1
|
Wang Y, Chen Y, Gao J, Xie H, Guo Y, Yang J, Liu J, Chen Z, Li Q, Li M, Ren J, Wen L, Tang F. Mapping crossover events of mouse meiotic recombination by restriction fragment ligation-based Refresh-seq. Cell Discov 2024; 10:26. [PMID: 38443370 PMCID: PMC10915157 DOI: 10.1038/s41421-023-00638-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 12/11/2023] [Indexed: 03/07/2024] Open
Abstract
Single-cell whole-genome sequencing methods have undergone great improvements over the past decade. However, allele dropout, which means the inability to detect both alleles simultaneously in an individual diploid cell, largely restricts the application of these methods particularly for medical applications. Here, we develop a new single-cell whole-genome sequencing method based on third-generation sequencing (TGS) platform named Refresh-seq (restriction fragment ligation-based genome amplification and TGS). It is based on restriction endonuclease cutting and ligation strategy in which two alleles in an individual cell can be cut into equal fragments and tend to be amplified simultaneously. As a new single-cell long-read genome sequencing method, Refresh-seq features much lower allele dropout rate compared with SMOOTH-seq. Furthermore, we apply Refresh-seq to 688 sperm cells and 272 female haploid cells (secondary polar bodies and parthenogenetic oocytes) from F1 hybrid mice. We acquire high-resolution genetic map of mouse meiosis recombination at low sequencing depth and reveal the sexual dimorphism in meiotic crossovers. We also phase the structure variations (deletions and insertions) in sperm cells and female haploid cells with high precision. Refresh-seq shows great performance in screening aneuploid sperm cells and oocytes due to the low allele dropout rate and has great potential for medical applications such as preimplantation genetic diagnosis.
Collapse
Affiliation(s)
- Yan Wang
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China
| | - Yijun Chen
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Junpeng Gao
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China
- Emergency Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Haoling Xie
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China
| | - Yuqing Guo
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China
| | - Jingwei Yang
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China
| | - Jun'e Liu
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China
| | - Zonggui Chen
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China
- Changping Laboratory, Beijing, China
| | - Qingqing Li
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China
| | - Mengyao Li
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China
| | - Jie Ren
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China
| | - Lu Wen
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China
| | - Fuchou Tang
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing, China.
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
- Changping Laboratory, Beijing, China.
| |
Collapse
|
2
|
Xie H, Li W, Guo Y, Su X, Chen K, Wen L, Tang F. Long-read-based single sperm genome sequencing for chromosome-wide haplotype phasing of both SNPs and SVs. Nucleic Acids Res 2023; 51:8020-8034. [PMID: 37351613 PMCID: PMC10450174 DOI: 10.1093/nar/gkad532] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 06/01/2023] [Accepted: 06/09/2023] [Indexed: 06/24/2023] Open
Abstract
Although localized haploid phasing can be achieved using long read genome sequencing without parental data, reliable chromosome-scale phasing remains a great challenge. Given that sperm is a natural haploid cell, single-sperm genome sequencing can provide a chromosome-wide phase signal. Due to the limitation of read length, current short-read-based single-sperm genome sequencing methods can only achieve SNP haplotyping and come with difficulties in detecting and haplotyping structural variations (SVs) in complex genomic regions. To overcome these limitations, we developed a long-read-based single-sperm genome sequencing method and a corresponding data analysis pipeline that can accurately identify crossover events and chromosomal level aneuploidies in single sperm and efficiently detect SVs within individual sperm cells. Importantly, without parental genome information, our method can accurately conduct de novo phasing of heterozygous SVs as well as SNPs from male individuals at the whole chromosome scale. The accuracy for phasing of SVs was as high as 98.59% using 100 single sperm cells, and the accuracy for phasing of SNPs was as high as 99.95%. Additionally, our method reliably enabled deduction of the repeat expansions of haplotype-resolved STRs/VNTRs in single sperm cells. Our method provides a new opportunity for studying haplotype-related genetics in mammals.
Collapse
Affiliation(s)
- Haoling Xie
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China
- Changping Laboratory, Changping Laboratory, Yard 28, Science Park Road, Changping District, Beijing 102206, China
| | - Wen Li
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China
| | - Yuqing Guo
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China
| | - Xinjie Su
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China
| | - Kexuan Chen
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China
| | - Lu Wen
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China
| | - Fuchou Tang
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China
- Changping Laboratory, Changping Laboratory, Yard 28, Science Park Road, Changping District, Beijing 102206, China
| |
Collapse
|
3
|
Murakami Y, Ando M, Futamata R, Horibe T, Ueda K, Kinoshita M, Kobayashi T. Targeted deletion of ecto-5'-nucleotidase results in retention of inosine monophosphate content in postmortem muscle of medaka (Oryzias latipes). Sci Rep 2022; 12:18588. [PMID: 36329230 PMCID: PMC9633828 DOI: 10.1038/s41598-022-22029-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022] Open
Abstract
Inosine monophosphate (IMP) is an important indicator of meat freshness and contributes to its umami taste. An attractive strategy for enhancing umami is to suppress the IMP-degrading activity and increase the IMP content in the skeletal muscle through genome editing technology using the CRISPR-Cas9 system. However, the molecular mechanisms underlying IMP degradation remain unclear. We cloned two ecto-5'-nucleotidase genes, designated as ecto-5'-nucleotidase-a (nt5ea) and ecto-5'-nucleotidase-b (nt5eb), from medaka (Oryzias latipes), a vertebrate model organism. Expression analysis using embryos showed that nt5ea or nt5eb overexpression remarkably upregulated IMP degradation, and that the IMP-degrading activity was higher in Nt5ea than in Nt5eb. Furthermore, we established frame-shifted or large deletion (lacking nt5ea or nt5eb locus) mutant strains and assayed the effects of gene disruptions on the amount of IMP in skeletal muscle. The nt5ea-deficient medaka showed considerable higher levels of IMP at 48 h postmortem than did the wild-type fish. The nt5eb mutants also exhibited higher IMP contents than that in the wild types, but the increase was less than that in the nt5ea mutants. Our results demonstrated that nt5e is an important regulator of IMP levels in skeletal muscle and that its loss of function was effective in maintaining IMP content.
Collapse
Affiliation(s)
- Yu Murakami
- grid.258622.90000 0004 1936 9967Department of Fisheries, Graduate School of Agriculture, Kindai University, Nakamachi 3327-204, Nara, 631-8505 Japan
| | - Masashi Ando
- grid.258622.90000 0004 1936 9967Department of Fisheries, Graduate School of Agriculture, Kindai University, Nakamachi 3327-204, Nara, 631-8505 Japan
| | - Ryota Futamata
- grid.258799.80000 0004 0372 2033Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto, 606-8502 Japan
| | - Tomohisa Horibe
- grid.419056.f0000 0004 1793 2541Department of Medical-Bioscience, Faculty of Bio-Science, Nagahama Institute of Bio-Science and Technology, 1266 Tamura-cho, Nagahama, Shiga 526-0829 Japan
| | - Kazumitsu Ueda
- grid.258799.80000 0004 0372 2033Institute for Integrated Cell-Material Sciences (WPI-iCeMS), KUIAS, Kyoto University, Kyoto, 606-8501 Japan
| | - Masato Kinoshita
- grid.258799.80000 0004 0372 2033Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto, 606-8502 Japan
| | - Toru Kobayashi
- grid.258622.90000 0004 1936 9967Department of Fisheries, Graduate School of Agriculture, Kindai University, Nakamachi 3327-204, Nara, 631-8505 Japan
| |
Collapse
|
4
|
Costa AS, Ferri E, Guerini FR, Rossi PD, Arosio B, Clerici M. VAMP2 Expression and Genotype Are Possible Discriminators in Different Forms of Dementia. Front Aging Neurosci 2022; 14:858162. [PMID: 35360211 PMCID: PMC8964122 DOI: 10.3389/fnagi.2022.858162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/22/2022] [Indexed: 12/03/2022] Open
Abstract
Vascular alterations often overlap with neurodegeneration, resulting in mixed forms of dementia (MD) that are hard to differentiate from Alzheimer’s Disease (AD). The 26 bp intergenic polymorphism of VAMP2, a key component of SNARE complex, as well as its mRNA and protein levels are associated with neurological diseases. We evaluated ApoE4 and VAMP2 26 bp Ins/Del genotype distribution in 177 AD, 132 MD, 115 Mild Cognitive Impairment (MCI) and 250 individuals without cognitive decline (CT), as well as VAMP2 gene expression in a subset of 73 AD, 122 MD, 103 MCI and 140 CT. Forty-two MCI evolved to AD (22 MCI-AD) or MD (20 MCI-MD) over time. VAMP2 mRNA was higher in MD compared to AD (p = 0.0013) and CT (p = 0.0017), and in MCI-MD compared to MCI-AD (p < 0.001) after correcting for age, gender, MMSE and ApoE4 +/− covariates (pc = 0.004). A higher VAMP2 expression was observed in subjects carrying the minor allele Del compared to those carrying the Ins/Ins genotype (p = 0.012). Finally, Del/Del genotype was more frequently carried by MD/MCI-MD compared to CT (pc = 0.036). These results suggest that VAMP2 mRNA expression can discriminate mixed form of dementia from AD, possibly being a biomarker of AD evolution in MCI patients.
Collapse
Affiliation(s)
| | - Evelyn Ferri
- Geriatric Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Franca Rosa Guerini
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
- *Correspondence: Franca Rosa Guerini,
| | - Paolo Dionigi Rossi
- Geriatric Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Beatrice Arosio
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Mario Clerici
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| |
Collapse
|
5
|
Le Collen L, Delemer B, Spodenkiewicz M, Cornillet Lefebvre P, Durand E, Vaillant E, Badreddine A, Derhourhi M, Mouhoub TA, Jouret G, Juttet P, Souchon PF, Vaxillaire M, Froguel P, Bonnefond A, Doco Fenzy M. Compound genetic etiology in a patient with a syndrome including diabetes, intellectual deficiency and distichiasis. Orphanet J Rare Dis 2022; 17:86. [PMID: 35227307 PMCID: PMC8887189 DOI: 10.1186/s13023-022-02248-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 02/13/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We studied a young woman with atypical diabetes associated with mild intellectual disability, lymphedema distichiasis syndrome (LDS) and polymalformative syndrome including distichiasis. We used different genetic tools to identify causative pathogenic mutations and/or copy number variations. RESULTS Although proband's, diabetes mellitus occurred during childhood, type 1 diabetes was unlikely due to the absence of detectable autoimmunity. DNA microarray analysis first identified a de novo, heterozygous deletion at the chr16q24.2 locus. Previously, thirty-three pathogenic or likely pathogenic deletions encompassing this locus have been reported in patients presenting with intellectual deficiency, obesity and/or lymphedema but not with diabetes. Of note, the deletion encompassed two topological association domains, whose one included FOXC2 that is known to be linked with LDS. Via whole-exome sequencing, we found a heterozygous, likely pathogenic variant in WFS1 (encoding wolframin endoplasmic reticulum [ER] transmembrane glycoprotein) which was inherited from her father who also had diabetes. WFS1 is known to be involved in monogenic diabetes. We also found a likely pathogenic variant in USP9X (encoding ubiquitin specific peptidase 9 X-linked) that is involved in X-linked intellectual disability, which was inherited from her mother who had dyscalculia and dyspraxia. CONCLUSIONS Our comprehensive genetic analysis suggested that the peculiar phenotypes of our patient were possibly due to the combination of multiple genetic causes including chr16q24.2 deletion, and two likely pathogenic variants in WFS1 and USP9X.
Collapse
Affiliation(s)
- Lauriane Le Collen
- Department of Endocrinology Diabetology, University Hospital Center of Reims, Reims, France. .,Inserm/CNRS UMR 1283/8199, Pasteur Institute of Lille, EGID, Lille, France. .,University of Lille, Lille, France. .,Department of Genetic, University Hospital Center of Reims, Reims, France.
| | - Brigitte Delemer
- Department of Endocrinology Diabetology, University Hospital Center of Reims, Reims, France. .,Faculty of Medicine of Reims, CRESTIC EA 3804, University of Reims Champagne Ardenne, Moulin de La Housse, BP 1039, 51687, Reims Cedex 2, France.
| | | | | | - Emmanuelle Durand
- Inserm/CNRS UMR 1283/8199, Pasteur Institute of Lille, EGID, Lille, France.,University of Lille, Lille, France
| | - Emmanuel Vaillant
- Inserm/CNRS UMR 1283/8199, Pasteur Institute of Lille, EGID, Lille, France.,University of Lille, Lille, France
| | - Alaa Badreddine
- Inserm/CNRS UMR 1283/8199, Pasteur Institute of Lille, EGID, Lille, France.,University of Lille, Lille, France
| | - Mehdi Derhourhi
- Inserm/CNRS UMR 1283/8199, Pasteur Institute of Lille, EGID, Lille, France.,University of Lille, Lille, France
| | - Tarik Ait Mouhoub
- Department of Genetic, University Hospital Center of Reims, Reims, France
| | - Guillaume Jouret
- Department of Genetic, University Hospital Center of Reims, Reims, France.,Departement of Genetic, 1 rue Louis Rech Dudelange, 3555, Luxembourg, Luxembourg
| | | | | | - Martine Vaxillaire
- Inserm/CNRS UMR 1283/8199, Pasteur Institute of Lille, EGID, Lille, France.,University of Lille, Lille, France
| | - Philippe Froguel
- Inserm/CNRS UMR 1283/8199, Pasteur Institute of Lille, EGID, Lille, France. .,University of Lille, Lille, France.
| | - Amélie Bonnefond
- Inserm/CNRS UMR 1283/8199, Pasteur Institute of Lille, EGID, Lille, France. .,University of Lille, Lille, France.
| | - Martine Doco Fenzy
- Department of Genetic, University Hospital Center of Reims, Reims, France. .,Faculty of Medicine of Reims, EA 3801, URCA, Reims, France.
| |
Collapse
|
6
|
Zhen Q, Zhang Y, Yu Y, Yang H, Zhang T, Li X, Mo X, Li B, Wu J, Liang Y, Ge H, Xu Q, Chen W, Qian W, Xu H, Chen G, Bai B, Zhang J, Lu Y, Chen S, Zhang H, Zhang Y, Chen X, Li X, Jin X, Lin X, Yong L, Fang M, Zhao J, Lu Y, Wu S, Jiang D, Shi J, Cao H, Qiu Y, Li S, Kang X, Shen J, Ma H, Sun S, Fan Y, Chen W, Bai M, Jiang Q, Li W, Lv C, Li S, Chen M, Li F, Li Y, Sun L. Three Novel Structural Variations at MHC and IL12B Predisposing to Psoriasis. Br J Dermatol 2021; 186:307-317. [PMID: 34498260 DOI: 10.1111/bjd.20752] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Structural variations (SVs, defined as DNA variants ≥50 bp) have been associated with various complex human diseases. However, research to screen the whole genome for SVs predisposing to psoriasis is still lacking. OBJECTIVES This study aimed to investigate the association of SVs and psoriasis. METHODS We performed a genome-wide screen on SVs using an imputation method on 5 independent cohorts with 45,386 subjects from the Chinese Han population. Fine mapping analysis, genetic interaction analysis and RNA expression analysis were conducted to explore the mechanism of SVs. RESULTS We obtained 4,535 SVs in total and identified 2 novel deletions (esv3608550, OR=2.73, P<2.00×10-308 ; esv3608542, OR=0.47, P=7.40×10-28 ) at 6q21.33 (MHC), 1 novel Alu element insertion (esv3607339, OR=1.22, P=1.18×10-35 ) at 5q33.3 (IL12B), and confirmed 1 previously reported deletion (esv3587563, OR=1.30, P=9.52×10-60 ) at 1q21.2 (LCE) for psoriasis. Fine mapping analysis including SNPs and small Insertions/Deletions (InDels) revealed that esv3608550 and esv3608542 were independently associated with psoriasis, and a novel independent SNP (rs9378188, OR=1.65, P=3.46×10-38 ) was identified at 6q21.33. By genetic interaction analysis and RNA expression analysis, we speculate that the association of 2 deletions at 6q21.33 with psoriasis might relate to their influence on the expression of HLA-C. CONCLUSIONS Our study constructed the most comprehensive SV map for psoriasis thus far and enriched the genetic architecture and pathogenesis of psoriasis as well as highlighted the nonnegligible impact of SVs on complex diseases.
Collapse
Affiliation(s)
- Q Zhen
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China, 230032.,Anhui Provincial Institute of Translational Medicine, Hefei, 230032, China
| | - Y Zhang
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Y Yu
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China, 230032.,Anhui Provincial Institute of Translational Medicine, Hefei, 230032, China
| | - H Yang
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - T Zhang
- Department of Biology, University of Copenhagen, Ole MaalØes Vej 5, 2200, Copenhagen, Denmark
| | - X Li
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - X Mo
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - B Li
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, China.,The Comprehensive Lab, College of Basic, Anhui Medical University
| | - J Wu
- Department of Dermatology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University
| | - Y Liang
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - H Ge
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China, 230032.,Anhui Provincial Institute of Translational Medicine, Hefei, 230032, China
| | - Q Xu
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China, 230032.,Anhui Provincial Institute of Translational Medicine, Hefei, 230032, China
| | - W Chen
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China, 230032.,Anhui Provincial Institute of Translational Medicine, Hefei, 230032, China
| | - W Qian
- Institute of Dermalology, Guangzhou Medical University, Guangzhou, 510095, China
| | - H Xu
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - G Chen
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China, 230032.,Anhui Provincial Institute of Translational Medicine, Hefei, 230032, China
| | - B Bai
- Department of Dermatology at No.2 Hospital, Harbin Medical University, Harbin, Heilongjiang, 150001, China
| | - J Zhang
- Department of Dermatology, The 195 Hospital of Chinese People's Liberation Army, Xianning, Hubei, 437100, China
| | - Y Lu
- Dermatology Department of the First Affiliated Hospital, Nanjng Medical University, Nanjing, Jiangsu, 210029, China
| | - S Chen
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China, 230032.,Anhui Provincial Institute of Translational Medicine, Hefei, 230032, China
| | - H Zhang
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China, 230032.,Anhui Provincial Institute of Translational Medicine, Hefei, 230032, China
| | - Y Zhang
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - X Chen
- Department of Dermatology at Chengdu Second People's Hospital, Sichuan, Chengdu, 610017, China
| | - X Li
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - X Jin
- School of Medicine, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - X Lin
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, China
| | - L Yong
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China, 230032.,Anhui Provincial Institute of Translational Medicine, Hefei, 230032, China
| | - M Fang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, Fujian, 361021, China
| | - J Zhao
- Department of Dermatology, People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang, Urumqi, 830001, China
| | - Y Lu
- Department of Dermatology at Chengdu Second People's Hospital, Sichuan, Chengdu, 610017, China
| | - S Wu
- Urology Institute of Shenzhen University, The Luohu Affiliated Hospital of Shenzhen University
| | - D Jiang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, Fujian, 361021, China
| | - J Shi
- Department of Dermatology at the Second Affiliated Hospital, Baotou Medical College, University Of Science and Technology Of The Inner Mongolia, Baotou, Inner Mongolia, 014030, China
| | - H Cao
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Y Qiu
- Department of Dermatology, Jining No. 1 People's Hospital, Shandong, 272011, China
| | - S Li
- Department of Dermatology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - X Kang
- Department of Dermatology, People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang, Urumqi, 830001, China
| | - J Shen
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - H Ma
- Department of Dematology, the 2rd Hospital of Xi'an Jiaotong University. Xi'an, Shanxi, 710004, China
| | - S Sun
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Y Fan
- Department of Dermatology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - W Chen
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, China
| | - M Bai
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Q Jiang
- Donggang Center Hospital, Dandong, Liaoning, 118300
| | - W Li
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, Shandong, 272067, China
| | - C Lv
- Dalian Dermatosis Hospital, Dalian, Liaoning, 116021, China
| | - S Li
- Department of Dermatology at No, Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - M Chen
- Dermatology Hospital, Peking Union Medical College
| | - F Li
- Department of Dermatology, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Y Li
- Department of Dermatology, The 195 Hospital of Chinese People's Liberation Army, Xianning, Hubei, 437100, China
| | - L Sun
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China, 230032.,Anhui Provincial Institute of Translational Medicine, Hefei, 230032, China
| |
Collapse
|
7
|
Characterization of intermediate-sized insertions using whole-genome sequencing data and analysis of their functional impact on gene expression. Hum Genet 2021; 140:1201-1216. [PMID: 33978893 DOI: 10.1007/s00439-021-02291-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/04/2021] [Indexed: 10/21/2022]
Abstract
Intermediate-sized insertions are one of the structural variants contributing to genome diversity. However, due to technical difficulties in identifying them, their importance in disease pathogenicity and gene expression regulation remains unclear. We used whole-genome sequencing data of 174 Japanese samples to characterize intermediate-sized insertions using a highly-accurate insertion calling method (IMSindel software and joint-call recovery) and obtained a catalogue of 4254 insertions. We constructed an imputation panel comprising of insertions and SNVs from all samples, and conducted imputation of intermediate-sized insertions for 82 publicly-available Japanese samples. Positive Predictive Value of imputation, evaluated using Nanopore long-read sequencing data, was 97%. Subsequent eQTL analysis predicted 128 (~ 3.0%) insertions as causative for gene expression level changes. Enrichment analysis of causal insertions for genome regulatory elements showed significant associations with CTCF-binding sites, super-enhancers, and promoters. Among 17 causal insertions found in the same causal set with GWAS hits, there were insertions associated with changes in expression of cancer-related genes such as BRCA1, ZNF222, and ABCB10. Analysis of insertions sequences revealed that 461 insertions were short tandem duplications frequently found in early-replicating regions of genome. Furthermore, comparison of functional importance of intermediate-sized insertions with that of intermediate-sized deletions detected in the same sample set in our previous study showed that insertions were more frequent in genic regions, and proportion of functional candidates was smaller in insertions. Here, we characterize a high-confidence set of intermediate-sized insertions and indicate their importance in gene expression regulation. Our results emphasize the importance of considering intermediate-sized insertions in trait association studies.
Collapse
|
8
|
Fujimoto A, Wong JH, Yoshii Y, Akiyama S, Tanaka A, Yagi H, Shigemizu D, Nakagawa H, Mizokami M, Shimada M. Whole-genome sequencing with long reads reveals complex structure and origin of structural variation in human genetic variations and somatic mutations in cancer. Genome Med 2021; 13:65. [PMID: 33910608 PMCID: PMC8082928 DOI: 10.1186/s13073-021-00883-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 04/06/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Identification of germline variation and somatic mutations is a major issue in human genetics. However, due to the limitations of DNA sequencing technologies and computational algorithms, our understanding of genetic variation and somatic mutations is far from complete. METHODS In the present study, we performed whole-genome sequencing using long-read sequencing technology (Oxford Nanopore) for 11 Japanese liver cancers and matched normal samples which were previously sequenced for the International Cancer Genome Consortium (ICGC). We constructed an analysis pipeline for the long-read data and identified germline and somatic structural variations (SVs). RESULTS In polymorphic germline SVs, our analysis identified 8004 insertions, 6389 deletions, 27 inversions, and 32 intra-chromosomal translocations. By comparing to the chimpanzee genome, we correctly inferred events that caused insertions and deletions and found that most insertions were caused by transposons and Alu is the most predominant source, while other types of insertions, such as tandem duplications and processed pseudogenes, are rare. We inferred mechanisms of deletion generations and found that most non-allelic homolog recombination (NAHR) events were caused by recombination errors in SINEs. Analysis of somatic mutations in liver cancers showed that long reads could detect larger numbers of SVs than a previous short-read study and that mechanisms of cancer SV generation were different from that of germline deletions. CONCLUSIONS Our analysis provides a comprehensive catalog of polymorphic and somatic SVs, as well as their possible causes. Our software are available at https://github.com/afujimoto/CAMPHOR and https://github.com/afujimoto/CAMPHORsomatic .
Collapse
Affiliation(s)
- Akihiro Fujimoto
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Jing Hao Wong
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yukiko Yoshii
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shintaro Akiyama
- Medical Genome Center, National Center for Geriatrics and Gerontology, Obu, Japan
- Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Science, Yokohama, Japan
| | - Azusa Tanaka
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hitomi Yagi
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Daichi Shigemizu
- Medical Genome Center, National Center for Geriatrics and Gerontology, Obu, Japan
- Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Science, Yokohama, Japan
| | - Hidewaki Nakagawa
- Medical Genome Center, National Center for Geriatrics and Gerontology, Obu, Japan
- Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Science, Yokohama, Japan
| | - Masashi Mizokami
- Genome Medical Sciences Project, National Center for Global Health and Medicine, Tokyo, Japan
| | - Mihoko Shimada
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|