1
|
Kim MH, Suh HR, Han HC. The effects of the cholinergic system on carrageenan-induced arthritis. Neurosci Lett 2024; 823:137651. [PMID: 38262509 DOI: 10.1016/j.neulet.2024.137651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/13/2024] [Accepted: 01/20/2024] [Indexed: 01/25/2024]
Abstract
The cholinergic system has been found to make an anti-inflammatory effect through the cholinergic anti-inflammatory pathway (CAIP), which suppresses the production of pro-inflammatory cytokines by secreting acetylcholine, a major neurotransmitter. However, no studies have been conducted on the effects of CAIP on joint pain and inflammation. In this study, we investigated the effects of muscarinic acetylcholine receptors (mAChRs) in knee arthritis. To examine pain behavioral changes, atropine (or saline for sham control) was pretreated in the joint cavity of rats at 1 % carrageenan + 5, 10, and 30 μL and the dynamic weight-bearing evaluation was performed. Synovial membranes were collected and cyclooxygenase-2 (COX-2) and interleukin-1β (IL-1β) were measured using a western blot. Hematoxylin and eosin staining was performed. Compared to that of the sham group, the weight-bearing of the affected knee joint significantly increased in the 1 % carrageenan + 10 μL atropine group (p < 0.05). However, no significant changes were observed in the 1 % carrageenan + 5 and 30 μL atropine groups. COX-2 and IL-1β and the number of inflammatory cells in synovial membrane significantly increased with 1 % carrageenan + 10 μL of atropine (p < 0.05). These results suggest that cholinergic system is involved in knee joint pain and inflammation and that mAChRs are potential therapeutic targets for knee joint arthritis.
Collapse
Affiliation(s)
- Min Ha Kim
- Department of Physiology, College of Medicine and Neuroscience Research Institute, Korea University, Seoul, Republic of Korea
| | - Hye Rim Suh
- Department of Physical Therapy, Baekseok University, Cheonan, Republic of Korea.
| | - Hee Chul Han
- Department of Physiology, College of Medicine and Neuroscience Research Institute, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Hoshino‐Negishi K, Ohkuro M, Nakatani T, Kuboi Y, Nishimura M, Ida Y, Kakuta J, Hamaguchi A, Kumai M, Kamisako T, Sugiyama F, Ikeda W, Ishii N, Yasuda N, Imai T. Role of Anti‐Fractalkine Antibody in Suppression of Joint Destruction by Inhibiting Migration of Osteoclast Precursors to the Synovium in Experimental Arthritis. Arthritis Rheumatol 2019; 71:222-231. [DOI: 10.1002/art.40688] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 08/02/2018] [Indexed: 01/05/2023]
Affiliation(s)
| | | | | | | | | | - Yoko Ida
- KAN Research Institute, Inc. Kobe Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Sluzalska KD, Liebisch G, Ishaque B, Schmitz G, Rickert M, Steinmeyer J. The Effect of Dexamethasone, Adrenergic and Cholinergic Receptor Agonists on Phospholipid Metabolism in Human Osteoarthritic Synoviocytes. Int J Mol Sci 2019; 20:ijms20020342. [PMID: 30650648 PMCID: PMC6359197 DOI: 10.3390/ijms20020342] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/09/2019] [Accepted: 01/11/2019] [Indexed: 01/07/2023] Open
Abstract
Phospholipids (PLs) possess the unique ability to contribute to synovial joint lubrication. The aim of our study was to determine for the first time the effect of dexamethasone and some adrenergic and cholinergic agonists on the biosynthesis and release of PLs from human fibroblast-like synoviocytes (FLS). Osteoarthritic human knee FLS were treated with dexamethasone, terbutaline, epinephrine, carbachol, and pilocarpine, or the glucocorticoid receptor antagonist RU 486. Simultaneously PL biosynthesis was determined through the incorporation of stable isotope-labeled precursors into PLs. Radioactive isotope-labeled precursors were used to radiolabel PLs for the subsequent quantification of their release into nutrient media. Lipids were extracted and quantified using electrospray ionization tandem mass spectrometry or liquid scintillation counting. Dexamethasone significantly decreased the biosynthesis of phosphatidylcholine, phosphatidylethanolamine (PE), PE-based plasmalogen, and sphingomyelin. The addition of RU 486 abolished these effects. A release of PLs from FLS into nutrient media was not recognized by any of the tested agents. None of the adrenergic or cholinergic receptor agonists modulated the PL biosynthesis. We demonstrate for the first time an inhibitory effect of dexamethasone on the PL biosynthesis of FLS from human knees. Moreover, our study indicates that the PL metabolism of synovial joints and lungs are differently regulated.
Collapse
Affiliation(s)
- Katarzyna D Sluzalska
- Laboratory for Experimental Orthopaedics, Department of Orthopaedics, Justus Liebig University Giessen, 35392 Giessen, Germany.
| | - Gerhard Liebisch
- Department of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, 93053 Regensburg, Germany.
| | - Bernd Ishaque
- Laboratory for Experimental Orthopaedics, Department of Orthopaedics, Justus Liebig University Giessen, 35392 Giessen, Germany.
| | - Gerd Schmitz
- Department of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, 93053 Regensburg, Germany.
| | - Markus Rickert
- Laboratory for Experimental Orthopaedics, Department of Orthopaedics, Justus Liebig University Giessen, 35392 Giessen, Germany.
| | - Juergen Steinmeyer
- Laboratory for Experimental Orthopaedics, Department of Orthopaedics, Justus Liebig University Giessen, 35392 Giessen, Germany.
| |
Collapse
|
4
|
Effects of a Pasty Bone Cement Containing Brain-Derived Neurotrophic Factor-Functionalized Mesoporous Bioactive Glass Particles on Metaphyseal Healing in a New Murine Osteoporotic Fracture Model. Int J Mol Sci 2018; 19:ijms19113531. [PMID: 30423942 PMCID: PMC6274902 DOI: 10.3390/ijms19113531] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 10/29/2018] [Accepted: 11/05/2018] [Indexed: 12/30/2022] Open
Abstract
The development of new and better implant materials adapted to osteoporotic bone is still urgently required. Therefore, osteoporotic muscarinic acetylcholine receptor M3 (M3 mAChR) knockout (KO) and corresponding wild type (WT) mice underwent osteotomy in the distal femoral metaphysis. Fracture gaps were filled with a pasty α-tricalcium phosphate (α-TCP)-based hydroxyapatite (HA)-forming bone cement containing mesoporous bioactive CaP-SiO₂ glass particles (cement/MBG composite) with or without Brain-Derived Neurotrophic Factor (BDNF) and healing analyzed after 35 days. Histologically, bone formation was significantly increased in WT mice that received the BDNF-functionalized cement/MBG composite compared to control WT mice without BDNF. Cement/MBG composite without BDNF increased bone formation in M3 mAChR KO mice compared to equally treated WT mice. Mass spectrometric imaging showed that the BDNF-functionalized cement/MBG composite implanted in M3 mAChR KO mice was infiltrated by newly formed tissue. Leukocyte numbers were significantly lower in M3 mAChR KO mice treated with BDNF-functionalized cement/MBG composite compared to controls without BDNF. C-reactive protein (CRP) concentrations were significantly lower in M3 mAChR KO mice that received the cement/MBG composite without BDNF when compared to WT mice treated the same. Whereas alkaline phosphatase (ALP) concentrations in callus were significantly increased in M3 mAChR KO mice, ALP activity was significantly higher in WT mice. Due to a stronger effect of BDNF in non osteoporotic mice, higher BDNF concentrations might be needed for osteoporotic fracture healing. Nevertheless, the BDNF-functionalized cement/MBG composite promoted fracture healing in non osteoporotic bone.
Collapse
|
5
|
Kanashiro A, Shimizu Bassi G, de Queiróz Cunha F, Ulloa L. From neuroimunomodulation to bioelectronic treatment of rheumatoid arthritis. ACTA ACUST UNITED AC 2018; 1:151-165. [PMID: 30740246 DOI: 10.2217/bem-2018-0001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Neuronal stimulation is an emerging field in modern medicine to control organ function and reestablish physiological homeostasis during illness. The nervous system innervates most of the peripheral organs and provides a fine tune to control the immune system. Most of these studies have focused on vagus nerve stimulation and the physiological, cellular and molecular mechanisms regulating the immune system. Here, we review the new results revealing afferent vagal signaling pathways, immunomodulatory brain structures, spinal cord-dependent circuits, neural and non-neural cholinergic/catecholaminergic signals and their respective receptors contributing to neuromodulation of inflammation in rheumatoid arthritis. These new neuromodulatory networks and structures will allow the design of innovative bioelectronic or pharmacological approaches for safer and low-cost treatment of arthritis and related inflammatory disorders.
Collapse
Affiliation(s)
- Alexandre Kanashiro
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.,Department of Physiological Sciences, Federal University of São Carlos (UFSCAR), São Carlos, SP, Brazil
| | - Gabriel Shimizu Bassi
- Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fernando de Queiróz Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Luis Ulloa
- Department of Surgery, Center of Immunology & Inflammation, Rutgers-New Jersey Medical School, Rutgers University, Newark, NJ 07101, USA
| |
Collapse
|
6
|
Yasuda Y, Iwama S, Kiyota A, Izumida H, Nakashima K, Iwata N, Ito Y, Morishita Y, Goto M, Suga H, Banno R, Enomoto A, Takahashi M, Arima H, Sugimura Y. Critical role of rabphilin-3A in the pathophysiology of experimental lymphocytic neurohypophysitis. J Pathol 2018; 244:469-478. [PMID: 29377134 DOI: 10.1002/path.5046] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 01/04/2018] [Accepted: 01/09/2018] [Indexed: 12/17/2023]
Abstract
Autoimmune hypophysitis (AH) is thought to be an autoimmune disease characterized by lymphocytic infiltration of the pituitary gland. Among AH pathologies, lymphocytic infundibulo-neurohypophysitis (LINH) involves infiltration of the neurohypophysis and/or the hypothalamic infundibulum, causing central diabetes insipidus resulting from insufficiency of arginine vasopressin secretion. The pathophysiological and pathogenetic mechanisms underlying LINH are largely unknown. Clinically, differentiating LINH from other pituitary diseases accompanied by mass lesions, including tumours, has often been difficult, because of similar clinical manifestations. We recently reported that rabphilin-3A is an autoantigen and that anti-rabphilin-3A antibodies constitute a possible diagnostic marker for LINH. However, the involvement of rabphilin-3A in the pathogenesis of LINH remains to be elucidated. This study was undertaken to explore the role of rabphilin-3A in lymphocytic neurohypophysitis and to investigate the mechanism. We found that immunization of mice with rabphilin-3A led to neurohypophysitis. Lymphocytic infiltration was observed in the neurohypophysis and supraoptic nucleus 1 month after the first immunization. Mice immunized with rabphilin-3A showed an increase in the volume of urine that was hypotonic as compared with control mice. Administration of a cocktail of monoclonal anti-rabphilin-3A antibodies did not induce neurohypophysitis. However, abatacept, which is a chimeric protein that suppresses T-cell activation, decreased the number of T cells specific for rabphilin-3A in peripheral blood mononuclear cells (PBMCs). It ameliorated lymphocytic infiltration of CD3+ T cells in the neurohypophysis of mice that had been immunized with rabphilin-3A. Additionally, there was a linear association between the number of T cells specific for rabphilin-3A in PBMCs and the number of CD3+ T cells infiltrating the neurohypophysis. In conclusion, we suggest that rabphilin-3A is a pathogenic antigen, and that T cells specific for rabphilin-3A are involved in the pathogenesis of neurohypophysitis in mice. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Yoshinori Yasuda
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shintaro Iwama
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Research Centre of Health, Physical Fitness and Sports, Nagoya University, Japan
| | - Atsushi Kiyota
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hisakazu Izumida
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kohtaro Nakashima
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Naoko Iwata
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshihiro Ito
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshiaki Morishita
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Motomitsu Goto
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hidetaka Suga
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ryoichi Banno
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Atsushi Enomoto
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahide Takahashi
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroshi Arima
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshihisa Sugimura
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Fujita Health University, Toyoake, Japan
| |
Collapse
|
7
|
Isoegomaketone Alleviates the Development of Collagen Antibody-Induced Arthritis in Male Balb/c Mice. Molecules 2017; 22:molecules22071209. [PMID: 28753954 PMCID: PMC6152219 DOI: 10.3390/molecules22071209] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 07/10/2017] [Accepted: 07/10/2017] [Indexed: 02/07/2023] Open
Abstract
In this study, we attempted to identify and assess effects of isoegomaketone (IK) isolated from Perilla frutescens var. crispa on the development of rheumatoid arthritis (RA). RA was induced in male Balb/c mice by collagen antibody injection. Experimental animals were randomly divided into five groups: normal, collagen antibody-induced arthritis (CAIA), CAIA + IK (5 mg/kg/day), CAIA + IK (10 mg/kg/day), and CAIA + apigenin (16 mg/kg/day) and respective treatments were administered via oral gavage once per day for four days. Mice treated with IK (10 mg/kg/day) developed less severe arthritis than the control CAIA mice. Arthritic score, paw volume, and paw thickness were less significant compared to the control CAIA mice at day seven (73%, 15%, and 14% lower, respectively). Furthermore, histopathological examination of ankle for inflammation showed that infiltration of inflammatory cells and edema formation were reduced by IK treatment. Similarly, neutrophil to lymphocyte ratio (NLR) in whole blood was lower in mice treated with IK (10 mg/kg/day) by 85% when compared to CAIA mice. Taken together, treatment with IK delays the onset of the arthritis and alleviates the manifestations of arthritis in CAIA mice.
Collapse
|