1
|
Nguyen MT, Lee GJ, Kim B, Kim HJ, Tak J, Park MK, Kim EJ, Kang GJ, Rho SB, Lee H, Lee K, Kim SG, Lee CH. Penfluridol suppresses MYC-driven ANLN expression and liver cancer progression by disrupting the KEAP1-NRF2 interaction. Pharmacol Res 2024; 210:107512. [PMID: 39643070 DOI: 10.1016/j.phrs.2024.107512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 11/05/2024] [Accepted: 11/16/2024] [Indexed: 12/09/2024]
Abstract
Hepatocellular carcinoma (HCC) comprises the majority of primary liver cancers and possesses a low 5-year survival rate when in the advanced stages. Anillin (ANLN), a key player in cell growth and cytokinesis, is implicated in HCC development. Currently, no treatment agents are known to suppress ANLN. Analysis of The Cancer Genome Atlas data showed that high ANLN expression is associated with poor prognosis and survival in HCC patients. ANLN knockdown was shown to inhibit proliferation, cell cycle progression, and PD-L1 expression in liver cancer cells. The antipsychotic drug penfluridol was identified to suppress ANLN expression in the Connectivity Map analysis. Penfluridol downregulated ANLN at both the mRNA and protein levels, leading to G2/M cell cycle arrest and reduced colony formation in liver cancer cells. Mechanistically, penfluridol inhibited the transcription factor MYC from binding to an E-box motif in the ANLN promoter. This process was mediated by penfluridol-induced upregulation of NRF2, which competitively bound and sequestered MYC away from the ANLN promoter. Penfluridol inhibited the interaction between NRF2 and KEAP1, increasing NRF2. In a syngeneic mouse model, penfluridol suppressed liver tumour growth accompanied by increased NRF2 and decreased MYC and ANLN expression. These findings suggest penfluridol can be applied as the first ANLN blocker to modulate the MYC/NRF2/KEAP1 axis.
Collapse
Affiliation(s)
- Minh Tuan Nguyen
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Gi Jeong Lee
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Boram Kim
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Hyun Ji Kim
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Jihoon Tak
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Mi Kyung Park
- Department of Bio-Healthcare, Hwasung Medi-Science University, Hwaseong-si 18274, Republic of Korea
| | - Eun Ji Kim
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Gyeoung Jin Kang
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Seung Bae Rho
- National Cancer Center, Goyang 10408, Republic of Korea
| | - Ho Lee
- National Cancer Center, Goyang 10408, Republic of Korea
| | - Kyung Lee
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Sang Geon Kim
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Chang Hoon Lee
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea.
| |
Collapse
|
2
|
Liu H, Chen Y, Huang Y, Wei L, Ran J, Li Q, Tian Y, Luo Z, Yang L, Liu H, Yin G, Xie Q. Macrophage-derived mir-100-5p orchestrates synovial proliferation and inflammation in rheumatoid arthritis through mTOR signaling. J Nanobiotechnology 2024; 22:197. [PMID: 38644475 PMCID: PMC11034106 DOI: 10.1186/s12951-024-02444-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 03/28/2024] [Indexed: 04/23/2024] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a chronic autoimmune disorder characterized by synovial inflammation, causing substantial disability and reducing life quality. While macrophages are widely appreciated as a master regulator in the inflammatory response of RA, the precise mechanisms underlying the regulation of proliferation and inflammation in RA-derived fibroblast-like synoviocytes (RA-FLS) remain elusive. Here, we provide extensive evidence to demonstrate that macrophage contributes to RA microenvironment remodeling by extracellular vesicles (sEVs) and downstream miR-100-5p/ mammalian target of rapamycin (mTOR) axis. RESULTS We showed that bone marrow derived macrophage (BMDM) derived-sEVs (BMDM-sEVs) from collagen-induced arthritis (CIA) mice (cBMDM-sEVs) exhibited a notable increase in abundance compared with BMDM-sEVs from normal mice (nBMDM-sEVs). cBMDM-sEVs induced significant RA-FLS proliferation and potent inflammatory responses. Mechanistically, decreased levels of miR-100-5p were detected in cBMDM-sEVs compared with nBMDM-sEVs. miR-100-5p overexpression ameliorated RA-FLS proliferation and inflammation by targeting the mTOR pathway. Partial attenuation of the inflammatory effects induced by cBMDM-sEVs on RA-FLS was achieved through the introduction of an overexpression of miR-100-5p. CONCLUSIONS Our work reveals the critical role of macrophages in exacerbating RA by facilitating the transfer of miR-100-5p-deficient sEVs to RA-FLS, and sheds light on novel disease mechanisms and provides potential therapeutic targets for RA interventions.
Collapse
Affiliation(s)
- Huan Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuehong Chen
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yupeng Huang
- Department of General Practice, West China Hospital, General Practice Medical Center, Sichuan University, Chengdu, 610041, China
| | - Ling Wei
- Hospital of Chengdu Office of People's Government of Tibetan Autonomous region, Chengdu, 610041, China
| | - Jingjing Ran
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qianwei Li
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yunru Tian
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhongling Luo
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Leiyi Yang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hongjiang Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Geng Yin
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Department of General Practice, West China Hospital, General Practice Medical Center, Sichuan University, Chengdu, 610041, China.
| | - Qibing Xie
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
3
|
Wang X, Li Y, Pu X, Liu G, Qin H, Wan W, Wang Y, Zhu Y, Yang J. Macrophage-related therapeutic strategies: Regulation of phenotypic switching and construction of drug delivery systems. Pharmacol Res 2024; 199:107022. [PMID: 38043691 DOI: 10.1016/j.phrs.2023.107022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/05/2023]
Abstract
Macrophages, as highly phenotypic plastic immune cells, play diverse roles in different pathological conditions. Changing and controlling the phenotypes of macrophages is considered a novel potential therapeutic intervention. Meanwhile, specific transmembrane proteins anchoring on the surface of the macrophage membrane are relatively conserved, supporting its functional properties, such as inflammatory chemotaxis and tumor targeting. Thus, a series of drug delivery systems related to specific macrophage membrane proteins are commonly used to treat chronic inflammatory diseases. This review summarizes macrophages-based strategies for chronic diseases, discusses the regulation of macrophage phenotypes and their polarization processes, and presents how to design and apply the site-specific targeted drug delivery systems in vivo based on the macrophages and their derived membrane receptors. It aims to provide a better understanding of macrophages in immunoregulation and proposes macrophages-based targeted therapeutic approaches for chronic diseases.
Collapse
Affiliation(s)
- Xi Wang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Yixuan Li
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Xueyu Pu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Guiquan Liu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Honglin Qin
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Weimin Wan
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Yuying Wang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Yan Zhu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Jian Yang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
4
|
Li Q, Wu L, Cheng B, Tao S, Wang W, Luo Z, Fan J. Penfluroidol Attenuates the Imbalance of the Inflammatory Response by Repressing the Activation of the NLRP3 Inflammasome and Reduces Oxidative Stress via the Nrf2/HO-1 Signaling Pathway in LPS-Induced Macrophages. Mediators Inflamm 2023; 2023:9940858. [PMID: 37650025 PMCID: PMC10465250 DOI: 10.1155/2023/9940858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/20/2023] [Accepted: 08/08/2023] [Indexed: 09/01/2023] Open
Abstract
Objectives Excessive inflammatory responses and reactive oxygen species (ROS) formation play pivotal roles in the pathogenesis of sepsis. Penfluroidol (PF), an oral long-acting antipsychotic drug, has been suggested to possess diverse biological properties, including antischizophrenia, antitumour effect, and anti-inflammatory activity. The purpose of this research was to explore the anti-inflammatory and antioxidative effects of penfluroidol on lipopolysaccharide (LPS)-related macrophages. Methods The viability of RAW264.7 and THP-1 cells was measured by Enhanced Cell Counting Kit-8 (CCK-8). The production of nitric oxide was evaluated by the Nitric Oxide Assay Kit. The generation of pro-inflammatory monocytes was detected by qRT-PCR (quantitative real-time PCR) and ELISA (enzyme-linked immunosorbent assay). Oxidative stress was assessed by measuring ROS, malondialdehyde (MDA), and superoxide dismutase (SOD) activity. The protein expression of the Nrf2/HO-1/NLRP3 inflammasome was detected by western blotting. Results Our results indicated that no cytotoxic effect was observed when RAW264.7 and THP-1 cells were exposed to PF (0-1 μm) and/or LPS (1 μg/ml) for 24 hr. The data showed that LPS, which was repressed by PF, facilitated the generation of the pro-inflammatory molecules TNF-α and IL-6. In addition, LPS contributed to increased production of intracellular ROS compared with the control group, whereas the administration of PF effectively reduced LPS-related levels of ROS. Moreover, LPS induced the generation of MDA and suppressed the activities of SOD. However, PF treatment strongly decreased LPS-induced MDA levels and increased SOD activities in the RAW264.7 and THP-1 cells. Furthermore, our research confirmed that penfluroidol repressed the secretion of pro-inflammatory molecules by limiting the activation of the NLRP3 inflammasome and reducing oxidative effects via the Nrf2/HO-1 signaling pathway. Conclusion Penfluroidol attenuated the imbalance of the inflammatory response by suppressing the activation of the NLRP3 inflammasome and reduced oxidative stress via the Nrf2/HO-1 signaling pathway in LPS-induced macrophages.
Collapse
Affiliation(s)
- Qiulin Li
- Department of Emergency, Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Lidong Wu
- Department of Emergency, Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Bin Cheng
- Department of Emergency, Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Shaoyu Tao
- Department of Emergency, Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Wei Wang
- Department of Emergency, Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Zhiqiang Luo
- Department of Emergency, Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Jun Fan
- Department of Emergency, Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| |
Collapse
|
5
|
Chen M, Fu W, Xu H, Liu CJ. Tau deficiency inhibits classically activated macrophage polarization and protects against collagen-induced arthritis in mice. Arthritis Res Ther 2023; 25:146. [PMID: 37559125 PMCID: PMC10410869 DOI: 10.1186/s13075-023-03133-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/01/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND Tau protein serves a pro-inflammatory function in neuroinflammation. However, the role of tau in other inflammatory disorders such as rheumatoid arthritis (RA) is less explored. This study is to investigate the role of endogenous tau and the potential mechanisms in the pathogenesis of inflammatory arthritis. METHODS We established collagen-induced arthritis (CIA) model in wild-type and Tau-/- mice to compare the clinical score and arthritis incidence. Micro-CT analysis was used to evaluate bone erosion of ankle joints. Histological analysis was performed to assess inflammatory cell infiltration, cartilage damage, and osteoclast activity in the ankle joints. Serum levels of pro-inflammatory cytokines were measured by ELISA. The expression levels of macrophage markers were determined by immunohistochemistry staining and quantitative real-time PCR. RESULTS Tau expression was upregulated in joints under inflammatory condition. Tau deletion in mice exhibited milder inflammation and protected against the progression of CIA, evidenced by reduced serum levels of pro-inflammatory cytokines and attenuated bone loss, inflammatory cell infiltration, cartilage damage, and osteoclast activity in the ankle joints. Furthermore, tau deficiency led to the inhibition of classically activated type 1 (M1) macrophage polarization in the synovium. CONCLUSION Tau is a previously unrecognized critical regulator in the pathogenesis of RA and may provide a potential therapeutic target for autoimmune and inflammatory joint diseases.
Collapse
Affiliation(s)
- Meng Chen
- Department of Orthopaedic Surgery, New York University Grossman School of Medicine, New York, NY, USA
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Wenyu Fu
- Department of Orthopaedic Surgery, New York University Grossman School of Medicine, New York, NY, USA
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, USA
| | - Huiyun Xu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Chuan-Ju Liu
- Department of Orthopaedic Surgery, New York University Grossman School of Medicine, New York, NY, USA.
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, USA.
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|