1
|
McGrath S, Sundbeck B, Thorarinsdottir K, Jonsson CA, Camponeschi A, Agelii ML, Ekwall AKH, Hetland ML, Østergaard M, Uhlig T, Nurmohamed M, Lampa J, Nordström D, Hørslev-Petersen K, Gudbjornsson B, Gröndal G, van Vollenhoven R, Rudin A, Mårtensson IL, Gjertsson I. Transitional and CD21 - PD-1 + B cells are associated with remission in early rheumatoid arthritis. BMC Rheumatol 2025; 9:45. [PMID: 40259340 PMCID: PMC12010607 DOI: 10.1186/s41927-025-00487-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 03/18/2025] [Indexed: 04/23/2025] Open
Abstract
BACKGROUND Early initiation of effective treatment is associated with positive long-term prognosis for patients with rheumatoid arthritis (RA). Currently, there are no biomarkers in clinical use to predict treatment response. A predictor of treatment response may be the B-cell compartment, as this is altered in RA patients, making it a potential candidate for predicting treatment response. In this study, we sought to identify B-cell subset(s) at diagnosis that might be associated with Clinical Disease Activity Index (CDAI) remission at 24-week follow-up. METHODS Seventy early RA patients from the NORD-STAR trial, recruited from two Swedish sites, and 28 matched healthy controls, were included in this spin-off study. In NORD-STAR, all patients were randomized to methotrexate (MTX) combined with 1) prednisolone, 2) anti-TNF (certolizumab-pegol), 3) CTLA4-Ig (abatacept), or 4) anti-IL-6R (tocilizumab). Circulating B-cell subsets at diagnosis were assessed by flow cytometry. The primary outcome measure was remission according to CDAI ≤ 2.8. A multivariate two-part discriminant analysis was performed to assess whether B-cell subpopulations at diagnosis could predict remission at 24 weeks. Subsequent univariable statistical analyses were performed using t-tests, Mann-Whitney U, or Kruskal-Wallis tests, as appropriate. Correlations were analyzed using Spearman or Pearson tests, depending on data type. The impact of specific B-cell populations on remission at week 24 was assessed using logistic regression models. The logistic regression model was also used to simultaneously visualize the sensitivity and specificity of the model for all possible values of the exposure (B-cell subpopulations) in predicting the outcome. RESULTS Patients who achieved CDAI remission at 24 weeks had higher proportions of transitional (p < 0.01) and CD21- PD-1+ (p < 0.01) B cells at diagnosis compared to those who did not. When the two B-cell populations were combined, the sensitivity and specificity for remission, including all treatment arms, were 59% and 86%, respectively. Stratification of the patients by treatment arm revealed a significant negative correlation between the proportion of transitional B cells at baseline and disease activity after 24 weeks of treatment with either MTX and prednisolone or anti-IL-6R. CONCLUSIONS Our results indicate that transitional and CD21- PD-1+ B cells are associated with remission in early RA. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Sarah McGrath
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
| | - Boel Sundbeck
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden.
- Department of Rheumatology, Sahlgrenska University Hospital, Gothenburg, Sweden.
| | - Katrin Thorarinsdottir
- Center for Rheumatology Research, Department of Rheumatology, Landspitali University Hospital, Reykjavik, Iceland
| | - Charlotte A Jonsson
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
| | - Alessandro Camponeschi
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Monica Leu Agelii
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
| | - Anna-Karin H Ekwall
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
- Department of Rheumatology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Merete Lund Hetland
- Copenhagen Center for Arthritis Research (COPECARE), Center for Rheumatology and Spine Diseases, Centre for Head and Orthopaedics, Rigshospitalet, Glostrup, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mikkel Østergaard
- Copenhagen Center for Arthritis Research (COPECARE), Center for Rheumatology and Spine Diseases, Centre for Head and Orthopaedics, Rigshospitalet, Glostrup, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Till Uhlig
- Division of Rheumatology and Research, Diakonhjemmet Hospital, Oslo, Norway
- University of Oslo, Oslo, Norway
| | - Michael Nurmohamed
- Department of Rheumatology and Clinical Immunology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Amsterdam Rheumatology and Immunology Center, Reade, Amsterdam, The Netherlands
| | - Jon Lampa
- Division of Rheumatology, Department of Medicine, Center for Molecular Medicine (CMM), Karolinska Institute, Stockholm, Sweden
- Karolinska University Hospital, Stockholm, Sweden
| | - Dan Nordström
- Division of Medicine and Rheumatology, Helsinki University Hospital, Helsinki, Finland
| | - Kim Hørslev-Petersen
- Danish Hospital for Rheumatic Diseases, University Hospital of Southern Denmark, Sønderborg, Denmark
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Bjorn Gudbjornsson
- Center for Rheumatology Research, Department of Rheumatology, Landspitali University Hospital, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Gerdur Gröndal
- Center for Rheumatology Research, Department of Rheumatology, Landspitali University Hospital, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Ronald van Vollenhoven
- Department of Rheumatology and Clinical Immunology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Anna Rudin
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
- Department of Rheumatology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Inga-Lill Mårtensson
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
| | - Inger Gjertsson
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
- Department of Rheumatology, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
2
|
Xie G, Chen X, Gao Y, Yang M, Zhou S, Lu L, Wu H, Lu Q. Age-Associated B Cells in Autoimmune Diseases: Pathogenesis and Clinical Implications. Clin Rev Allergy Immunol 2025; 68:18. [PMID: 39960645 PMCID: PMC11832777 DOI: 10.1007/s12016-025-09021-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2025] [Indexed: 02/20/2025]
Abstract
As a heterogeneous B cell subset, age-associated B cells (ABCs) exhibit distinct transcription profiles, extrafollicular differentiation processes, and multiple functions in autoimmunity. TLR7 and TLR9 signals, along with IFN-γ and IL-21 stimulation, are both essential for ABC differentiation, which is also regulated by chemokine receptors including CXCR3 and CCR2 and integrins including CD11b and CD11c. Given their functions in antigen uptake and presentation, autoantibody and proinflammatory cytokine secretion, and T helper cell activation, ABCs display potential in the prognosis, diagnosis, and therapy for autoimmune diseases, including systemic lupus erythematosus, rheumatoid arthritis, Sjögren's syndrome, multiple sclerosis, neuromyelitis optica spectrum disorders, and ankylosing spondylitis. Specifically targeting ABCs by inhibiting T-bet and CD11c and activating CD11b and ARA2 represents potential therapeutic strategies for SLE and RA. Although single-cell sequencing technologies have recently revealed the heterogeneous characteristics of ABCs, further investigations to explore and validate ABC-target therapies are still warranted.
Collapse
Affiliation(s)
- Guangyang Xie
- Department of Dermatology, the Second Xiangya Hospital, Hunan Key Laboratory of Medical Epigenomics, Central South University, Changsha, Hunan, China
| | - Xiaojing Chen
- Department of Dermatology, the Second Xiangya Hospital, Hunan Key Laboratory of Medical Epigenomics, Central South University, Changsha, Hunan, China
| | - Yixia Gao
- Department of Dermatology, the Second Xiangya Hospital, Hunan Key Laboratory of Medical Epigenomics, Central South University, Changsha, Hunan, China
| | - Ming Yang
- Department of Dermatology, the Second Xiangya Hospital, Hunan Key Laboratory of Medical Epigenomics, Central South University, Changsha, Hunan, China
| | - Suqing Zhou
- Department of Dermatology, the Second Xiangya Hospital, Hunan Key Laboratory of Medical Epigenomics, Central South University, Changsha, Hunan, China
| | - Liwei Lu
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China.
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong, China.
| | - Haijing Wu
- Department of Dermatology, the Second Xiangya Hospital, Hunan Key Laboratory of Medical Epigenomics, Central South University, Changsha, Hunan, China.
- FuRong Laboratory, Changsha, China.
| | - Qianjin Lu
- Department of Dermatology, the Second Xiangya Hospital, Hunan Key Laboratory of Medical Epigenomics, Central South University, Changsha, Hunan, China.
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China.
| |
Collapse
|
3
|
de Vries C, Huang W, Sharma RK, Wangriatisak K, Turcinov S, Cîrciumaru A, Rönnblom L, Grönwall C, Hensvold A, Lundberg K, Malmström V. Rheumatoid Arthritis Related B-Cell Changes Are Found Already in the Risk-RA Phase. Eur J Immunol 2025; 55:e202451391. [PMID: 39931747 PMCID: PMC11811808 DOI: 10.1002/eji.202451391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 02/13/2025]
Abstract
Anti-cyclic citrullinated peptide2 (CCP2) antibody positivity in rheumatoid arthritis (RA) and in the predisease phase, together with the success of B-cell depletion, support a crucial role for B cells in RA pathogenesis. Yet, knowledge of B cells in the transition from autoimmunity to RA is limited, and therefore we here investigated B-cell changes during the risk-RA phase. B-cell phenotypes in 18 CCP2-positive risk-RA individuals with musculoskeletal complaints were studied, parallel with ten CCP2-positive RA patients and nine healthy controls. Nine of the risk-RA individuals progressed to RA. B-cell phenotypes were investigated using spectral flow cytometry. The results demonstrate that unswitched and switched memory B-cell frequencies in the risk-RA cohort were more similar to controls than RA patients. Yet, risk-RA progressors displayed an early activation profile amongst naïve B cells. Deeper characterization of the memory compartment revealed expansion of CD27-negative IgG+ B cells both in RA compared with controls (p = 0.0172) and in risk-RA progressors versus non-progressors (p = 0.0295). Overall, we demonstrate that the phenotypic distribution of B cells is altered in the risk-RA phase. This includes changes in CD27-negative class-switched B cells, which have been attributed to autoreactive and anergic features implicating a possible contribution to RA development.
Collapse
Affiliation(s)
- Charlotte de Vries
- Division of RheumatologyDepartment of Medicine SolnaKarolinska Institutet and Center for Molecular MedicineKarolinska University HospitalStockholmSweden
| | - Wenqi Huang
- Division of RheumatologyDepartment of Medicine SolnaKarolinska Institutet and Center for Molecular MedicineKarolinska University HospitalStockholmSweden
| | - Ravi Kumar Sharma
- Division of RheumatologyDepartment of Medicine SolnaKarolinska Institutet and Center for Molecular MedicineKarolinska University HospitalStockholmSweden
| | - Kittikorn Wangriatisak
- Division of RheumatologyDepartment of Medicine SolnaKarolinska Institutet and Center for Molecular MedicineKarolinska University HospitalStockholmSweden
| | - Sara Turcinov
- Division of RheumatologyDepartment of Medicine SolnaKarolinska Institutet and Center for Molecular MedicineKarolinska University HospitalStockholmSweden
| | - Alexandra Cîrciumaru
- Division of RheumatologyDepartment of Medicine SolnaKarolinska Institutet and Center for Molecular MedicineKarolinska University HospitalStockholmSweden
- Center for RheumatologyAcademic Specialist Center, Stockholm Health ServicesRegion StockholmSweden
| | - Lars Rönnblom
- Department of Medical SciencesRheumatology, Science for Life LaboratoryUppsalaSweden
| | - Caroline Grönwall
- Division of RheumatologyDepartment of Medicine SolnaKarolinska Institutet and Center for Molecular MedicineKarolinska University HospitalStockholmSweden
| | - Aase Hensvold
- Division of RheumatologyDepartment of Medicine SolnaKarolinska Institutet and Center for Molecular MedicineKarolinska University HospitalStockholmSweden
- Center for RheumatologyAcademic Specialist Center, Stockholm Health ServicesRegion StockholmSweden
| | - Karin Lundberg
- Division of RheumatologyDepartment of Medicine SolnaKarolinska Institutet and Center for Molecular MedicineKarolinska University HospitalStockholmSweden
| | - Vivianne Malmström
- Division of RheumatologyDepartment of Medicine SolnaKarolinska Institutet and Center for Molecular MedicineKarolinska University HospitalStockholmSweden
| |
Collapse
|
4
|
McGrath S, Grimstad K, Thorarinsdottir K, Forslind K, Glinatsi D, Leu Agelii M, Aranburu A, Sundell T, Jonsson CA, Camponeschi A, Hultgård Ekwall AK, Tilevik A, Gjertsson I, Mårtensson IL. Correlation of Professional Antigen-Presenting Tbet +CD11c + B Cells With Bone Destruction in Untreated Rheumatoid Arthritis. Arthritis Rheumatol 2024; 76:1263-1277. [PMID: 38570939 DOI: 10.1002/art.42857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/09/2024] [Accepted: 04/01/2024] [Indexed: 04/05/2024]
Abstract
OBJECTIVE Subsets of CD21-/low memory B cells (MBCs), including double-negative (DN, CD27-IgD-) and Tbet+CD11c+ cells, are expanded in chronic inflammatory diseases. In rheumatoid arthritis (RA), CD21-/low MBCs correlate with joint destruction. However, whether this is due to the Tbet+CD11c+ subset, its function and pathogenic contribution to RA are unknown. This study aims to investigate the association between CD21-/lowTbet+CD11c+ MBCs and joint destruction as well as other clinical parameters and to elucidate their functional properties in patients with untreated RA (uRA). METHODS Clinical observations were combined with flow cytometry (n = 36) and single-cell RNA sequencing (scRNA-seq) and V(D)J sequencing (n = 4) of peripheral blood (PB) MBCs from patients with uRA. The transcriptome of circulating Tbet+CD11c+ MBCs was compared with scRNA-seq data of synovial B cells. In vitro coculture of Tbet+CD11c+ B cells with T cells was used to assess costimulatory capacity. RESULTS CD21-/lowTbet+CD11c+ MBCs in PB correlated with bone destruction but no other clinical parameters analyzed. The Tbet+CD11c+ MBCs have undergone clonal expansion and express somatically mutated V genes. Gene expression analysis of these cells identified a unique signature of more than 150 up-regulated genes associated with antigen presentation functions, including B cell receptor activation and clathrin-mediated antigen internalization; regulation of actin filaments, endosomes, and lysosomes; antigen processing, loading, presentation, and costimulation; a transcriptome mirrored in their synovial tissue counterparts. In vitro, Tbet+CD11c+ B cells induced retinoic acid receptor-related orphan nuclear receptor γT expression in CD4+ T cells, thereby polarizing to Th17 cells, a T cell subset critical for osteoclastogenesis and associated with bone destruction. CONCLUSION This study suggests that Tbet+CD11c+ MBCs contribute to the pathogenesis of RA by promoting bone destruction through antigen presentation, T cell activation, and Th17 polarization.
Collapse
Affiliation(s)
- Sarah McGrath
- Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kristoffer Grimstad
- Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden, and School of Bioscience, University of Skövde, Skövde, Sweden
| | - Katrin Thorarinsdottir
- Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kristina Forslind
- Lund University, Lund, Sweden, and Spenshult Research and Development Centre, Halmstad, Sweden
| | | | - Monica Leu Agelii
- Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Alaitz Aranburu
- Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Timothy Sundell
- Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Charlotte A Jonsson
- Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Alessandro Camponeschi
- Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna-Karin Hultgård Ekwall
- Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden, and Sahlgrenska University Hospital, Gothenburg, Sweden
| | | | - Inger Gjertsson
- Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden, and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Inga-Lill Mårtensson
- Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|