1
|
Guo S, Tian Y, Li J, Zeng X. A Glimpse into Humoral Response and Related Therapeutic Approaches of Takayasu's Arteritis. Int J Mol Sci 2024; 25:6528. [PMID: 38928233 PMCID: PMC11203527 DOI: 10.3390/ijms25126528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Takayasu's arteritis (TAK) manifests as an insidiously progressive and debilitating form of granulomatous inflammation including the aorta and its major branches. The precise etiology of TAK remains elusive, with current understanding suggesting an autoimmune origin primarily driven by T cells. Notably, a growing body of evidence bears testimony to the widespread effects of B cells on disease pathogenesis and progression. Distinct alterations in peripheral B cell subsets have been described in individuals with TAK. Advancements in technology have facilitated the identification of novel autoantibodies in TAK. Moreover, emerging data suggest that dysregulated signaling cascades downstream of B cell receptor families, including interactions with innate pattern recognition receptors such as toll-like receptors, as well as co-stimulatory molecules like CD40, CD80 and CD86, may result in the selection and proliferation of autoreactive B cell clones in TAK. Additionally, ectopic lymphoid neogenesis within the aortic wall of TAK patients exhibits functional characteristics. In recent decades, therapeutic interventions targeting B cells, notably utilizing the anti-CD20 monoclonal antibody rituximab, have demonstrated efficacy in TAK. Despite the importance of the humoral immune response, a systematic understanding of how autoreactive B cells contribute to the pathogenic process is still lacking. This review provides a comprehensive overview of the biological significance of B cell-mediated autoimmunity in TAK pathogenesis, as well as insights into therapeutic strategies targeting the humoral response. Furthermore, it examines the roles of T-helper and T follicular helper cells in humoral immunity and their potential contributions to disease mechanisms. We believe that further identification of the pathogenic role of autoimmune B cells and the underlying regulation system will lead to deeper personalized management of TAK patients. We believe that further elucidation of the pathogenic role of autoimmune B cells and the underlying regulatory mechanisms holds promise for the development of personalized approaches to managing TAK patients.
Collapse
Affiliation(s)
- Shuning Guo
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100006, China; (S.G.); (Y.T.)
- National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Beijing 100006, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing 100006, China
- Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing 100006, China
| | - Yixiao Tian
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100006, China; (S.G.); (Y.T.)
- National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Beijing 100006, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing 100006, China
- Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing 100006, China
| | - Jing Li
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100006, China; (S.G.); (Y.T.)
- National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Beijing 100006, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing 100006, China
- Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing 100006, China
| | - Xiaofeng Zeng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100006, China; (S.G.); (Y.T.)
- National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Beijing 100006, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing 100006, China
- Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing 100006, China
| |
Collapse
|
2
|
Scott C, Stander R, Phoya F. Medium-vessel and large-vessel vasculitis in children. Curr Opin Rheumatol 2023:00002281-990000000-00063. [PMID: 37433219 DOI: 10.1097/bor.0000000000000955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
PURPOSE OF REVIEW This article serves as an up-to-date examination of the latest findings in the field of paediatric large-vessel and medium-vessel vasculitis. RECENT FINDINGS Over the last 2 years and in the wake of SARS-CoV2 pandemic, a multitude of studies have increased our insight into these conditions. Although large-vessel and medium-vessel vasculitis are uncommon amongst children, they are a complex and multisystem with a constantly evolving landscape. Increasing numbers of reports from low-income and middle-income countries are shaping our understanding of the epidemiology of vasculitis in children. The influence of infectious disease and the microbiome are of particular interest in unravelling pathogenetic aspects. Improved understanding of the genetics and immunology offer opportunities for better diagnostic options and biomarkers of disease as well as targeted therapies. SUMMARY In this review, we address recent findings in epidemiology, pathophysiology, clinical findings, bio-markers, imaging and treatment that have the potential to offer better management solutions for these uncommon conditions.
Collapse
Affiliation(s)
- Christiaan Scott
- Paediatric Rheumatology and Clinical Research Centre
- Paediatric Rheumatology, University of Cape Town, Cape Town, South Africa
| | - Raphaella Stander
- Paediatric Rheumatology, University of Cape Town, Cape Town, South Africa
| | - Frank Phoya
- Paediatric Rheumatology, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
3
|
Misra DP, Singh K, Rathore U, Kavadichanda CG, Ora M, Jain N, Agarwal V. Management of Takayasu arteritis. Best Pract Res Clin Rheumatol 2023; 37:101826. [PMID: 37246052 DOI: 10.1016/j.berh.2023.101826] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/09/2023] [Accepted: 04/16/2023] [Indexed: 05/30/2023]
Abstract
This review overviews the challenges in the assessment of disease activity, damage, and therapy of Takayasu arteritis (TAK). Recently developed disease activity scores for TAK are more useful for follow-up visits and require validation of cut-offs for active disease. A validated damage score for TAK is lacking. Computed tomography angiography (CTA), magnetic resonance angiography (MRA), and ultrasound enable the evaluation of vascular anatomy and arterial wall characteristics of TAK. 18-fluorodeoxyglucose (18-FDG) positron emission tomography (PET) visualizes arterial wall metabolic activity and complements the information provided by circulating C-reactive protein (CRP) levels. ESR and CRP alone moderately reflect TAK disease activity. TAK is corticosteroid-responsive but relapses upon tapering corticosteroids. Conventional synthetic disease-modifying anti-rheumatic drugs (DMARDs) are the first-line maintenance agents, and tumor necrosis factor-alpha inhibitors, tocilizumab, or tofacitinib are second-line agents for TAK. Revascularization procedures for TAK should be used judiciously during periods of inactive disease.
Collapse
Affiliation(s)
- Durga Prasanna Misra
- Department of Clinical Immunology and Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, 226014, India.
| | - Kritika Singh
- Department of Clinical Immunology and Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, 226014, India.
| | - Upendra Rathore
- Department of Clinical Immunology and Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, 226014, India.
| | - Chengappa G Kavadichanda
- Department of Clinical Immunology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, 605006, India.
| | - Manish Ora
- Department of Nuclear Medicine, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, 226014, India.
| | - Neeraj Jain
- Department of Radiodiagnosis, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, 226014, India.
| | - Vikas Agarwal
- Department of Clinical Immunology and Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, 226014, India.
| |
Collapse
|
4
|
Pan M, Zhao H, Jin R, Leung PSC, Shuai Z. Targeting immune checkpoints in anti-neutrophil cytoplasmic antibodies associated vasculitis: the potential therapeutic targets in the future. Front Immunol 2023; 14:1156212. [PMID: 37090741 PMCID: PMC10115969 DOI: 10.3389/fimmu.2023.1156212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/27/2023] [Indexed: 04/25/2023] Open
Abstract
Anti-neutrophil cytoplasmic autoantibodies (ANCA) associated vasculitis (AAV) is a necrotizing vasculitis mainly involving small blood vessels. It is demonstrated that T cells are important in the pathogenesis of AAV, including regulatory T cells (Treg) and helper T cells (Th), especially Th2, Th17, and follicular Th cells (Tfh). In addition, the exhaustion of T cells predicted the favorable prognosis of AAV. The immune checkpoints (ICs) consist of a group of co-stimulatory and co-inhibitory molecules expressed on the surface of T cells, which maintains a balance between the activation and exhaustion of T cells. CD28, inducible T-cell co-stimulator (ICOS), OX40, CD40L, glucocorticoid induced tumor necrosis factor receptor (GITR), and CD137 are the common co-stimulatory molecules, while the programmed cell death 1 (PD-1), cytotoxic T lymphocyte-associated molecule 4 (CTLA-4), T cell immunoglobulin (Ig) and mucin domain-containing protein 3 (TIM-3), B and T lymphocyte attenuator (BTLA), V-domain Ig suppressor of T cell activation (VISTA), T-cell Ig and ITIM domain (TIGIT), CD200, and lymphocyte activation gene 3 (LAG-3) belong to co-inhibitory molecules. If this balance was disrupted and the activation of T cells was increased, autoimmune diseases (AIDs) might be induced. Even in the treatment of malignant tumors, activation of T cells by immune checkpoint inhibitors (ICIs) may result in AIDs known as rheumatic immune-related adverse events (Rh-irAEs), suggesting the importance of ICs in AIDs. In this review, we summarized the features of AAV induced by immunotherapy using ICIs in patients with malignant tumors, and then reviewed the biological characteristics of different ICs. Our aim was to explore potential targets in ICs for future treatment of AAV.
Collapse
Affiliation(s)
- Menglu Pan
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Huanhuan Zhao
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ruimin Jin
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Patrick S. C. Leung
- Division of Rheumatology/Allergy and Clinical Immunology, University of California, Davis, Davis, CA, United States
- *Correspondence: Zongwen Shuai, ; Patrick S. C. Leung,
| | - Zongwen Shuai
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
- *Correspondence: Zongwen Shuai, ; Patrick S. C. Leung,
| |
Collapse
|
5
|
Misra DP, Jain N, Ora M, Singh K, Agarwal V, Sharma A. Outcome Measures and Biomarkers for Disease Assessment in Takayasu Arteritis. Diagnostics (Basel) 2022; 12:diagnostics12102565. [PMID: 36292253 PMCID: PMC9601573 DOI: 10.3390/diagnostics12102565] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 12/05/2022] Open
Abstract
Takayasu arteritis (TAK) is a less common large vessel vasculitis where histopathology of involved arteries is difficult to access except during open surgical procedures. Assessment of disease activity in TAK, therefore, relies on surrogate measures. Clinical disease activity measures such as the National Institutes of Health (NIH) score, the Disease Extent Index in TAK (DEI.TAK) and the Indian TAK Clinical Activity Score (ITAS2010) inconsistently associate with acute phase reactants (APRs). Computerized tomographic angiography (CTA), magnetic resonance angiography (MRA), or color Doppler Ultrasound (CDUS) enables anatomical characterization of stenosis, dilatation, and vessel wall characteristics. Vascular wall uptake of 18-fluorodeoxyglucose or other ligands using positron emission tomography computerized tomography (PET-CT) helps assess metabolic activity, which reflects disease activity well in a subset of TAK with normal APRs. Angiographic scoring systems to quantitate the extent of vascular involvement in TAK have been developed recently. Erythrocyte sedimentation rate and C-reactive protein have a moderate performance in distinguishing active TAK. Numerous novel biomarkers are under evaluation in TAK. Limited literature suggests a better assessment of active disease by combining APRs, PET-CT, and circulating biomarkers. Validated damage indices and patient-reported outcome measures specific to TAK are lacking. Few biomarkers have been evaluated to reflect vascular damage in TAK and constitute important research agenda.
Collapse
Affiliation(s)
- Durga Prasanna Misra
- Department of Clinical Immunology and Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow 226014, India
- Correspondence: (D.P.M.); (A.S.)
| | - Neeraj Jain
- Department of Radiodiagnosis, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow 226014, India
| | - Manish Ora
- Department of Nuclear Medicine, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow 226014, India
| | - Kritika Singh
- Department of Clinical Immunology and Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow 226014, India
| | - Vikas Agarwal
- Department of Clinical Immunology and Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow 226014, India
| | - Aman Sharma
- Clinical Immunology and Rheumatology Services, Department of Internal Medicine, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India
- Correspondence: (D.P.M.); (A.S.)
| |
Collapse
|
6
|
Singh K, Rathore U, Rai MK, Behera MR, Jain N, Ora M, Bhadauria D, Sharma S, Pande G, Gambhir S, Nath A, Kumar S, Sharma A, Agarwal V, Misra DP. Novel Th17 Lymphocyte Populations, Th17.1 and PD1+Th17, are Increased in Takayasu Arteritis, and Both Th17 and Th17.1 Sub-Populations Associate with Active Disease. J Inflamm Res 2022; 15:1521-1541. [PMID: 35256852 PMCID: PMC8898181 DOI: 10.2147/jir.s355881] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 02/16/2022] [Indexed: 12/12/2022] Open
Abstract
Purpose We evaluated T helper lymphocyte profile, including novel Th17 subsets Th17.1 (secrete IFN-γ, associate with corticosteroid resistance) and PD1+Th17 (secrete TGF-β1, implicated in fibrosis), and related cytokines in peripheral blood of Takayasu arteritis (TAK). Materials and Methods We evaluated circulating Th1, Th2, Th17, Th17.1, PD1+CD4+ T lymphocytes, PD1+Th17, and Treg lymphocytes, inflammatory (IFN-γ, IL-4, IL-6, IL-17A, IL-23, IL-1β, TNF-α) and regulatory (IL-10, TGF-β1) cytokines in peripheral blood of TAK (n = 57; median age 35 (interquartile range 26–45) years; 40 females) in a cross-sectional design. We studied inflammatory and regulatory cytokines in culture supernatant of peripheral blood mononuclear cells (PBMCs) from TAK following stimulation with anti-CD3/anti-CD28 and their modulation by tacrolimus (immunosuppressive) with/without tadalafil (anti-fibrotic). Furthermore, we followed up immunosuppressive-naïve active TAK (n = 16) and compared T helper lymphocyte populations and cytokines before and after immunosuppressive therapy. Healthy controls (HC, n = 21) and sarcoidosis (disease control, n = 11) were compared against TAK. Results TAK had higher Th17, Th17.1 and PD1+Th17 lymphocytes than HC (p < 0.001), and higher PD1+CD4+ T lymphocytes than sarcoidosis (p < 0.001). Th17 lymphocytes associated with active TAK after multivariable-adjusted logistic regression (p = 0.008). TAK had greater cytokine secretion from PBMCs (IFN-γ, IL-17A, IL-10 versus HC; IL-6, TNF-α, IL-1β versus HC or sarcoidosis) (p < 0.05). In-vitro, PBMCs from TAK showed reduced secretion of all inflammatory cytokines with tacrolimus, with synergistic reduction in IL-17A, IL-6, IL-1β and IL-10 following addition of tadalafil to tacrolimus. Serial follow-up of immunosuppressive-naïve TAK (n = 16) showed reduction in serum IL-6 and TGF-β1 (p < 0.05) and IL-6 in culture supernatant (p < 0.05) following immunosuppressive therapy. Conclusion Novel Th17 sub-populations (Th17.1 and PD1+Th17) are elevated in TAK. Th17 lymphocytes associate with active TAK. In-vitro experiments on cultured PBMCs suggest promise for further evaluation of a combination of immunosuppressive tacrolimus with anti-fibrotic tadalafil (or other anti-fibrotic therapies) in clinical trials of TAK. ![]()
Point your SmartPhone at the code above. If you have a QR code reader the video abstract will appear. Or use: https://youtu.be/lJzKvFZZUVs
Collapse
Affiliation(s)
- Kritika Singh
- Department of Clinical Immunology and Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, Uttar Pradesh, 226014, India
| | - Upendra Rathore
- Department of Clinical Immunology and Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, Uttar Pradesh, 226014, India
| | - Mohit Kumar Rai
- Department of Clinical Immunology and Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, Uttar Pradesh, 226014, India
| | - Manas R Behera
- Department of Nephrology, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, Uttar Pradesh, 226014, India
| | - Neeraj Jain
- Department of Radiodiagnosis, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, Uttar Pradesh, 226014, India
| | - Manish Ora
- Department of Nuclear Medicine, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, Uttar Pradesh, 226014, India
| | - Dharmendra Bhadauria
- Department of Nephrology, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, Uttar Pradesh, 226014, India
| | - Supriya Sharma
- Department of Surgical Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, Uttar Pradesh, 226014, India
| | - Gaurav Pande
- Department of Medical Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, Uttar Pradesh, 226014, India
| | - Sanjay Gambhir
- Department of Nuclear Medicine, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, Uttar Pradesh, 226014, India
| | - Alok Nath
- Department of Pulmonary Medicine, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, Uttar Pradesh, 226014, India
| | - Sudeep Kumar
- Department of Cardiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, Uttar Pradesh, 226014, India
| | - Aman Sharma
- Clinical Immunology and Rheumatology Services, Department of Internal Medicine, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Vikas Agarwal
- Department of Clinical Immunology and Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, Uttar Pradesh, 226014, India
| | - Durga Prasanna Misra
- Department of Clinical Immunology and Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, Uttar Pradesh, 226014, India
- Correspondence: Durga Prasanna Misra, Department of Clinical Immunology and Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, 226014, India, Tel +91 5222495273, Fax + 91 522-2668812, Email
| |
Collapse
|
7
|
Tian Y, Huang B, Li J, Tian X, Zeng X. Identification of the Association Between Toll-Like Receptors and T-Cell Activation in Takayasu’s Arteritis. Front Immunol 2022; 12:792901. [PMID: 35126357 PMCID: PMC8812403 DOI: 10.3389/fimmu.2021.792901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/22/2021] [Indexed: 12/26/2022] Open
Abstract
To explore the relationships between Toll-like receptors (TLRs) and the activation and differentiation of T-cells in Takayasu’s arteritis (TAK), using real-time fluorescence quantitative polymerase chain reaction, mRNA abundance of 29 target genes in peripheral blood mononuclear cells (PBMCs) were detected from 27 TAK patients and 10 healthy controls. Compared with the healthy control group, the untreated TAK group and the treated TAK group had an increased mRNA level of TLR2 and TLR4. A sample-to-sample matrix revealed that 80% of healthy controls could be separated from the TAK patients. Correlation analysis showed that the inactive-treated TAK group exhibited a unique pattern of inverse correlations between the TLRs gene clusters (including TLR1/2/4/6/8, BCL6, TIGIT, NR4A1, etc) and the gene cluster associated with T-cell activation and differentiation (including TCR, CD28, T-bet, GATA3, FOXP3, CCL5, etc). The dynamic gene co-expression network indicated the TAK groups had more active communication between TLRs and T-cell activation than healthy controls. BCL6, CCL5, FOXP3, GATA3, CD28, T-bet, TIGIT, IκBα, and NR4A1 were likely to have a close functional relation with TLRs at the inactive stage. The co-expression of TLR4 and TLR6 could serve as a biomarker of disease activity in treated TAK (the area under curve/sensitivity/specificity, 0.919/100%/90.9%). The largest gene co-expression cluster of the inactive-treated TAK group was associated with TLR signaling pathways, while the largest gene co-expression cluster of the active-treated TAK group was associated with the activation and differentiation of T-cells. The miRNA sequencing of the plasma exosomes combining miRDB, DIANA-TarBase, and miRTarBase databases suggested that the miR-548 family miR-584, miR-3613, and miR-335 might play an important role in the cross-talk between TLRs and T-cells at the inactive stage. This study found a novel relation between TLRs and T-cell in the pathogenesis of autoimmune diseases, proposed a new concept of TLR-co-expression signature which might distinguish different disease activity of TAK, and highlighted the miRNA of exosomes in TLR signaling pathway in TAK.
Collapse
Affiliation(s)
- Yixiao Tian
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College, Peking Union Medical College Hospital (PUMCH), Beijing, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Beijing, China
- Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Biqing Huang
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College, Peking Union Medical College Hospital (PUMCH), Beijing, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Beijing, China
- Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Jing Li
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College, Peking Union Medical College Hospital (PUMCH), Beijing, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Beijing, China
- Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
- *Correspondence: Jing Li, ; Xiaofeng Zeng,
| | - Xinping Tian
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College, Peking Union Medical College Hospital (PUMCH), Beijing, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Beijing, China
- Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Xiaofeng Zeng
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College, Peking Union Medical College Hospital (PUMCH), Beijing, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Beijing, China
- Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
- *Correspondence: Jing Li, ; Xiaofeng Zeng,
| |
Collapse
|