029, Australia
| | - Peter T. Simpson
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, Brisbane 4029, Australia; (J.R.K.); (A.E.M.R.); (A.S.); (S.R.L.)
| |
Collapse
|
5
|
Kader T, Elder K, Zethoven M, Semple T, Hill P, Goode DL, Thio N, Cheasley D, Rowley SM, Byrne DJ, Pang JM, Miligy IM, Green AR, Rakha EA, Fox SB, Mann GB, Campbell IG, Gorringe KL. The genetic architecture of breast papillary lesions as a predictor of progression to carcinoma. NPJ Breast Cancer 2020; 6:9. [PMID: 32195332 PMCID: PMC7067788 DOI: 10.1038/s41523-020-0150-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 02/13/2020] [Indexed: 12/11/2022] Open
Abstract
Intraductal papillomas (IDP) are challenging breast findings because of their variable risk of progression to malignancy. The molecular events driving IDP development and genomic features of malignant progression are poorly understood. In this study, genome-wide CNA and/or targeted mutation analysis was performed on 44 cases of IDP, of which 20 cases had coexisting ductal carcinoma in situ (DCIS), papillary DCIS or invasive ductal carcinoma (IDC). CNA were rare in pure IDP, but 69% carried an activating PIK3CA mutation. Among the synchronous IDP cases, 55% (11/20) were clonally related to the synchronous DCIS and/or IDC, only one of which had papillary histology. In contrast to pure IDP, PIK3CA mutations were absent from clonal cases. CNAs in any of chromosomes 1, 16 or 11 were significantly enriched in clonal IDP lesions compared to pure and non-clonal IDP. The observation that 55% of IDP are clonal to DCIS/IDC indicates that IDP can be a direct precursor for breast carcinoma, not limited to the papillary type. The absence of PIK3CA mutations and presence of CNAs in IDP could be used clinically to identify patients at high risk of progression to carcinoma.
Collapse
Affiliation(s)
- Tanjina Kader
- Peter MacCallum Cancer Centre, Melbourne, VIC Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC Australia
| | - Kenneth Elder
- The Breast Service, The Royal Women’s Hospital, Fitzroy, VIC Australia
| | | | | | - Prue Hill
- Department of Anatomical Pathology, St Vincent’s Hospital, Fitzroy, VIC Australia
| | - David L. Goode
- Peter MacCallum Cancer Centre, Melbourne, VIC Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC Australia
| | - Niko Thio
- Peter MacCallum Cancer Centre, Melbourne, VIC Australia
| | - Dane Cheasley
- Peter MacCallum Cancer Centre, Melbourne, VIC Australia
| | | | | | - Jia-Min Pang
- Peter MacCallum Cancer Centre, Melbourne, VIC Australia
| | - Islam M. Miligy
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham and Nottingham University Hospitals NHS Trust, City Hospital, Nottingham, UK
| | - Andrew R. Green
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham and Nottingham University Hospitals NHS Trust, City Hospital, Nottingham, UK
| | - Emad A. Rakha
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham and Nottingham University Hospitals NHS Trust, City Hospital, Nottingham, UK
| | | | - G. Bruce Mann
- The Breast Service, The Royal Women’s Hospital, Fitzroy, VIC Australia
| | - Ian G. Campbell
- Peter MacCallum Cancer Centre, Melbourne, VIC Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC Australia
- Department of Clinical Pathology, University of Melbourne, Parkville, VIC Australia
| | - Kylie L. Gorringe
- Peter MacCallum Cancer Centre, Melbourne, VIC Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC Australia
- Department of Clinical Pathology, University of Melbourne, Parkville, VIC Australia
| |
Collapse
|
6
|
Lin CY, Vennam S, Purington N, Lin E, Varma S, Han S, Desa M, Seto T, Wang NJ, Stehr H, Troxell ML, Kurian AW, West RB. Genomic landscape of ductal carcinoma in situ and association with progression. Breast Cancer Res Treat 2019; 178:307-316. [PMID: 31420779 PMCID: PMC6800639 DOI: 10.1007/s10549-019-05401-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 08/07/2019] [Indexed: 01/07/2023]
Abstract
PURPOSE The detection rate of breast ductal carcinoma in situ (DCIS) has increased significantly, raising the concern that DCIS is overdiagnosed and overtreated. Therefore, there is an unmet clinical need to better predict the risk of progression among DCIS patients. Our hypothesis is that by combining molecular signatures with clinicopathologic features, we can elucidate the biology of breast cancer progression, and risk-stratify patients with DCIS. METHODS Targeted exon sequencing with a custom panel of 223 genes/regions was performed for 125 DCIS cases. Among them, 60 were from cases having concurrent or subsequent invasive breast cancer (IBC) (DCIS + IBC group), and 65 from cases with no IBC development over a median follow-up of 13 years (DCIS-only group). Copy number alterations in chromosome 1q32, 8q24, and 11q13 were analyzed using fluorescence in situ hybridization (FISH). Multivariable logistic regression models were fit to the outcome of DCIS progression to IBC as functions of demographic and clinical features. RESULTS We observed recurrent variants of known IBC-related mutations, and the most commonly mutated genes in DCIS were PIK3CA (34.4%) and TP53 (18.4%). There was an inverse association between PIK3CA kinase domain mutations and progression (Odds Ratio [OR] 10.2, p < 0.05). Copy number variations in 1q32 and 8q24 were associated with progression (OR 9.3 and 46, respectively; both p < 0.05). CONCLUSIONS PIK3CA kinase domain mutations and the absence of copy number gains in DCIS are protective against progression to IBC. These results may guide efforts to distinguish low-risk from high-risk DCIS.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/pathology
- Carcinoma, Ductal, Breast/therapy
- Carcinoma, Intraductal, Noninfiltrating/genetics
- Carcinoma, Intraductal, Noninfiltrating/pathology
- DNA Copy Number Variations
- Female
- Genetic Predisposition to Disease
- Genome-Wide Association Study/methods
- Genomics/methods
- Humans
- In Situ Hybridization, Fluorescence
- Middle Aged
- Neoplasm Metastasis
- Neoplasm Staging
- Tumor Burden
Collapse
Affiliation(s)
- Chieh-Yu Lin
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Sujay Vennam
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Natasha Purington
- Department of Medicine, Quantitative Sciences Unit, Stanford University, Stanford, CA, USA
| | - Eric Lin
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Sushama Varma
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Summer Han
- Department of Medicine, Quantitative Sciences Unit, Stanford University, Stanford, CA, USA
| | - Manisha Desa
- Department of Medicine and of Biomedical Data Science, Quantitative Sciences Unit, Stanford University, Stanford, CA, USA
| | - Tina Seto
- Research Information Technology, Stanford University School of Medicine, Stanford, CA, USA
| | - Nicholas J Wang
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, USA
| | - Henning Stehr
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Megan L Troxell
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Allison W Kurian
- Departments of Medicine and of Health Research and Policy, Stanford University School of Medicine, Stanford, CA, USA
| | - Robert B West
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
7
|
Yang M, Xu Z, Zhang QZ, Wang K, Ji XY, Xu J, Zhang JY, Niu G. A breast one-patient panel of heterogeneous genomes reveals genetic alterations driving DCIS into invasive lesions. Future Oncol 2019; 15:1565-1576. [PMID: 30888194 DOI: 10.2217/fon-2018-0555] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Aim: Utilize breast cancer samples in the same patient to indicate breast cancer development. Patients & methods: We performed whole-exome analysis of spatially independent ductal carcinoma in situ (DCIS) and invasive ductal carcinoma samples from the same breast. Results: In VEGF pathway, we observed two genes disrupted in DCIS, while another four (including ACTN2) mutated in invasive ductal carcinoma. When looked up TCGA database, we identified seven breast cancer patients with ACTN2 somatic mutations and observed a dramatic decrease in the overall survival time in ACTN2 mutant patients (p = 0.0182). A further finding in the TCGA database shows that breast cancer patients with ≥2 mutated genes in VEGF pathways showed worse prognosis (p = 0.0013). Conclusion: TCGA database and special case could inform each other to reveal DCIS developmental rules.
Collapse
Affiliation(s)
- Mei Yang
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, PR China
| | - Zhe Xu
- Department of Ophthalmology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, PR China
- Department of Ophthalmology, General hospital of southern theatre command, Guangzhou 510010, PR China
| | - Qiang-Zu Zhang
- Phil Rivers Technology, Beijing 10095, PR China
- Department of Cancer Genomics, LemonData Biotech (Shenzhen) Ltd, Shenzhen 518000, PR China
| | - Kun Wang
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, PR China
| | - Xiao-Yang Ji
- Phil Rivers Technology, Beijing 10095, PR China
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Juan Xu
- Breast Disease Center, Guangdong Women & Children Hospital, Guangzhou 511400, PR China
| | - Jiang-Yu Zhang
- Pathology Department, Guangdong Women & Children Hospital, Guangzhou 511400, PR China
| | - Gang Niu
- Phil Rivers Technology, Beijing 10095, PR China
- Department of Cancer Genomics, LemonData Biotech (Shenzhen) Ltd, Shenzhen 518000, PR China
| |
Collapse
|
8
|
Kader T, Hill P, Zethoven M, Goode DL, Elder K, Thio N, Doyle M, Semple T, Sufyan W, Byrne DJ, Pang JMB, Murugasu A, Miligy IM, Green AR, Rakha EA, Fox SB, Mann GB, Campbell IG, Gorringe KL. Atypical ductal hyperplasia is a multipotent precursor of breast carcinoma. J Pathol 2019; 248:326-338. [PMID: 30843206 DOI: 10.1002/path.5262] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 02/28/2019] [Accepted: 03/04/2019] [Indexed: 12/18/2022]
Abstract
The current model for breast cancer progression proposes independent 'low grade (LG)-like' and 'high grade (HG)-like' pathways but lacks a known precursor to HG cancer. We applied low-coverage whole-genome sequencing to atypical ductal hyperplasia (ADH) with and without carcinoma to shed light on breast cancer progression. Fourteen out of twenty isolated ADH cases harboured at least one copy number alteration (CNA), but had fewer aberrations than LG or HG ductal carcinoma in situ (DCIS). ADH carried more HG-like CNA than LG DCIS (e.g. 8q gain). Correspondingly, 64% (7/11) of ADH cases with synchronous HG carcinoma were clonally related, similar to LG carcinoma (67%, 6/9). This study represents a significant shift in our understanding of breast cancer progression, with ADH as a common precursor lesion to the independent 'low grade-like' and 'high grade-like' pathways. These data suggest that ADH can be a precursor of HG breast cancer and that LG and HG carcinomas can evolve from a similar ancestor lesion. We propose that although LG DCIS may be committed to a LG molecular pathway, ADH may remain multipotent, progressing to either LG or HG carcinoma. This multipotent nature suggests that some ADH cases could be more clinically significant than LG DCIS, requiring biomarkers for personalising management. Copyright © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Tanjina Kader
- Peter MacCallum Cancer Centre, Melbourne, Australia.,The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
| | - Prue Hill
- Department of Anatomical Pathology, St Vincent's Hospital, Fitzroy, Australia
| | | | - David L Goode
- Peter MacCallum Cancer Centre, Melbourne, Australia.,The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
| | - Kenneth Elder
- The Breast Service, The Royal Women's Hospital, Melbourne, Australia
| | - Niko Thio
- Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Maria Doyle
- Peter MacCallum Cancer Centre, Melbourne, Australia
| | | | - Wajiha Sufyan
- Territory Pathology, Royal Darwin Hospital, Darwin, Australia
| | | | | | - Anand Murugasu
- The Breast Service, The Royal Women's Hospital, Melbourne, Australia
| | - Islam M Miligy
- Division of Cancer and Stem Cells, Nottingham Breast Cancer Research Centre, School of Medicine, University of Nottingham, Nottingham, UK.,Department of Histopathology, Nottingham University Hospitals NHS Trust, City Hospital, Nottingham, UK
| | - Andrew R Green
- Division of Cancer and Stem Cells, Nottingham Breast Cancer Research Centre, School of Medicine, University of Nottingham, Nottingham, UK.,Department of Histopathology, Nottingham University Hospitals NHS Trust, City Hospital, Nottingham, UK
| | - Emad A Rakha
- Division of Cancer and Stem Cells, Nottingham Breast Cancer Research Centre, School of Medicine, University of Nottingham, Nottingham, UK.,Department of Histopathology, Nottingham University Hospitals NHS Trust, City Hospital, Nottingham, UK
| | | | - G Bruce Mann
- The Breast Service, The Royal Women's Hospital, Melbourne, Australia
| | - Ian G Campbell
- Peter MacCallum Cancer Centre, Melbourne, Australia.,The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia.,Department of Clinical Pathology, The University of Melbourne, Parkville, Australia
| | - Kylie L Gorringe
- Peter MacCallum Cancer Centre, Melbourne, Australia.,The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia.,Department of Clinical Pathology, The University of Melbourne, Parkville, Australia
| |
Collapse
|
9
|
Kader T, Hill P, Rakha EA, Campbell IG, Gorringe KL. Atypical ductal hyperplasia: update on diagnosis, management, and molecular landscape. Breast Cancer Res 2018; 20:39. [PMID: 29720211 PMCID: PMC5932853 DOI: 10.1186/s13058-018-0967-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Atypical ductal hyperplasia (ADH) is a common diagnosis in the mammographic era and a significant clinical problem with wide variation in diagnosis and treatment. After a diagnosis of ADH on biopsy a proportion are upgraded to carcinoma upon excision; however, the remainder of patients are overtreated. While ADH is considered a non-obligate precursor of invasive carcinoma, the molecular taxonomy remains unknown. MAIN TEXT Although a few studies have revealed some of the key genomic characteristics of ADH, a clear understanding of the molecular changes associated with breast cancer progression has been limited by inadequately powered studies and low resolution methodology. Complicating factors such as family history, and whether the ADH present in a biopsy is an isolated lesion or part of a greater neoplastic process beyond the limited biopsy material, make accurate interpretation of genomic features and their impact on progression to malignancy a challenging task. This article will review the definitions and variable management of the patients diagnosed with ADH as well as the current knowledge of the molecular landscape of ADH and its clonal relationship with ductal carcinoma in situ and invasive carcinoma. CONCLUSIONS Molecular data of ADH remain sparse. Large prospective cohorts of pure ADH with clinical follow-up need to be evaluated at DNA, RNA, and protein levels in order to develop biomarkers of progression to carcinoma to guide management decisions.
Collapse
Affiliation(s)
- Tanjina Kader
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia.,Cancer Genomics Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Prue Hill
- Department of Anatomical Pathology, St Vincent's Hospital, Fitzroy, VIC, Australia
| | - Emad A Rakha
- Department of Histopathology, University of Nottingham and Nottingham University Hospitals NHS Trust, City Hospital, Nottingham, UK
| | - Ian G Campbell
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia.,Department of Pathology, University of Melbourne, Parkville, VIC, Australia
| | - Kylie L Gorringe
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia. .,Cancer Genomics Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia. .,Department of Pathology, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
10
|
Sun R, Hu Z, Curtis C. Big Bang Tumor Growth and Clonal Evolution. Cold Spring Harb Perspect Med 2018; 8:cshperspect.a028381. [PMID: 28710260 DOI: 10.1101/cshperspect.a028381] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The advent and application of next-generation sequencing (NGS) technologies to tumor genomes has reinvigorated efforts to understand clonal evolution. Although tumor progression has traditionally been viewed as a gradual stepwise process, recent studies suggest that evolutionary rates in tumors can be variable with periods of punctuated mutational bursts and relative stasis. For example, Big Bang dynamics have been reported, wherein after transformation, growth occurs in the absence of stringent selection, consistent with effectively neutral evolution. Although first noted in colorectal tumors, effective neutrality may be relatively common. Additionally, punctuated evolution resulting from mutational bursts and cataclysmic genomic alterations have been described. In this review, we contrast these findings with the conventional gradualist view of clonal evolution and describe potential clinical and therapeutic implications of different evolutionary modes and tempos.
Collapse
Affiliation(s)
- Ruping Sun
- Departments of Medicine and Genetics, Stanford University School of Medicine, Stanford, California 94305.,Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California 94305
| | - Zheng Hu
- Departments of Medicine and Genetics, Stanford University School of Medicine, Stanford, California 94305.,Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California 94305
| | - Christina Curtis
- Departments of Medicine and Genetics, Stanford University School of Medicine, Stanford, California 94305.,Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California 94305
| |
Collapse
|
11
|
Genome-wide reconstruction of complex structural variants using read clouds. Nat Methods 2017; 14:915-920. [PMID: 28714986 PMCID: PMC5578891 DOI: 10.1038/nmeth.4366] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 06/15/2017] [Indexed: 12/16/2022]
Abstract
In read cloud approaches, microfluidic partitioning of long genomic DNA fragments and barcoding of shorter fragments derived from these fragments retains long-range information in short sequencing reads. This combination of short reads with long-range information represents a powerful alternative to single-molecule long-read sequencing. We develop Genome-wide Reconstruction of Complex Structural Variants (GROC-SVs) for SV detection and assembly from read cloud data and apply this method to Illumina-sequenced 10x Genomics sarcoma and breast cancer data sets. Compared with short-fragment sequencing, GROC-SVs substantially improves the specificity of breakpoint detection at comparable sensitivity. This approach also performs sequence assembly across multiple breakpoints simultaneously, enabling the reconstruction of events exhibiting remarkable complexity. We show that chromothriptic rearrangements occurred before copy number amplifications, and that rates of single-nucleotide variants and SVs are not correlated. Our results support the use of read cloud approaches to advance the characterization of large and complex structural variation.
Collapse
|
12
|
Hu Z, Sun R, Curtis C. A population genetics perspective on the determinants of intra-tumor heterogeneity. Biochim Biophys Acta Rev Cancer 2017; 1867:109-126. [PMID: 28274726 DOI: 10.1016/j.bbcan.2017.03.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/01/2017] [Accepted: 03/02/2017] [Indexed: 12/17/2022]
Abstract
Cancer results from the acquisition of somatic alterations in a microevolutionary process that typically occurs over many years, much of which is occult. Understanding the evolutionary dynamics that are operative at different stages of progression in individual tumors might inform the earlier detection, diagnosis, and treatment of cancer. Although these processes cannot be directly observed, the resultant spatiotemporal patterns of genetic variation amongst tumor cells encode their evolutionary histories. Such intra-tumor heterogeneity is pervasive not only at the genomic level, but also at the transcriptomic, phenotypic, and cellular levels. Given the implications for precision medicine, the accurate quantification of heterogeneity within and between tumors has become a major focus of current research. In this review, we provide a population genetics perspective on the determinants of intra-tumor heterogeneity and approaches to quantify genetic diversity. We summarize evidence for different modes of evolution based on recent cancer genome sequencing studies and discuss emerging evolutionary strategies to therapeutically exploit tumor heterogeneity. This article is part of a Special Issue entitled: Evolutionary principles - heterogeneity in cancer?, edited by Dr. Robert A. Gatenby.
Collapse
Affiliation(s)
- Zheng Hu
- Departments of Medicine and Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ruping Sun
- Departments of Medicine and Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Christina Curtis
- Departments of Medicine and Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
13
|
Casasent AK, Edgerton M, Navin NE. Genome evolution in ductal carcinoma in situ: invasion of the clones. J Pathol 2016; 241:208-218. [PMID: 27861897 DOI: 10.1002/path.4840] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/21/2016] [Accepted: 10/26/2016] [Indexed: 12/21/2022]
Abstract
Ductal carcinoma in situ (DCIS) is the most frequently diagnosed early-stage breast cancer. Only a subset of patients progress to invasive ductal carcinoma (IDC), and this presents a formidable clinical challenge for determining which patients to treat aggressively and which patients to monitor without therapeutic intervention. Understanding the molecular and genomic basis of invasion has been difficult to study in DCIS cancers due to several technical obstacles, including low tumour cellularity, lack of fresh-frozen tissues, and intratumour heterogeneity. In this review, we discuss the role of intratumour heterogeneity in the progression of DCIS to IDC in the context of three evolutionary models: independent lineages, evolutionary bottlenecks, and multiclonal invasion. We examine the evidence in support of these models and their relevance to the diagnosis and treatment of patients with DCIS. We also discuss how emerging technologies, such as single-cell sequencing, STAR-FISH, and imaging mass spectrometry, are likely to provide new insights into the evolution of this enigmatic disease. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Anna K Casasent
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mary Edgerton
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nicholas E Navin
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
14
|
Kumar DT, Doss CGP. Investigating the Inhibitory Effect of Wortmannin in the Hotspot Mutation at Codon 1047 of PIK3CA Kinase Domain: A Molecular Docking and Molecular Dynamics Approach. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2015; 102:267-97. [PMID: 26827608 DOI: 10.1016/bs.apcsb.2015.09.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Oncogenic mutations in phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha (PIK3CA) are the most frequently reported in association with various forms of cancer. Several studies have reported the significance of hotspot mutations in a catalytic subunit of PIK3CA in association with breast cancer. Mutations are frequently observed in the highly conserved region of the kinase domain (797-1068 amino acids) of PIK3CA are activating or gain-of-function mutations. Mutation in codon 1047 occurs in the C-terminal region of the kinase domain with histidine (H) replaced by arginine (R), lysine (L), and tyrosine (Y). Pathogenicity and protein stability predictors PhD-SNP, Align GVGD, HANSA, iStable, and MUpro classified H1047R as highly deleterious when compared to H1047L and H1047Y. To explore the inhibitory activity of Wortmannin toward PIK3CA, the three-dimensional structure of the mutant protein was determined using homology modeling followed by molecular docking and molecular dynamics analysis. Docking studies were performed for the three mutants and native with Wortmannin to measure the differences in their binding pattern. Comparative docking study revealed that H1047R-Wortmannin complex has a higher number of hydrogen bonds as well as the best binding affinity next to the native protein. Furthermore, 100 ns molecular dynamics simulation was initiated with the docked complexes to understand the various changes induced by the mutation. Though Wortmannin was found to nullify the effect of H1047R over the protein, further studies are required for designing a better compound. As SNPs are major genetic variations observed in disease condition, personalized medicine would provide enhanced drug therapy.
Collapse
Affiliation(s)
- D Thirumal Kumar
- Medical Biotechnology Division, School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, India
| | - C George Priya Doss
- Medical Biotechnology Division, School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, India.
| |
Collapse
|