1
|
A role of gut-microbiota-brain axis via subdiaphragmatic vagus nerve in depression-like phenotypes in Chrna7 knock-out mice. Prog Neuropsychopharmacol Biol Psychiatry 2023; 120:110652. [PMID: 36191806 DOI: 10.1016/j.pnpbp.2022.110652] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/21/2022]
Abstract
The α7 subtype of the nicotinic acetylcholine receptor (α7 nAChR: coded by Chrna7) is known to regulate the cholinergic ascending anti-inflammatory pathway. We previously reported that Chrna7 knock-out (KO) mice show depression-like behaviors through abnormal composition of gut microbiota and systemic inflammation. Given the role of subdiaphragmatic vagus nerve in gut-microbiota-brain axis, we investigated whether subdiaphragmatic vagotomy (SDV) could affect depression-like behaviors, abnormal composition of gut microbiota, and microbes-derived metabolites in Chrna7 KO mice. SDV blocked depression-like behaviors and reduced expression of synaptic proteins in the medial prefrontal cortex (mPFC) of Chrna7 KO mice. LEfSe (linear discriminant analysis effect size) analysis revealed that the species Lactobacillus sp. BL302, the species Lactobacillus hominis, and the species Lactobacillus reuteri, were identified as potential microbial markers in the KO + SDV group. There were several genus and species altered among the three groups [wild-type (WT) + sham group, KO + sham group, KO + SDV group]. Furthermore, there were several plasma metabolites altered among the three groups. Moreover, there were correlations between relative abundance of several microbiome and behavioral data (or synaptic proteins). Network analysis showed correlations between relative abundance of several microbiome and plasma metabolites (or behavioral data). These data suggest that Chrna7 KO mice produce depression-like behaviors and reduced expression of synaptic proteins in the mPFC through gut-microbiota-brain axis via subdiaphragmatic vagus nerve.
Collapse
|
2
|
Wang CH, Yu C, Zhuang L, Xu F, Zhao LH, Wang XH, Ning LY, Zhang XL, Zhang DM, Wang XQ, Su JB. High-normal serum carcinoembryonic antigen levels and increased risk of diabetic peripheral neuropathy in type 2 diabetes. Diabetol Metab Syndr 2022; 14:142. [PMID: 36167619 PMCID: PMC9514694 DOI: 10.1186/s13098-022-00909-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Increased serum carcinoembryonic antigen (CEA) levels are reported to be associated with various metabolic and inflammatory diseases. This study assessed whether high-normal serum CEA is related to diabetic peripheral neuropathy (DPN) in patients with type 2 diabetes (T2D). METHODS All subjects received DPN assessment based on neuropathic symptoms, neuropathic signs, and nerve conduction studies to calculate composite Z scores of nerve latency, amplitude and conduction velocity (NCV). DPN was confirmed by both at least a presentation of neuropathic symptoms/signs and an abnormal nerve conduction index. Serum CEA levels and other clinical indices were also synchronously detected. Multivariable linear regression analyses were used to determine the independent effects of serum CEA levels on nerve conduction indices, multivariable logistic regression analyses were used to determine the independent impact of CEA levels on the risk of DPN, and receiver operating characteristic (ROC) curve analysis was used to assess the diagnostic capability of CEA levels to discriminate DPN. RESULTS We ultimately recruited 402 eligible subjects with normal ranges of serum CEA for this study, and 25.4% (n = 102) were determined to have DPN. After adjusting for other clinical covariates, serum CEA levels were independently associated with the composite Z score for latency (β = 0.132, t = 2.330, p = 0.021), amplitude (β = - 0.164, t = - 2.838, p = 0.005) and NCV (β = - 0.210, t = - 3.662, p < 0.001). Moreover, the prevalence of DPN in the first, second, third and fourth quartiles of CEA level was 12.9%, 19.0%, 29.4% and 40.4%, respectively (p for trend < 0.001); the corresponding adjusted odds ratios and 95% CIs for DPN in CEA quartiles were 1, 1.47 (0.45-4.82), 1.72 (0.54-5.53) and 4.58 (1.39-15.06), respectively. Furthermore, the optimal cut-off value of high-normal serum CEA to discriminate DPN was ≥ 2.66 ng/mL, with a Youden index of 0.28, sensitivity of 66.67% and specificity of 61.00%. CONCLUSIONS Increased serum CEA levels within the normal range are closely linked to dysfunction of peripheral nerve conduction and the risk of DPN, and high-normal serum CEA levels are a potential risk factor for DPN in T2D.
Collapse
Affiliation(s)
- Chun-Hua Wang
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University, First People's Hospital of Nantong City, No. 6 Haierxiang North Road, Nantong, 226001, China
| | - Chao Yu
- Department of Clinical Laboratory, Affiliated Hospital 2 of Nantong University, First People's Hospital of Nantong City, No. 6 Haierxiang North Road, Nantong, 226001, China
| | - Lei Zhuang
- Department of Endocrinology, Second People's Hospital of Nantong City, No. 43 Xinglong Street, Nantong, 226002, China
| | - Feng Xu
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University, First People's Hospital of Nantong City, No. 6 Haierxiang North Road, Nantong, 226001, China
| | - Li-Hua Zhao
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University, First People's Hospital of Nantong City, No. 6 Haierxiang North Road, Nantong, 226001, China
| | - Xiao-Hua Wang
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University, First People's Hospital of Nantong City, No. 6 Haierxiang North Road, Nantong, 226001, China
| | - Li-Yan Ning
- Department of Administration, Affiliated Hospital 2 of Nantong University, First People's Hospital of Nantong City, No. 6, Haierxiang North Road, Nantong, 226001, China
| | - Xiu-Lin Zhang
- Department of Clinical Laboratory, Affiliated Hospital 2 of Nantong University, First People's Hospital of Nantong City, No. 6 Haierxiang North Road, Nantong, 226001, China
| | - Dong-Mei Zhang
- Medical Research Center, Affiliated Hospital 2 of Nantong University, First People's Hospital of Nantong City, No. 6, Haierxiang North Road, Nantong, 226001, China
| | - Xue-Qin Wang
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University, First People's Hospital of Nantong City, No. 6 Haierxiang North Road, Nantong, 226001, China
| | - Jian-Bin Su
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University, First People's Hospital of Nantong City, No. 6 Haierxiang North Road, Nantong, 226001, China.
| |
Collapse
|
3
|
Zhuang L, Yu C, Xu F, Zhao LH, Wang XH, Wang CH, Ning LY, Zhang XL, Zhang DM, Wang XQ, Su JB. Increased plasma D-dimer levels may be a promising indicator for diabetic peripheral neuropathy in type 2 diabetes. Front Endocrinol (Lausanne) 2022; 13:930271. [PMID: 36082076 PMCID: PMC9445160 DOI: 10.3389/fendo.2022.930271] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Increased plasma D-dimer levels have been reported to be associated with a range of adverse health outcomes. This study aimed to determine whether plasma D-dimer is connected to diabetic peripheral neuropathy (DPN) in patients with type 2 diabetes (T2D). METHODS This study was part of a series exploring the potential risks for DPN. All patients were questioned for neurologic symptoms, examined for neurologic signs, and received nerve conduction studies to collect nerve action potential onset latency, amplitude, and nerve conduction velocity (NCV). Composite Z scores of latency, amplitude, and NCV were calculated. DPN was confirmed as both at least a neurologic symptom/sign and an abnormality of nerve conduction studies. Coagulation function indices, such as plasma D-dimer levels, were also synchronously detected. RESULTS We finally recruited 393 eligible patients for this study, of whom 24.7% (n = 97) were determined to have DPN. The plasma D-dimer level was found to be closely associated with the composite Z score of latency, amplitude, and NCV after adjusting for other coagulation function indices and clinical covariates (latency: β = 0.134, t = 2.299, p = 0.022; amplitude: β = -0.138, t = -2.286, p = 0.023; NCV: β = -0.139, t = -2.433, p = 0.016). Moreover, the prevalence of DPN in the first, second, third, and fourth quartiles (Q1, Q2, Q3, and Q4) of the D-dimer level was 15.2%, 15.9%, 26.4%, and 42.7%, respectively (p for trend < 0.001). The corresponding adjusted odds ratios and 95% CIs for DPN in D-dimer quartiles were 1, 0.79 (0.21-2.99), 1.75 (0.49-6.26), and 5.17 (1.38-19.42), respectively. Furthermore, the optimal cutoff value of the plasma D-dimer level to discriminate DPN was ≥0.22 mg/L (sensitivity = 67.01%, specificity = 58.78%, and Youden index = 0.26) after analysis by the receiver operating characteristic curve. CONCLUSIONS Increased plasma D-dimer levels may be a promising indicator for DPN in patients with T2D.
Collapse
Affiliation(s)
- Lei Zhuang
- Department of Endocrinology, Second People's Hospital of Nantong City, Nantong, China
| | - Chao Yu
- Department of Clinical Laboratory, Affiliated Hospital 2 of Nantong University, and First People's Hospital of Nantong City, Nantong, China
| | - Feng Xu
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University, and First People's Hospital of Nantong City, Nantong, China
| | - Li-Hua Zhao
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University, and First People's Hospital of Nantong City, Nantong, China
| | - Xiao-Hua Wang
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University, and First People's Hospital of Nantong City, Nantong, China
| | - Chun-Hua Wang
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University, and First People's Hospital of Nantong City, Nantong, China
| | - Li-Yan Ning
- Department of Administration, Affiliated Hospital 2 of Nantong University, and First People's Hospital of Nantong City, Nantong, China
| | - Xiu-Lin Zhang
- Department of Clinical Laboratory, Affiliated Hospital 2 of Nantong University, and First People's Hospital of Nantong City, Nantong, China
| | - Dong-Mei Zhang
- Medical Research Center, Affiliated Hospital 2 of Nantong University, and First People's Hospital of Nantong City, Nantong, China
| | - Xue-Qin Wang
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University, and First People's Hospital of Nantong City, Nantong, China
| | - Jian-Bin Su
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University, and First People's Hospital of Nantong City, Nantong, China
| |
Collapse
|
4
|
Yu C, Zhuang L, Xu F, Zhao LH, Wang XH, Wang CH, Ning LY, Zhang XL, Zhang DM, Wang XQ, Su JB. Increased levels of serum adenosine deaminase and increased risk of diabetic peripheral neuropathy in type 2 diabetes. Front Endocrinol (Lausanne) 2022; 13:997672. [PMID: 36267565 PMCID: PMC9576868 DOI: 10.3389/fendo.2022.997672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/20/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Increased serum adenosine deaminase (ADA) levels have been shown to be involved in metabolic abnormalities and immune disequilibrium, which may in turn contribute to inflammatory diseases. This study aimed to determine whether increased serum ADA levels are related to diabetic peripheral neuropathy (DPN) in patients with type 2 diabetes (T2D). METHODS This study was part of a series exploring the potential risks for DPN. All patients received DPN assessment based on neuropathic symptoms, neuropathic signs, and nerve conduction studies to calculate the composite Z score of nerve latency, amplitude and conduction velocity (NCV). DPN was confirmed by both at least a presentation of neuropathic symptoms/signs and an abnormal nerve conduction index. Serum ADA levels were also synchronously detected. RESULTS A total of 384 eligible patients with T2D were recruited for this study, and 24.5% (n=94) were determined to have DPN. Increases in serum ADA levels were closely associated with increases in composite Z score of latency (β=0.263, t=5.273, p<0.001) and decreases in composite Z score of amplitude (β=-0.126, t=-2.352, p=0.019) and NCV (β=-0.201, t=-3.841, p<0.001) after adjusting for other clinical covariates. Moreover, each 5 U/L increase in serum ADA levels was associated with a 1.781-fold increased adjusted odds ratio of having DPN (95% confidence interval: 1.271-2.495). Furthermore, the optimal cut-off value of serum ADA levels to discriminate DPN was ≥14.2 U/L (sensitivity=59.57%, specificity=75.52% and Youden index=0.351) after analysis by receiver operating characteristic curve. CONCLUSIONS Increased serum ADA levels may be a potential risk factor for DPN in patients with T2D.
Collapse
Affiliation(s)
- Chao Yu
- Department of Clinical Laboratory, Affiliated Hospital 2 of Nantong University, First People’s Hospital of Nantong City, Nantong, China
| | - Lei Zhuang
- Department of Endocrinology, Second People’s Hospital of Nantong City, Nantong, China
| | - Feng Xu
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University, First People’s Hospital of Nantong City, Nantong, China
| | - Li-hua Zhao
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University, First People’s Hospital of Nantong City, Nantong, China
| | - Xiao-hua Wang
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University, First People’s Hospital of Nantong City, Nantong, China
| | - Chun-hua Wang
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University, First People’s Hospital of Nantong City, Nantong, China
| | - Li-yan Ning
- Department of Administration, Affiliated Hospital 2 of Nantong University, First People’s Hospital of Nantong City, Nantong, China
| | - Xiu-lin Zhang
- Department of Clinical Laboratory, Affiliated Hospital 2 of Nantong University, First People’s Hospital of Nantong City, Nantong, China
| | - Dong-mei Zhang
- Medical Research Center, Affiliated Hospital 2 of Nantong University, First People’s Hospital of Nantong City, Nantong, China
| | - Xue-qin Wang
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University, First People’s Hospital of Nantong City, Nantong, China
| | - Jian-bin Su
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University, First People’s Hospital of Nantong City, Nantong, China
- *Correspondence: Jian-bin Su, ;
| |
Collapse
|