1
|
Collins RL, Talkowski ME. Diversity and consequences of structural variation in the human genome. Nat Rev Genet 2025:10.1038/s41576-024-00808-9. [PMID: 39838028 DOI: 10.1038/s41576-024-00808-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2024] [Indexed: 01/23/2025]
Abstract
The biomedical community is increasingly invested in capturing all genetic variants across human genomes, interpreting their functional consequences and translating these findings to the clinic. A crucial component of this endeavour is the discovery and characterization of structural variants (SVs), which are ubiquitous in the human population, heterogeneous in their mutational processes, key substrates for evolution and adaptation, and profound drivers of human disease. The recent emergence of new technologies and the remarkable scale of sequence-based population studies have begun to crystalize our understanding of SVs as a mutational class and their widespread influence across phenotypes. In this Review, we summarize recent discoveries and new insights into SVs in the human genome in terms of their mutational patterns, population genetics, functional consequences, and impact on human traits and disease. We conclude by outlining three frontiers to be explored by the field over the next decade.
Collapse
Affiliation(s)
- Ryan L Collins
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Michael E Talkowski
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Dion C, Laberthonnière C, Magdinier F. [Epigenetics, principles and examples of applications]. Rev Med Interne 2023; 44:594-601. [PMID: 37438189 DOI: 10.1016/j.revmed.2023.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 07/14/2023]
Abstract
Since the discovery of DNA as the support of genetic information, the challenge for generations of life scientists was to understand the mechanisms underlying the process that translate the sequence of a gene to a phenotype. In the 1950s, the concept of epigenetics was defined by the British biologist Conrad H. Waddington as the study of "epigenesis" that governs the biological processes involved in the development of any organism. The term epigenetics, now best defined as "above the DNA sequence" reflects the gene-environment interactions by which genes determine traits. Since, its first description, studies underlying the mechanisms involved in these processes has led to an increasing understanding of the regulation all genome transactions such as transcription, replication, repair and the biological pathways coordinated by these mechanisms. We will discuss here the main principles regulating epigenetic processes, their roles in physiology, their evolution over the life time and their implications in medicine.
Collapse
Affiliation(s)
- C Dion
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, 13000 Marseille, France; MRC London Institute of Medical Sciences (LMS), London, United Kingdom; Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, United Kingdom
| | - C Laberthonnière
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, 13000 Marseille, France; Molecular Developmental Biology, Faculty of Science, Radboud University, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - F Magdinier
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, 13000 Marseille, France.
| |
Collapse
|
3
|
Xi NM, Hsu YY, Dang Q, Huang DP. Statistical learning in preclinical drug proarrhythmic assessment. J Biopharm Stat 2022; 32:450-473. [PMID: 35771997 DOI: 10.1080/10543406.2022.2065505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Torsades de pointes (TdP) is an irregular heart rhythm characterized by faster beat rates and potentially could lead to sudden cardiac death. Much effort has been invested in understanding the drug-induced TdP in preclinical studies. However, a comprehensive statistical learning framework that can accurately predict the drug-induced TdP risk from preclinical data is still lacking. We proposed ordinal logistic regression and ordinal random forest models to predict low-, intermediate-, and high-risk drugs based on datasets generated from two experimental protocols. Leave-one-drug-out cross-validation, stratified bootstrap, and permutation predictor importance were applied to estimate and interpret the model performance under uncertainty. The potential outlier drugs identified by our models are consistent with their descriptions in the literature. Our method is accurate, interpretable, and thus useable as supplemental evidence in the drug safety assessment.
Collapse
Affiliation(s)
- Nan Miles Xi
- Department of Mathematics and Statistics, Loyola University Chicago, Chicago, Illinois, USA
| | - Yu-Yi Hsu
- Office of Biostatistics, Office of Translational Science, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Qianyu Dang
- Office of Biostatistics, Office of Translational Science, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Dalong Patrick Huang
- Office of Biostatistics, Office of Translational Science, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
4
|
Pei Z, Deng K, Lei C, Du D, Yu G, Sun X, Xu C, Zhang S. Identifying Balanced Chromosomal Translocations in Human Embryos by Oxford Nanopore Sequencing and Breakpoints Region Analysis. Front Genet 2022; 12:810900. [PMID: 35116057 PMCID: PMC8804325 DOI: 10.3389/fgene.2021.810900] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/13/2021] [Indexed: 01/02/2023] Open
Abstract
Background: Balanced chromosomal aberrations, especially balanced translocations, can cause infertility, recurrent miscarriage or having chromosomally defective offspring. Preimplantation genetic testing for structural rearrangement (PGT-SR) has been widely implemented to improve the clinical outcomes by selecting euploid embryos for transfer, whereas embryos with balanced translocation karyotype were difficult to be distinguished by routine genetic techniques from those with a normal karyotype. Method: In this present study, we developed a clinically applicable method for reciprocal translocation carriers to reduce the risk of pregnancy loss. In the preclinical phase, we identified reciprocal translocation breakpoints in blood of translocation carriers by long-read Oxford Nanopore sequencing, followed by junction-spanning polymerase chain reaction (PCR) and Sanger sequencing. In the clinical phase of embryo diagnosis, aneuploidies and unbalanced translocations were screened by comprehensive chromosomal screening (CCS) with single nucleotide polymorphism (SNP) microarray, carrier embryos were diagnosed by junction-spanning PCR and family haplotype linkage analysis of the breakpoints region. Amniocentesis and cytogenetic analysis of fetuses in the second trimester were performed after embryo transfer to conform the results diagnosed by the presented method. Results: All the accurate reciprocal translocation breakpoints were effectively identified by Nanopore sequencing and confirmed by Sanger sequencing. Twelve embryos were biopsied and detected, the results of junction-spanning PCR and haplotype linkage analysis were consistent. In total, 12 biopsied blastocysts diagnosed to be euploid, in which 6 were aneuploid or unbalanced, three blastocysts were identified to be balanced translocation carriers and three to be normal karyotypes. Two euploid embryos were subsequently transferred back to patients and late prenatal karyotype analysis of amniotic fluid cells was performed. The outcomes diagnosed by the current approach were totally consistent with the fetal karyotypes. Conclusions: In summary, these investigations in our study illustrated that chromosomal reciprocal translocations in embryos can be accurately diagnosed. Long-read Nanopore sequencing and breakpoint analysis contributes to precisely evaluate the genetic risk of disrupted genes, and provides a way of selecting embryos with normal karyotype, especially for couples those without a reference.
Collapse
Affiliation(s)
- Zhenle Pei
- Shanghai Ji Ai Genetics and IVF Institute, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Ke Deng
- Shanghai Ji Ai Genetics and IVF Institute, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Caixai Lei
- Shanghai Ji Ai Genetics and IVF Institute, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Danfeng Du
- Shanghai Ji Ai Genetics and IVF Institute, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Guoliang Yu
- Chigene (Beijing) Translational Medical Research Center Co. Ltd., Beijing, China
| | - Xiaoxi Sun
- Shanghai Ji Ai Genetics and IVF Institute, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Congjian Xu
- Shanghai Ji Ai Genetics and IVF Institute, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- *Correspondence: Congjian Xu, ; Shuo Zhang,
| | - Shuo Zhang
- Shanghai Ji Ai Genetics and IVF Institute, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- *Correspondence: Congjian Xu, ; Shuo Zhang,
| |
Collapse
|
5
|
Koltsova AS, Pendina AA, Efimova OA, Chiryaeva OG, Kuznetzova TV, Baranov VS. On the Complexity of Mechanisms and Consequences of Chromothripsis: An Update. Front Genet 2019; 10:393. [PMID: 31114609 PMCID: PMC6503150 DOI: 10.3389/fgene.2019.00393] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 04/11/2019] [Indexed: 12/28/2022] Open
Abstract
In the present review, we focus on the phenomenon of chromothripsis, a new type of complex chromosomal rearrangements. We discuss the challenges of chromothripsis detection and its distinction from other chromoanagenesis events. Along with already known causes and mechanisms, we introduce aberrant epigenetic regulation as a possible pathway to chromothripsis. We address the issue of chromothripsis characteristics in cancers and benign tumours, as well as chromothripsis inheritance in cases of its occurrence in germ cells, zygotes and early embryos. Summarising the presented data on different phenotypic effect of chromothripsis, we assume that its consequences are most likely determined not by the chromosome shattering and reassembly themselves, but by the genome regions involved in the rearrangement.
Collapse
Affiliation(s)
- Alla S Koltsova
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Saint Petersburg, Russia.,Department of Genetics and Biotechnology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Anna A Pendina
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Saint Petersburg, Russia
| | - Olga A Efimova
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Saint Petersburg, Russia
| | - Olga G Chiryaeva
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Saint Petersburg, Russia
| | - Tatyana V Kuznetzova
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Saint Petersburg, Russia
| | - Vladislav S Baranov
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Saint Petersburg, Russia.,Department of Genetics and Biotechnology, Saint Petersburg State University, Saint Petersburg, Russia
| |
Collapse
|
6
|
Zepeda-Mendoza CJ, Morton CC. The Iceberg under Water: Unexplored Complexity of Chromoanagenesis in Congenital Disorders. Am J Hum Genet 2019; 104:565-577. [PMID: 30951674 DOI: 10.1016/j.ajhg.2019.02.024] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 02/25/2019] [Indexed: 01/16/2023] Open
Abstract
Structural variation, composed of balanced and unbalanced genomic rearrangements, is an important contributor to human genetic diversity with prominent roles in somatic and congenital disease. At the nucleotide level, structural variants (SVs) have been shown to frequently harbor additional breakpoints and copy-number imbalances, a complexity predicted to emerge wholly as a single-cell division event. Chromothripsis, chromoplexy, and chromoanasynthesis, collectively referred to as chromoanagenesis, are three major mechanisms that explain the occurrence of complex germline and somatic SVs. While chromothripsis and chromoplexy have been shown to be key signatures of cancer, chromoanagenesis has been detected in numerous cases of developmental disease and phenotypically normal individuals. Such observations advocate for a deeper study of the polymorphic and pathogenic properties of complex germline SVs, many of which go undetected by traditional clinical molecular and cytogenetic methods. This review focuses on congenital chromoanagenesis, mechanisms leading to occurrence of these complex rearrangements, and their impact on chromosome organization and genome function. We highlight future applications of routine screening of complex and balanced SVs in the clinic, as these represent a potential and often neglected genetic disease source, a true "iceberg under water."
Collapse
Affiliation(s)
- Cinthya J Zepeda-Mendoza
- Division of Laboratory Genetics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55902, USA
| | - Cynthia C Morton
- Departments of Obstetrics and Gynecology and of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA; Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Manchester Center for Audiology and Deafness, School of Health Sciences, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9NT, UK.
| |
Collapse
|
7
|
Pellestor F. Chromoanagenesis: cataclysms behind complex chromosomal rearrangements. Mol Cytogenet 2019; 12:6. [PMID: 30805029 PMCID: PMC6371609 DOI: 10.1186/s13039-019-0415-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 01/17/2019] [Indexed: 12/21/2022] Open
Abstract
Background During the last decade, genome sequencing projects in cancer genomes as well as in patients with congenital diseases and healthy individuals have led to the identification of new types of massive chromosomal rearrangements arising during single chaotic cellular events. These unanticipated catastrophic phenomenon are termed chromothripsis, chromoanasynthesis and chromoplexis., and are grouped under the name of “chromoanagenesis”. Results For each process, several specific features have been described, allowing each phenomenon to be distinguished from each other and to understand its mechanism of formation and to better understand its aetiology. Thus, chromothripsis derives from chromosome shattering followed by the random restitching of chromosomal fragments with low copy-number change whereas chromoanasynthesis results from erroneous DNA replication of a chromosome through serial fork stalling and template switching with variable copy-number gains, and chromoplexy refers to the occurrence of multiple inter-and intra-chromosomal translocations and deletions with little or no copy-number alterations in prostate cancer. Cumulating data and experimental models have shown that chromothripsis and chromoanasynthesis may essentially result from lagging chromosome encapsulated in micronuclei or telomere attrition and end-to-end telomere fusion. Conclusion The concept of chromanagenesis has provided new insight into the aetiology of complex structural rearrangements, the connection between defective cell cycle progression and genomic instability, and the complexity of cancer evolution. Increasing reported chromoanagenesis events suggest that these chaotic mechanisms are probably much more frequent than anticipated.
Collapse
Affiliation(s)
- Franck Pellestor
- Unit of Chromosomal Genetics, Department of Medical Genetics, Arnaud de Villeneuve Hospital, Montpellier CHRU, 371, avenue du Doyen Gaston Giraud, 34295 Montpellier cedex 5, France.,INSERM 1183 Unit «Genome and Stem Cell Plasticity in Development and Aging », Institute of Regenerative Medicine and Biotherapies, St Eloi Hospital, Montpellier, France
| |
Collapse
|
8
|
Kurtas NE, Xumerle L, Giussani U, Pansa A, Cardarelli L, Bertini V, Valetto A, Liehr T, Clara Bonaglia M, Errichiello E, Delledonne M, Zuffardi O. Insertional translocation involving an additional nonchromothriptic chromosome in constitutional chromothripsis: Rule or exception? Mol Genet Genomic Med 2018; 7:e00496. [PMID: 30565424 PMCID: PMC6393660 DOI: 10.1002/mgg3.496] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/06/2018] [Accepted: 10/02/2018] [Indexed: 01/17/2023] Open
Abstract
Background Chromothripsis, which is the local massive shattering of one or more chromosomes and their reassembly in a disordered array with frequent loss of some fragments, has been mainly reported in association with abnormal phenotypes. We report three unrelated healthy persons, two of which parenting a child with some degree of intellectual disability, carrying a chromothripsis involving respectively one, two, and three chromosomes, which was detected only after whole‐genome sequencing. Unexpectedly, in all three cases a fragment from one of the chromothripsed chromosomes resulted to be inserted within a nonchromothripsed one. Methods Conventional cytogenetic techniques, paired‐end whole‐genome sequencing, polymerase chain reaction, and Sanger sequencing were used to characterize complex rearrangements, copy‐number variations, and breakpoint sequences in all three families. Results In two families, one parent was carrier of a balanced chromothripsis causing in the index case a deletion and a noncontiguous duplication at 3q in case 1, and a t(6;14) translocation associated with interstitial 14q deletion in case 2. In the third family, an unbalanced chromothripsis involving chromosomes 6, 7, and 15 was inherited to the proband by the mosaic parent. In all three parents, the chromothripsis was concurrent with an insertional translocation of a portion of one of the chromothriptic chromosomes within a further chromosome that was not involved in the chromothripsis event. Conclusion Our findings show that (a) both simple and complex unbalanced rearrangements may result by the recombination of a cryptic parental balanced chromothripsis and that (b) insertional translocations are the spy of more complex rearrangements and not simply a three‐breakpoint event.
Collapse
Affiliation(s)
| | - Luciano Xumerle
- Personal Genomics srl, Department of Biotechnologies, University of Verona, Verona, Italy
| | | | | | | | | | | | - Thomas Liehr
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Maria Clara Bonaglia
- Cytogenetics Laboratory, Scientific Institute, IRCCS Eugenio Medea, Lecco, Italy
| | | | - Massimo Delledonne
- Personal Genomics srl, Department of Biotechnologies, University of Verona, Verona, Italy
| | - Orsetta Zuffardi
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| |
Collapse
|
9
|
Luijten MNH, Lee JXT, Crasta KC. Mutational game changer: Chromothripsis and its emerging relevance to cancer. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2018; 777:29-51. [PMID: 30115429 DOI: 10.1016/j.mrrev.2018.06.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/22/2018] [Accepted: 06/28/2018] [Indexed: 12/14/2022]
Abstract
In recent years, the paradigm that genomic abnormalities in cancer cells arise through progressive accumulation of mutational events has been challenged by the discovery of single catastrophic events. One such phenomenon termed chromothripsis, involving massive chromosomal rearrangements arising all at once, has emerged as a major mutational game changer. The strong interest in this process stems from its widespread association with a range of cancer types and its potential as a mutational driver. In this review, we first describe chromothripsis detection and incidence in cancers. We then explore recently proposed underlying mechanistic origins, which explain the curious observations of the highly localised nature of the rearrangements on chromothriptic chromosomes. Detection of chromothriptic patterns following incorporation of single chromosomes into micronuclei or following telomere attrition have greatly contributed to our understanding of the reasons behind this chromosomal restriction. These underlying cellular events have been found to be participants in the tumourigenic process, strongly suggesting a potential role for chromothripsis in cancer development. Thus, we discuss potential implications of chromothripsis for cancer progression and therapy.
Collapse
Affiliation(s)
| | - Jeannie Xue Ting Lee
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, 636921, Singapore.
| | - Karen Carmelina Crasta
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, 636921, Singapore; School of Biological Sciences, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore; Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research, 61 Biopolis Drive, 138673, Singapore; Department of Medicine, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
| |
Collapse
|
10
|
Chan Y, Chan YK, Goodman DB, Guo X, Chavez A, Lim ET, Church GM. Enabling multiplexed testing of pooled donor cells through whole-genome sequencing. Genome Med 2018; 10:31. [PMID: 29673390 PMCID: PMC5909281 DOI: 10.1186/s13073-018-0541-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 04/05/2018] [Indexed: 11/10/2022] Open
Abstract
We describe a method that enables the multiplex screening of a pool of many different donor cell lines. Our method accurately predicts each donor proportion from the pool without requiring the use of unique DNA barcodes as markers of donor identity. Instead, we take advantage of common single nucleotide polymorphisms, whole-genome sequencing, and an algorithm to calculate the proportions from the sequencing data. By testing using simulated and real data, we showed that our method robustly predicts the individual proportions from a mixed-pool of numerous donors, thus enabling the multiplexed testing of diverse donor cells en masse. More information is available at https://pgpresearch.med.harvard.edu/poolseq/
Collapse
Affiliation(s)
- Yingleong Chan
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA. .,Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA.
| | - Ying Kai Chan
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA.,Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Daniel B Goodman
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA.,Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA.,Harvard-MIT Health Sciences and Technology, Cambridge, MA, 02139, USA
| | - Xiaoge Guo
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA.,Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Alejandro Chavez
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Elaine T Lim
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA.,Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - George M Church
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA. .,Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
11
|
Slamova Z, Nazaryan-Petersen L, Mehrjouy MM, Drabova J, Hancarova M, Marikova T, Novotna D, Vlckova M, Vlckova Z, Bak M, Zemanova Z, Tommerup N, Sedlacek Z. Very short DNA segments can be detected and handled by the repair machinery during germline chromothriptic chromosome reassembly. Hum Mutat 2018; 39:709-716. [DOI: 10.1002/humu.23408] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 01/18/2018] [Accepted: 01/29/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Zuzana Slamova
- Department of Biology and Medical Genetics; Charles University 2nd Faculty of Medicine and University Hospital Motol; Prague Czech Republic
| | - Lusine Nazaryan-Petersen
- Wilhelm Johannsen Centre for Functional Genome Research; Department of Cellular and Molecular Medicine; University of Copenhagen; Copenhagen Denmark
| | - Mana M. Mehrjouy
- Wilhelm Johannsen Centre for Functional Genome Research; Department of Cellular and Molecular Medicine; University of Copenhagen; Copenhagen Denmark
| | - Jana Drabova
- Department of Biology and Medical Genetics; Charles University 2nd Faculty of Medicine and University Hospital Motol; Prague Czech Republic
| | - Miroslava Hancarova
- Department of Biology and Medical Genetics; Charles University 2nd Faculty of Medicine and University Hospital Motol; Prague Czech Republic
| | - Tatana Marikova
- Department of Biology and Medical Genetics; Charles University 2nd Faculty of Medicine and University Hospital Motol; Prague Czech Republic
| | - Drahuse Novotna
- Department of Biology and Medical Genetics; Charles University 2nd Faculty of Medicine and University Hospital Motol; Prague Czech Republic
| | - Marketa Vlckova
- Department of Biology and Medical Genetics; Charles University 2nd Faculty of Medicine and University Hospital Motol; Prague Czech Republic
| | | | - Mads Bak
- Wilhelm Johannsen Centre for Functional Genome Research; Department of Cellular and Molecular Medicine; University of Copenhagen; Copenhagen Denmark
| | - Zuzana Zemanova
- Institute of Medical Biochemistry and Laboratory Diagnostics; General University Hospital and Charles University 1st Faculty of Medicine; Prague Czech Republic
| | - Niels Tommerup
- Wilhelm Johannsen Centre for Functional Genome Research; Department of Cellular and Molecular Medicine; University of Copenhagen; Copenhagen Denmark
| | - Zdenek Sedlacek
- Department of Biology and Medical Genetics; Charles University 2nd Faculty of Medicine and University Hospital Motol; Prague Czech Republic
| |
Collapse
|
12
|
Smetana J, Oppelt J, Štork M, Pour L, Kuglík P. Chromothripsis 18 in multiple myeloma patient with rapid extramedullary relapse. Mol Cytogenet 2018; 11:7. [PMID: 29375670 PMCID: PMC5774134 DOI: 10.1186/s13039-018-0357-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/10/2018] [Indexed: 12/15/2022] Open
Abstract
Background Catastrophic chromosomal event known as chromothripsis was proven to be a significant hallmark of poor prognosis in several cancer diseases. While this phenomenon is very rare in among multiple myeloma (MM) patients, its presence in karyotype is associated with very poor prognosis. Case presentation In our case, we report a 62 year female patient with rapid progression of multiple myeloma (MM) into extramedullary disease and short overall survival (OS = 23 months). I-FISH investigation revealed presence of gain 1q21 and hyperdiploidy (+ 5,+ 9,+ 15) in 82% and 86%, respectively, while IgH rearrangements, del(17)(p13) and del(13)(q14) were evaluated as negative.Whole-genome profiling using array-CGH showed complex genomic changes including hyperdiploidy (+ 3,+ 5,+ 9,+ 11, + 15,+ 19), monosomy X, structural gains (1q21-1q23.1, 1q32-1q44, 16p13.13-16p11.2) and losses (1q23.1-1q32.1; 8p23.3-8p11.21) of genetic material and chromothripsis in chromosome 18 with 6 breakpoint areas. Next-generation sequencing showed a total of 338 variants with 1.8% (6/338) of pathological mutations in NRAS (c.181C > A; p.Gln61Lys) or variants of unknown significance in TP53, CUX1 and POU4F1. Conclusions Our findings suggest that presence of chromothripsis should be considered as another important genetic hallmark of poor prognosis in MM patients and utilization of genome-wide screening techniques such as array-CGH and NGS improves the clinical diagnostics of the disease.
Collapse
Affiliation(s)
- Jan Smetana
- 1Laboratory of Molecular Cytogenetics, Institute of Experimental Biology, Faculty of Science, Masaryk University, Kotlářská 2, 602 00 Brno, Czech Republic.,2Department of Medical Genetics, University Hospital, Brno, Czech Republic, Černopolní 9, Brno, Czech Republic
| | - Jan Oppelt
- 3CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.,4National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Martin Štork
- 5Department of Internal Medicine-Hematooncology, University Hospital Brno, Jihlavská 20, 62500 Brno, Czech Republic
| | - Luděk Pour
- 5Department of Internal Medicine-Hematooncology, University Hospital Brno, Jihlavská 20, 62500 Brno, Czech Republic
| | - Petr Kuglík
- 1Laboratory of Molecular Cytogenetics, Institute of Experimental Biology, Faculty of Science, Masaryk University, Kotlářská 2, 602 00 Brno, Czech Republic.,2Department of Medical Genetics, University Hospital, Brno, Czech Republic, Černopolní 9, Brno, Czech Republic
| |
Collapse
|
13
|
Marcozzi A, Pellestor F, Kloosterman WP. The Genomic Characteristics and Origin of Chromothripsis. Methods Mol Biol 2018; 1769:3-19. [PMID: 29564814 DOI: 10.1007/978-1-4939-7780-2_1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In 2011 a phenomenon involving complex chromosomal rearrangements was discovered in cancer genomes. This phenomenon has been termed chromothripsis, on the basis of its chromosomal hallmarks, which point to an underlying process involving chromosome (chromo) shattering (thripsis). The prevailing hypothesis of cancer genome evolution as a gradual process of mutation and selection was challenged by the discovery of chromothripsis, because its patterns of chromosome rearrangement rather indicated an one-off catastrophic burst of genome rearrangement. The initial discovery of chromothripsis has led to many more examples of chromothripsis both in cancer genomes as well as in patients with congenital diseases and in the genomes of healthy individuals. Since then, a burning topic has been the study of the molecular mechanism that leads to chromothripsis. Cumulating evidence has shown that chromothripsis may result from lagging chromosomes encapsulated in micronuclei, as well as from telomere fusions followed by chromosome bridge formation. In this chapter, we will outline the genomic characteristics of chromothripsis, and we present genomic methodologies that enable the detection of chromothripsis. Furthermore, we will give an overview of recent insights into the mechanisms underlying chromothripsis.
Collapse
Affiliation(s)
- Alessio Marcozzi
- Division of Biomedical Genetics, Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Franck Pellestor
- Laboratory of Chromosomal Genetics, Department of Medical Genetics, Arnaud de Villeneuve Hospital, Montpellier CHRU, Montpellier, France.,INSERM Unit Plasticity of the Genome and Aging, Institute of Functional Genomics, Montpellier, France
| | - Wigard P Kloosterman
- Division of Biomedical Genetics, Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
14
|
Abstract
The recent discovery of a new class of massive chromosomal rearrangements, occurring during one unique cellular event and baptized "chromothripsis," deeply modifies our perception on the genesis of complex genomic rearrangements, but also it raises the question of the potential driving role of chromothripsis in species evolution. The occurrence of chromothripsis appears to be in good agreement with macroevolution models proposed as a complement to phyletic gradualism. The emergence of this unexpected phenomenon may help to demonstrate the contribution of chromosome rearrangements to speciation process.
Collapse
Affiliation(s)
- Franck Pellestor
- Unit of Chromosomal Genetics, Department of Medical Genetics, Arnaud de Villeneuve Hospital, Montpellier CHRU, Montpellier, France. .,INSERM U1183 Unit "Genome and Stem Cell Plasticity in Development and Ageing", Institute for Regenerative Medicine and Biotherapy, St Eloi Hospital, Montpellier, France.
| |
Collapse
|
15
|
Shapiro JA. Living Organisms Author Their Read-Write Genomes in Evolution. BIOLOGY 2017; 6:E42. [PMID: 29211049 PMCID: PMC5745447 DOI: 10.3390/biology6040042] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 11/17/2017] [Accepted: 11/28/2017] [Indexed: 12/18/2022]
Abstract
Evolutionary variations generating phenotypic adaptations and novel taxa resulted from complex cellular activities altering genome content and expression: (i) Symbiogenetic cell mergers producing the mitochondrion-bearing ancestor of eukaryotes and chloroplast-bearing ancestors of photosynthetic eukaryotes; (ii) interspecific hybridizations and genome doublings generating new species and adaptive radiations of higher plants and animals; and, (iii) interspecific horizontal DNA transfer encoding virtually all of the cellular functions between organisms and their viruses in all domains of life. Consequently, assuming that evolutionary processes occur in isolated genomes of individual species has become an unrealistic abstraction. Adaptive variations also involved natural genetic engineering of mobile DNA elements to rewire regulatory networks. In the most highly evolved organisms, biological complexity scales with "non-coding" DNA content more closely than with protein-coding capacity. Coincidentally, we have learned how so-called "non-coding" RNAs that are rich in repetitive mobile DNA sequences are key regulators of complex phenotypes. Both biotic and abiotic ecological challenges serve as triggers for episodes of elevated genome change. The intersections of cell activities, biosphere interactions, horizontal DNA transfers, and non-random Read-Write genome modifications by natural genetic engineering provide a rich molecular and biological foundation for understanding how ecological disruptions can stimulate productive, often abrupt, evolutionary transformations.
Collapse
Affiliation(s)
- James A Shapiro
- Department of Biochemistry and Molecular Biology, University of Chicago GCIS W123B, 979 E. 57th Street, Chicago, IL 60637, USA.
| |
Collapse
|
16
|
Cretu Stancu M, van Roosmalen MJ, Renkens I, Nieboer MM, Middelkamp S, de Ligt J, Pregno G, Giachino D, Mandrile G, Espejo Valle-Inclan J, Korzelius J, de Bruijn E, Cuppen E, Talkowski ME, Marschall T, de Ridder J, Kloosterman WP. Mapping and phasing of structural variation in patient genomes using nanopore sequencing. Nat Commun 2017; 8:1326. [PMID: 29109544 PMCID: PMC5673902 DOI: 10.1038/s41467-017-01343-4] [Citation(s) in RCA: 252] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/07/2017] [Indexed: 01/08/2023] Open
Abstract
Despite improvements in genomics technology, the detection of structural variants (SVs) from short-read sequencing still poses challenges, particularly for complex variation. Here we analyse the genomes of two patients with congenital abnormalities using the MinION nanopore sequencer and a novel computational pipeline-NanoSV. We demonstrate that nanopore long reads are superior to short reads with regard to detection of de novo chromothripsis rearrangements. The long reads also enable efficient phasing of genetic variations, which we leveraged to determine the parental origin of all de novo chromothripsis breakpoints and to resolve the structure of these complex rearrangements. Additionally, genome-wide surveillance of inherited SVs reveals novel variants, missed in short-read data sets, a large proportion of which are retrotransposon insertions. We provide a first exploration of patient genome sequencing with a nanopore sequencer and demonstrate the value of long-read sequencing in mapping and phasing of SVs for both clinical and research applications.
Collapse
Affiliation(s)
- Mircea Cretu Stancu
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Markus J van Roosmalen
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Ivo Renkens
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Marleen M Nieboer
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Sjors Middelkamp
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Joep de Ligt
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Giulia Pregno
- Medical Genetics Unit, Department of Clinical and Biological Sciences, University of Torino, Orbassano, 10043, Italy
| | - Daniela Giachino
- Medical Genetics Unit, Department of Clinical and Biological Sciences, University of Torino, Orbassano, 10043, Italy
| | - Giorgia Mandrile
- Medical Genetics Unit, Department of Clinical and Biological Sciences, University of Torino, Orbassano, 10043, Italy
| | - Jose Espejo Valle-Inclan
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Jerome Korzelius
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Ewart de Bruijn
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Edwin Cuppen
- Department of Genetics and Cancer Genomics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Michael E Talkowski
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Neurology, Harvard Medical School, Boston, MA, 02115, USA
- Program in Population and Medical Genetics and Stanley Center for Psychiatric Research, The Broad Institute of M.I.T. and Harvard, Cambridge, MA, 02142, USA
| | - Tobias Marschall
- Center for Bioinformatics, Saarland University, 66123, Saarbrücken, Germany
- Max Planck Institute for Informatics, 66123, Saarbrücken, Germany
| | - Jeroen de Ridder
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Wigard P Kloosterman
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands.
| |
Collapse
|