1
|
Pletsch EA, Dawson HD, Cheung L, Ragonese JS, Chen CT, Smith AD. A type 4 resistant potato starch alters the cecal microbiome, gene expression and resistance to colitis in mice fed a Western diet based on NHANES data. Food Funct 2025; 16:3439-3464. [PMID: 40207550 DOI: 10.1039/d4fo04697h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Four major types of resistant starch (RS1-4) are present in foods and can be fermented to produce short-chain fatty acids (SCFAs), alter the microbiome and modulate post-prandial glucose metabolism. While studies in rodents have examined the effects of RS4 consumption on the microbiome, fewer have examined its effect on gene expression in the cecum or colon or resistance to bacterial-induced colitis, and those that have, use diets that do not reflect what is typically consumed by humans. Here we fed mice a Total Western Diet (TWD), based on National Health and Nutrition Examination Survey (NHANES) data for 6-7 weeks and then supplemented their diet with 0, 2, 5, or 10% of the RS4, Versafibe 1490™ (VF), a phosphorylated and cross-linked potato starch. After three weeks, mice were infected with Citrobacter rodentium (Cr) to induce colitis. Infected mice fed the 10% VF diet had the highest levels of Cr fecal excretion at days 4, 7 and 11 post-infection. Infected mice fed the 5% and 10%VF diets had increased hyperplasia and colonic damage compared with the control. Changes in bacterial genera relative abundance, and alpha and beta diversity due to diet were most evident in mice fed 10% VF. Cr infection also resulted in specific changes to the microbiome and gene expression both in the cecum and the colon compared with diet alone, including the expression of multiple antimicrobial genes, Reg3b, Reg3g, NOS2 and Ifng. These results demonstrate that VF, a RS4, alters cecal and colonic gene expression, the microbiome composition and resistance to bacterial-induced colitis.
Collapse
Affiliation(s)
- Elizabeth A Pletsch
- Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Rm. 228, Bldg. 307C, BARC-East, 10300 Baltimore Ave., Beltsville, MD, 20705, USA.
| | - Harry D Dawson
- Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Rm. 228, Bldg. 307C, BARC-East, 10300 Baltimore Ave., Beltsville, MD, 20705, USA.
| | - Lumei Cheung
- Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Rm. 228, Bldg. 307C, BARC-East, 10300 Baltimore Ave., Beltsville, MD, 20705, USA.
| | - Jack S Ragonese
- Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Rm. 228, Bldg. 307C, BARC-East, 10300 Baltimore Ave., Beltsville, MD, 20705, USA.
| | - Celine T Chen
- Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Rm. 228, Bldg. 307C, BARC-East, 10300 Baltimore Ave., Beltsville, MD, 20705, USA.
| | - Allen D Smith
- Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Rm. 228, Bldg. 307C, BARC-East, 10300 Baltimore Ave., Beltsville, MD, 20705, USA.
| |
Collapse
|
2
|
Yang B, Yang J, Chen R, Chai J, Wei X, Zhao J, Zhao Y, Deng F, Li Y. Metagenome-Assembled Genomes of Pig Fecal Samples in Nine European Countries: Insights into Antibiotic Resistance Genes and Viruses. Microorganisms 2024; 12:2409. [PMID: 39770612 PMCID: PMC11676251 DOI: 10.3390/microorganisms12122409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/14/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025] Open
Abstract
Gut microbiota plays a crucial role in the health and productivity of pigs. However, the spread of antibiotic resistance genes (ARGs) and viruses within the pig intestinal microbiota poses significant threats to animal and public health. This study utilized 181 pig samples from nine European countries and employed metagenomic assembly methods to investigate the dynamics and distribution of ARGs and viruses within the pig intestinal microbiota, aiming to observing their associations with potential bacterial hosts. We identified 4605 metagenome-assembled genomes (MAGs), corresponding to 19 bacterial phyla, 97 families, 309 genera, and a total of 449 species. Additionally, 44 MAGs were classified as archaea. Analysis of ARGs revealed 276 ARG types across 21 ARG classes, with Glycopeptide being the most abundant ARG class, followed by the class of Multidrug. Treponema D sp016293915 was identified as a primary potential bacterial host for Glycopeptide. Aligning nucleotide sequences with a viral database, we identified 1044 viruses. Among the viral genome families, Peduoviridae and Intestiviridae were the most prevalent, with CAG-914 sp000437895 being the most common potential host species for both. These findings highlight the importance of MAGs in enhancing our understanding of the gut microbiome, revealing microbial diversity, antibiotic resistance, and virus-bacteria interactions. The data analysis for the article was based on the public dataset PRJEB22062 in the European Nucleotide Archive.
Collapse
Affiliation(s)
- Boxuan Yang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Foshan University, Foshan 528225, China; (B.Y.); (J.Y.); (R.C.); (J.C.)
- School of Animal Science and Technology, Foshan University, Foshan 528225, China
| | - Jianbo Yang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Foshan University, Foshan 528225, China; (B.Y.); (J.Y.); (R.C.); (J.C.)
- School of Animal Science and Technology, Foshan University, Foshan 528225, China
| | - Routing Chen
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Foshan University, Foshan 528225, China; (B.Y.); (J.Y.); (R.C.); (J.C.)
- School of Animal Science and Technology, Foshan University, Foshan 528225, China
| | - Jianmin Chai
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Foshan University, Foshan 528225, China; (B.Y.); (J.Y.); (R.C.); (J.C.)
- School of Animal Science and Technology, Foshan University, Foshan 528225, China
| | - Xiaoyuan Wei
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR 72701, USA; (X.W.); (J.Z.)
| | - Jiangchao Zhao
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR 72701, USA; (X.W.); (J.Z.)
| | - Yunxiang Zhao
- College of Animal Science & Technology, Guangxi University, Nanning 530004, China;
| | - Feilong Deng
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Foshan University, Foshan 528225, China; (B.Y.); (J.Y.); (R.C.); (J.C.)
- School of Animal Science and Technology, Foshan University, Foshan 528225, China
| | - Ying Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Foshan University, Foshan 528225, China; (B.Y.); (J.Y.); (R.C.); (J.C.)
- School of Animal Science and Technology, Foshan University, Foshan 528225, China
| |
Collapse
|
3
|
Li S, Liu W, Li Y, Che X, Xiao P, Liu S, Ma Y, Ren D, Wu L, Wang Q, He Y. Extraction, purification, structural characterization and anti-hyperlipidemia activity of fucoidan from Laminaria digitata. Int J Biol Macromol 2024; 279:135223. [PMID: 39241999 DOI: 10.1016/j.ijbiomac.2024.135223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/05/2024] [Accepted: 08/29/2024] [Indexed: 09/09/2024]
Abstract
Laminaria digitata is a high-quality seaweed resource that is widely cultured and has good application prospects. In this study, Laminaria digitata fucoidan (LF) was extracted from Laminaria digitata, and purified using DEAE-Sepharose Fast Flow gel column to obtain four different grades. Among those, LF4 (Mw:165 kDa), mainly composed of fucose(56.80 %), had the highest total sugar (66.91 %) and sulfate (17.07 %) content. FT-RT and NMR results showed that LF4 was mainly composed of galactosylated galactofucose, and has a sulfate group attached to fucose C4. With the animal experimentation, it was revealed that hyperlipidaemic mice had significantly higher levels of TC (5.52 mmol/L), TG (2.28 mmol/L) and LDL-C (5.12 mmol/L) and significantly lower levels of HDL-C (2 mmol/L). However, LF had the efficacy in modulating the lipid metabolism disturbances induced by hyperlipidemia, as well as the ability to regulate cholesterol transport in serum. Moreover, it regulated AMPK/ACC, PPAR-α/LAXRa, Nrf2/Nqo1, TLR4/NF-κB signaling pathway genes and proteins expression in the liver. In addition, it promoted the production of beneficial short-chain fatty acids (SCFAs) while improving the composition and structure of gut microbiota, including balancing the abundance of Bacteroidota, Firmicutes, Muribaculaceae, Alloprevotella, Escherichia-Shigella, Prevotella and NK4A136. The results clearly indicated that LF4 could significantly ameliorate hyperlipidemia, suggesting its prospective application as a functional food.
Collapse
Affiliation(s)
- Shangkun Li
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116000, China; Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China; National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Wen Liu
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116000, China; Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China; National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Yutong Li
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116000, China; Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China; National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Xinyi Che
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116000, China; Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China; National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Peng Xiao
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116000, China; Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China; National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Shu Liu
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116000, China; Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China; National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Yichao Ma
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116000, China; Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China; National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Dandan Ren
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116000, China; Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China; National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Long Wu
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116000, China; Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China; National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Qiukuan Wang
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116000, China; Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China; National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Yunhai He
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116000, China; Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China; National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China.
| |
Collapse
|
4
|
Wang L, Long S, Zeng Q, Dong W, Li Y, Su J, Chen Y, Zhou G. Staphylea bumalda Alleviates Dextran Sulfate Sodium-Induced Ulcerative Colitis in Mice by Regulating Inflammatory Cytokines, Oxidative Stress, and Maintaining Gut Homeostasis. Molecules 2024; 29:5030. [PMID: 39519671 PMCID: PMC11547842 DOI: 10.3390/molecules29215030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Staphylea bumalda is a rare medicine and edible shrub native to the temperate regions of Asia, possessing significant medicinal potential. In this study, the components of S. bumalda tender leaves and buds extract (SBE) were analyzed and identified by HPLC and LC/MS method, and the safety of SBE was evaluated through mouse acute toxicity models. The protective effects of SBE on dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) in mice were investigated in terms of inflammatory factor levels, oxidative stress, and gut microorganisms. Results showed that hyperoside, kaempferol-3-O-rutinoside, isorhoifolin, and rutin were the main components of the extract, and SBE demonstrated good safety in experimental mice. SBE could alleviate weight losing, disease activity index (DAI) raising, and colon shortening in mice. Pathological section results showed that the inflammatory cell infiltration decreased significantly, and the number of goblet cells increased significantly in the SBE group. After SBE treatment, interleukin-6 (IL-6), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) levels in serum were significantly decreased, and the levels of myeloperoxidase (MPO) and nitric oxide (NO) in colon tissues were significantly decreased. SBE inhibited gut inflammation by increasing Lactobacillus. In summary, SBE played a therapeutic role in UC mice by relieving colon injury, reducing inflammatory factor levels, and maintaining gut flora homeostasis. SBE is expected to become an auxiliary means to participate in the prevention and treatment of UC.
Collapse
Affiliation(s)
- Lu Wang
- Hubei Key Laboratory of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China; (L.W.); (S.L.); (Q.Z.); (W.D.); (Y.L.); (J.S.); (Y.C.)
| | - Sha Long
- Hubei Key Laboratory of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China; (L.W.); (S.L.); (Q.Z.); (W.D.); (Y.L.); (J.S.); (Y.C.)
| | - Qi Zeng
- Hubei Key Laboratory of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China; (L.W.); (S.L.); (Q.Z.); (W.D.); (Y.L.); (J.S.); (Y.C.)
| | - Wanrong Dong
- Hubei Key Laboratory of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China; (L.W.); (S.L.); (Q.Z.); (W.D.); (Y.L.); (J.S.); (Y.C.)
| | - Yaoyao Li
- Hubei Key Laboratory of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China; (L.W.); (S.L.); (Q.Z.); (W.D.); (Y.L.); (J.S.); (Y.C.)
| | - Jiangtao Su
- Hubei Key Laboratory of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China; (L.W.); (S.L.); (Q.Z.); (W.D.); (Y.L.); (J.S.); (Y.C.)
| | - Yuxin Chen
- Hubei Key Laboratory of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China; (L.W.); (S.L.); (Q.Z.); (W.D.); (Y.L.); (J.S.); (Y.C.)
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Gao Zhou
- Hubei Key Laboratory of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China; (L.W.); (S.L.); (Q.Z.); (W.D.); (Y.L.); (J.S.); (Y.C.)
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
- Post-Doctoral Research Center of Mayinglong Pharmaceutical Group Co., Ltd., Wuhan 430064, China
| |
Collapse
|
5
|
Luo K, Zeng W, Li Q, Zhang Y, Liu S, Liu X, Liu S. Causal effects of specific gut microbiota on spinal stenosis diseases: a two-sample mendelian randomization study. Front Genet 2024; 15:1400847. [PMID: 39399222 PMCID: PMC11467959 DOI: 10.3389/fgene.2024.1400847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 09/16/2024] [Indexed: 10/15/2024] Open
Abstract
Background Although recent observational studies and clinical trials have indicated a strong association between the gut microbiota and spinal stenosis diseases, the causal relationship between them remains unclear. Methods Based on large-scale genome-wide association studies, we employed two-sample Mendelian randomization (MR) to analyse the causal relationships between the gut microbiota (GM) and 3 spinal stenosis diseases: adolescent idiopathic scoliosis (AIS), lumbar spondylolisthesis (LS), and spinal stenosis (SS). MR analysis was performed using the inverse variance weighting (IVW) method as the primary approach, supplemented by MR‒Egger regression, weighted median, and weighted mode analyses. MR-PRESSO and MR‒Egger regression were employed to assess horizontal pleiotropy. Cochran's Q test was used to evaluate heterogeneity. Further leave-one-out sensitivity analysis was conducted to ascertain the reliability of the causal relationships. Results The IVW method identified 9 gut microbiota taxa (9 genera) that were causally related to AIS, 14 taxa (4 phyla, 2 classes, 2 orders, 1 family, and 5 genera) to LS, and 4 taxa (2 classes, 1 order, and 1 genus) to SS. The Cochrane Q test results did not indicate heterogeneity. Moreover, both the MR‒Egger intercept test and the MR-PRESSO global test demonstrated that our findings were robust against potential horizontal pleiotropy. Furthermore, leave-one-out analysis provided additional evidence supporting the reliability of our identified causal relationships. Conclusion Our findings have substantiated the potential causal impact of specific GM taxa on AIS, LS, and SS, thereby offering novel insights into the mechanisms mediated by the gut microbiota in these three diseases and laying the foundation for targeted preventive measures in further research.
Collapse
Affiliation(s)
- Kaihang Luo
- Department of Spinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Weizheng Zeng
- Department of Spinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qiushuang Li
- Department of Spinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuliang Zhang
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, Guangzhou, China
| | - Shengkai Liu
- Department of Spinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xizhe Liu
- Department of Spinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shaoyu Liu
- Department of Spinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
6
|
Gura KM, Chan A, Zong W, Pai N, Duro D. From the kitchen to the medicine cabinet: Examples of food products and supplements used for therapeutic intent. J Pediatr Gastroenterol Nutr 2024; 79:460-472. [PMID: 39034627 DOI: 10.1002/jpn3.12296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 05/10/2024] [Accepted: 06/05/2024] [Indexed: 07/23/2024]
Abstract
"Food as medicine" has existed for centuries as the foundation of health for many cultures around the globe. It is a practice built on the knowledge that food and diet play important roles in disease prevention and management. Foods that claim to have therapeutic properties are often referred to as functional foods. These foods contain a number of nutritional and nonnutritional compounds that can interact with pharmacologically relevant receptors, either directly or indirectly via their metabolites, to regulate cellular biochemical processes. Although opinions are changing, the concept of food as a therapeutic intervention goes against conventional Western medicine. To provide guidance to clinicians interested in using these products, members of the Food as Medicine working group of the Nutrition Committee NASPGHAN, as part of a two-part review series, have created summaries of several frequently used nutritional products for therapeutic intent (i.e., fermented foods, fiber, and long-chain omega-3 fatty acids) that includes indications, doses, and caveats. Gaps in their use in pediatric patients are discussed. Evidence supporting their use for management of gastrointestinal conditions, especially in the pediatric population, is provided when available.
Collapse
Affiliation(s)
- Kathleen M Gura
- Department of Pharmacy/Division of Gastroenterology, Hepatology, and Nutrition, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Alvin Chan
- UCLA Mattel Children's Hospital, Los Angeles, California, USA
- David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | | | - Nikhil Pai
- Department of Pediatrics, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
- Division of Pediatric Gastroenterology & Nutrition, McMaster Children's Hospital, Hamilton, Ontario, Canada
| | - Debora Duro
- Pediatric Gastroenterology, Hepatology and Nutrition, Salah Foundation Children Hospital at Broward Health, Fort Lauderdale, Florida, USA
- NOVA Southeastern University, Fort Lauderdale, Florida, USA
- Florida International University (FIU), Miami, Florida, USA
| |
Collapse
|
7
|
Qi R, Zhang B, Qiu X, Liu X, Bao S, Wang J, Wang Q, Yang Y, Yang H, Liu Z. Microbiome and metabolome analyses indicate variations in the gut microbiota that disrupt regulation of appetite. FASEB J 2024; 38:e70003. [PMID: 39157946 DOI: 10.1096/fj.202401360r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 08/20/2024]
Abstract
The mechanism connecting gut microbiota to appetite regulation is not yet fully understood. This study identifies specific microbial community and metabolites that may influence appetite regulation. In the initial phase of the study, mice were administered a broad-spectrum antibiotic cocktail (ABX) for 10 days. The treatment significantly reduced gut microbes and disrupted the metabolism of arginine and tryptophan. Consequently, ABX-treated mice demonstrated a notable reduction in feed consumption. The hypothalamic expression levels of CART and POMC, two key anorexigenic factors, were significantly increased, while orexigenic factors, such as NPY and AGRP, were decreased. Notably, the levels of appetite-suppressing hormone cholecystokinin in the blood were significantly elevated. In the second phase, control mice were maintained, while the ABX-treated mice received saline, probiotics, and short-chain fatty acids (SCFAs) for an additional 10 days to restore their gut microbiota. The microbiota reconstructed by probiotic and SCFA treatments were quite similar, while microbiota of the naturally recovering mice demonstrated greater resemblance to that of the control mice. Notably, the abundance of Akkermansia and Bacteroides genera significantly increased in the reconstructed microbiota. Moreover, microbiota reconstruction corrected the disrupted arginine and tryptophan metabolism and the abnormal peripheral hormone levels caused by ABX treatment. Among the groups, SCFA-treated mice had the highest feed intake and NPY expression. Our findings indicate that gut microbes, especially Akkermansia, regulate arginine and tryptophan metabolism, thereby influencing appetite through the microbe-gut-brain axis.
Collapse
Affiliation(s)
- Renli Qi
- Chongqing Academy of Animal Science, Chongqing, China
| | - Bin Zhang
- Chongqing Academy of Animal Science, Chongqing, China
| | - Xiaoyu Qiu
- Chongqing Academy of Animal Science, Chongqing, China
| | - Xin Liu
- Chongqing Academy of Animal Science, Chongqing, China
| | - Shili Bao
- Rongchang District People's Hospital, Chongqing, China
| | - Jing Wang
- Chongqing Academy of Animal Science, Chongqing, China
| | - Qi Wang
- Chongqing Academy of Animal Science, Chongqing, China
| | - Yong Yang
- Chongqing Academy of Animal Science, Chongqing, China
| | - Haili Yang
- College of animal science and technology, Southwest University, Chongqing, China
| | - Zuohua Liu
- Chongqing Academy of Animal Science, Chongqing, China
- National Pig Technology Innovation Center, Chongqing, China
| |
Collapse
|
8
|
Yuan D, Xiao W, Gao A, Lu W, Gao Z, Hu B, Wu Y, Jiang W, Li Y. In vitro colon fermentation behaviors of Ca 2+ cross-linked guluronic acid block from sodium alginate. Food Funct 2024; 15:8128-8142. [PMID: 39011745 DOI: 10.1039/d4fo00934g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
The degradation of sodium alginate by human gut microbiota was found to be retarded via calcium cross-linking in our previous study. We hypothesized that the guluronic acid block (GB) on the alginate molecule might be the key structural region affecting alginate degradation by the gut microbiota when cross-linked with calcium. This study aims to prove this hypothesis by studying the structural features of the cross-linked GB on its in vitro fecal fermentation behaviors concerning the aspects of total carbohydrate contents, monosaccharide contents, short-chain fatty acids production, calcium state variations, and structural variations. Herein, GB isolated from sodium alginate was cross-linked under ranges of molar ratios of [Ca2+]/[-COOH] that further restricted the degradation by gut microbiota similar to the cross-linked alginates. First, total carbohydrate contents, short-chain fatty acids production, monosaccharides contents, and calcium state analyses confirmed that the degradation of GB by gut microbiota was restricted by calcium cross-linking. Furthermore, the tracking analysis of structural variations during in vitro fermentation revealed that the "granules" structure could further restrict degradation by the gut microbiota, leaving more cross-linked GB fragments surviving in comparison to the "networks" structure. In addition, Bacteroides xylanisolvens showed a significant positive correlation to the "cross-linking porosity (R = 0.825, p < 0.001), which supported our previous findings on fermentation behaviors of cross-linked alginate. Together, guluronic acid blocks are the key structural regions that retard the degradation of sodium alginate by the gut microbiota when cross-linked with calcium.
Collapse
Affiliation(s)
- Dan Yuan
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Nanli Road, Wuhan 430068, P. R. China.
- Glyn O. Phillips Hydrocolloid Research Centre, School of Life and Health Sciences, Hubei University of Technology, Nanli Road, Wuhan 430068, P. R. China
| | - Wenqian Xiao
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Nanli Road, Wuhan 430068, P. R. China.
- Glyn O. Phillips Hydrocolloid Research Centre, School of Life and Health Sciences, Hubei University of Technology, Nanli Road, Wuhan 430068, P. R. China
| | - Ao Gao
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Nanli Road, Wuhan 430068, P. R. China.
- Glyn O. Phillips Hydrocolloid Research Centre, School of Life and Health Sciences, Hubei University of Technology, Nanli Road, Wuhan 430068, P. R. China
| | - Wei Lu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Nanli Road, Wuhan 430068, P. R. China.
- Glyn O. Phillips Hydrocolloid Research Centre, School of Life and Health Sciences, Hubei University of Technology, Nanli Road, Wuhan 430068, P. R. China
| | - Zhiming Gao
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Nanli Road, Wuhan 430068, P. R. China.
- Glyn O. Phillips Hydrocolloid Research Centre, School of Life and Health Sciences, Hubei University of Technology, Nanli Road, Wuhan 430068, P. R. China
| | - Bing Hu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, School of Life Sciences, Dalian Minzu University, Dalian 116600, China
| | - Yuehan Wu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Nanli Road, Wuhan 430068, P. R. China.
- Glyn O. Phillips Hydrocolloid Research Centre, School of Life and Health Sciences, Hubei University of Technology, Nanli Road, Wuhan 430068, P. R. China
| | - Wenxin Jiang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Nanli Road, Wuhan 430068, P. R. China.
- Glyn O. Phillips Hydrocolloid Research Centre, School of Life and Health Sciences, Hubei University of Technology, Nanli Road, Wuhan 430068, P. R. China
| | - Yanlei Li
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Nanli Road, Wuhan 430068, P. R. China.
- Glyn O. Phillips Hydrocolloid Research Centre, School of Life and Health Sciences, Hubei University of Technology, Nanli Road, Wuhan 430068, P. R. China
| |
Collapse
|
9
|
Manlapig JJD, Kondo M, Ban-Tokuda T, Matsui H. Effect of rice bran fermented with Ligilactobacillus equi on in vitro fermentation profile and microbial population. Anim Sci J 2024; 95:e13955. [PMID: 38769748 DOI: 10.1111/asj.13955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/24/2024] [Accepted: 04/24/2024] [Indexed: 05/22/2024]
Abstract
This study was conducted to assess the effects of fermented rice bran (FRB) with Ligilactobacillus equi on ruminal fermentation using an in vitro system. Oat hay, corn starch, and wheat bran were used as substrate for control. Ten percent of wheat bran was replaced with rice bran (RB), rice bran fermented with distilled water, and rice bran fermented with L. equi for T1, T2, and T3, respectively. The experimental diets were mixed with buffered rumen fluid from wethers under nitrogen gas and incubated for 24 h at 39°C. The fermentation profile and microbial population were analyzed after the incubations. The results revealed that the RB and FRB (with or without L. equi) significantly reduced the gas, methane (CH4), and CH4 per dry matter digested (p < 0.001). Total short-chain fatty acid was also reduced in T1 and T2 in comparison with the control (p < 0.001). Propionate proportion was increased while butyrate proportion was reduced in response to treatment addition in cultures (p < 0.001). Anaerobic fungi and Fibrobacter succinogenes abundance were decreased in treatments (p < 0.001). Overall, CH4 production in vitro can be reduced by RB and FRB supplementation as a result of the reduction of fiber-degrading microorganisms and a decrease in gas production.
Collapse
Affiliation(s)
- Jamal James D Manlapig
- Department of Animal Science, College of Agriculture, Central Luzon State University, Science City of Muñoz, Nueva Ecija, Philippines
- Graduate School of Bioresources, Mie University, Tsu, Mie, Japan
| | - Makoto Kondo
- Graduate School of Bioresources, Mie University, Tsu, Mie, Japan
| | | | - Hiroki Matsui
- Graduate School of Bioresources, Mie University, Tsu, Mie, Japan
| |
Collapse
|
10
|
Lin H, Li J, Sun M, Wang X, Zhao J, Zhang W, Lv G, Wang Y, Lin Z. Effects of hazelnut soluble dietary fiber on lipid-lowering and gut microbiota in high-fat-diet-fed rats. Int J Biol Macromol 2024; 256:128538. [PMID: 38043651 DOI: 10.1016/j.ijbiomac.2023.128538] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 11/14/2023] [Accepted: 11/29/2023] [Indexed: 12/05/2023]
Abstract
Hazelnut is one of the most popular nuts in the world, rich in nutrients and various active substances. In this study, soluble dietary fiber (SDF) was extracted from hazelnut kernels, and its physicochemical properties and absorbability were explored. Hazelnut-SDF exhibited ideal water-holding, oil-holding and swelling capacity, and glucose, cholesterol and cholate absorbing ability. Scanning electron microscopy and fourier transform infrared spectroscopy showed that hazelnut-SDF had typical polysaccharide structure of functional groups. The main monosaccharides were identified as arabinose, rhamnose, xylose, ribose, glucuronic acid, mannose and glucose by gas chromatography-mass spectrometry. In high-fat diet rats, hazelnut-SDF could improve serum lipid parameters, inhibit lipid accumulation in liver and adipocytes, and regulate the expression level of liver lipid synthesis-related genes. It also could adjust intestinal short chain fatty acids, promote the composition and structure of intestinal microbiota, and significantly balance the abundance of Alloprevotella, Fusicatenibacter, Lactobacillus, Roseburia, Ruminococcaceae_UCG-005, Ruminococcaceae_UCG-014 and Clostridiales. The results concluded that oral administration of hazelnut-SDF could alleviate hyperlipidemia and obesity, and might serve as a potential functional food ingredient.
Collapse
Affiliation(s)
- He Lin
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China.
| | - Jun Li
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Mingyang Sun
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Xinhe Wang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Jiarui Zhao
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Wenjing Zhang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Guangfu Lv
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Yuchen Wang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Zhe Lin
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China.
| |
Collapse
|
11
|
Martinez TM, Wachsmuth HR, Meyer RK, Weninger SN, Lane AI, Kangath A, Schiro G, Laubitz D, Stern JH, Duca FA. Differential effects of plant-based flours on metabolic homeostasis and the gut microbiota in high-fat fed rats. Nutr Metab (Lond) 2023; 20:44. [PMID: 37858106 PMCID: PMC10585811 DOI: 10.1186/s12986-023-00767-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 10/13/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND The gut microbiome is a salient contributor to the development of obesity, and diet is the greatest modifier of the gut microbiome, which highlights the need to better understand how specific diets alter the gut microbiota to impact metabolic disease. Increased dietary fiber intake shifts the gut microbiome and improves energy and glucose homeostasis. Dietary fibers are found in various plant-based flours which vary in fiber composition. However, the comparative efficacy of specific plant-based flours to improve energy homeostasis and the mechanism by which this occurs is not well characterized. METHODS In experiment 1, obese rats were fed a high fat diet (HFD) supplemented with four different plant-based flours for 12 weeks. Barley flour (BF), oat bran (OB), wheat bran (WB), and Hi-maize amylose (HMA) were incorporated into the HFD at 5% or 10% total fiber content and were compared to a HFD control. For experiment 2, lean, chow-fed rats were switched to HFD supplemented with 10% WB or BF to determine the preventative efficacy of flour supplementation. RESULTS In experiment 1, 10% BF and 10% WB reduced body weight and adiposity gain and increased cecal butyrate. Gut microbiota analysis of WB and BF treated rats revealed increases in relative abundance of SCFA-producing bacteria. 10% WB and BF were also efficacious in preventing HFD-induced obesity; 10% WB and BF decreased body weight and adiposity, improved glucose tolerance, and reduced inflammatory markers and lipogenic enzyme expression in liver and adipose tissue. These effects were accompanied by alterations in the gut microbiota including increased relative abundance of Lactobacillus and LachnospiraceaeUCG001, along with increased portal taurodeoxycholic acid (TDCA) in 10% WB and BF rats compared to HFD rats. CONCLUSIONS Therapeutic and preventative supplementation with 10%, but not 5%, WB or BF improves metabolic homeostasis, which is possibly due to gut microbiome-induced alterations. Specifically, these effects are proposed to be due to increased concentrations of intestinal butyrate and circulating TDCA.
Collapse
Affiliation(s)
- Taylor M Martinez
- Physiological Sciences Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, USA
| | - Hallie R Wachsmuth
- Physiological Sciences Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, USA
| | - Rachel K Meyer
- School of Nutritional Science and Wellness, University of Arizona, Tucson, AZ, USA
| | - Savanna N Weninger
- Physiological Sciences Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, USA
| | - Adelina I Lane
- Physiological Sciences Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, USA
| | - Archana Kangath
- School of Animal and Comparative Biomedical Sciences, University of Arizona, ACBS Building, 1117 E Lowell St., Tucson, AZ, 85711, USA
| | - Gabriele Schiro
- The PANDA Core for Genomics and Microbiome Research, Department of Pediatrics, University of Arizona, Tucson, AZ, USA
| | - Daniel Laubitz
- The PANDA Core for Genomics and Microbiome Research, Department of Pediatrics, University of Arizona, Tucson, AZ, USA
| | - Jennifer H Stern
- Division of Endocrinology, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Frank A Duca
- School of Animal and Comparative Biomedical Sciences, University of Arizona, ACBS Building, 1117 E Lowell St., Tucson, AZ, 85711, USA.
- BIO 5 Institute, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
12
|
Shen Y, An Z, Huyan Z, Shu X, Wu D, Zhang N, Pellegrini N, Rubert J. Lipid complexation reduces rice starch digestibility and boosts short-chain fatty acid production via gut microbiota. NPJ Sci Food 2023; 7:56. [PMID: 37853069 PMCID: PMC10584848 DOI: 10.1038/s41538-023-00230-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 10/02/2023] [Indexed: 10/20/2023] Open
Abstract
In this study, two rice varieties (RS4 and GZ93) with different amylose and lipid contents were studied, and their starch was used to prepare starch-palmitic acid complexes. The RS4 samples showed a significantly higher lipid content in their flour, starch, and complex samples compared to GZ93. The static in vitro digestion highlighted that RS4 samples had significantly lower digestibility than the GZ93 samples. The C∞ of the starch-lipid complex samples was found to be 17.7% and 18.5% lower than that of the starch samples in GZ93 and RS4, respectively. The INFOGEST undigested fractions were subsequently used for in vitro colonic fermentation. Short-chain fatty acids (SCFAs) concentrations, mainly acetate, and propionate were significantly higher in starch-lipid complexes compared to native flour or starch samples. Starch-lipid complexes produced a distinctive microbial composition, which resulted in different gene functions, mainly related to pyruvate, fructose, and mannose metabolism. Using Model-based Integration of Metabolite Observations and Species Abundances 2 (MIMOSA2), SCFA production was predicted and associated with the gut microbiota. These results indicated that incorporating lipids into rice starch promotes SCFA production by modulating the gut microbiota selectively.
Collapse
Affiliation(s)
- Yi Shen
- State Key Laboratory of Rice Biology, Key Laboratory of the Ministry of Agriculture for Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, 310058, PR China
- Food Quality and Design Group, Wageningen University & Research, P. O. Box 17, 6700 AA, Wageningen, The Netherlands
| | - Zengxu An
- State Key Laboratory of Rice Biology, Key Laboratory of the Ministry of Agriculture for Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Zongyao Huyan
- Food Quality and Design Group, Wageningen University & Research, P. O. Box 17, 6700 AA, Wageningen, The Netherlands
| | - Xiaoli Shu
- State Key Laboratory of Rice Biology, Key Laboratory of the Ministry of Agriculture for Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, 310058, PR China
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya, 572025, PR China
| | - Dianxing Wu
- State Key Laboratory of Rice Biology, Key Laboratory of the Ministry of Agriculture for Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, 310058, PR China
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya, 572025, PR China
| | - Ning Zhang
- State Key Laboratory of Rice Biology, Key Laboratory of the Ministry of Agriculture for Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Nicoletta Pellegrini
- Food Quality and Design Group, Wageningen University & Research, P. O. Box 17, 6700 AA, Wageningen, The Netherlands
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via Sondrio 2/A, Udine, 33100, Italy
| | - Josep Rubert
- Food Quality and Design Group, Wageningen University & Research, P. O. Box 17, 6700 AA, Wageningen, The Netherlands.
| |
Collapse
|
13
|
Ayakdaş G, Ağagündüz D. Microbiota-accessible carbohydrates (MACs) as novel gut microbiome modulators in noncommunicable diseases. Heliyon 2023; 9:e19888. [PMID: 37809641 PMCID: PMC10559293 DOI: 10.1016/j.heliyon.2023.e19888] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
The gut microbiota has a significant role in human health and is affected by many factors. Diet and dietary components have profound impacts on the composition of the gut microbiome and largely contribute to the change in bacterial flora. A high-fiber diet increased dietary fiber (DF) fermentation and the production of short-chain fatty acids (SCFAs), which increased the number of microorganisms. Microbiota-accessible carbohydrates (MACs), a subgroup of fermentable carbohydrates such as DF, are defined as indigestible carbohydrates metabolized by microbes. These carbohydrates are important components to sustain the microbial environment of the complicated digestive tract and avoid intestinal dysbiosis. Each MAC has a unique property and can therefore be used as a sensitive output microbiota modulator to support host homeostasis and modulate health. In addition to the overall health-developing effects, MACs are thought to have a promising effect on the prevention of non-communicable diseases (NCDs), which are major health problems worldwide. The aim of the manuscript was to describe microbiota-accessible carbohydrates and summarize their effects on gut modulation and NCDs.
Collapse
Affiliation(s)
- Gamze Ayakdaş
- Department of Nutrition and Dietetics, Acıbadem University, Kerem Aydınlar Campus, Ataşehir, İstanbul, 34755, Turkey
| | - Duygu Ağagündüz
- Department of Nutrition and Dietetics, Gazi University, Emek, Ankara, 06490, Turkey
| |
Collapse
|
14
|
Chen C, Huang J, Omedi JO, Huang C, Cheng X, Zhang B, Li N, Gao T, Liang L, Zheng J, Zeng Y, Zhou Z, Huang W. Characteristics of the microstructure and the key components of white kidney bean sourdough bread induced by mixed-strain fermentation and its influence on gut microbiota. Food Funct 2023; 14:7413-7425. [PMID: 37475602 DOI: 10.1039/d3fo01547e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
In this study, the effect of mixed-strain fermentation using Kluyveromyces marxianus with either Lactobacillus plantarum or Pediococcus pentosaceus on the physiochemical and nutritional properties of white kidney bean flour sourdough was investigated. The results indicated that mixed-strain fermentation reduced the anti-nutritional factors produced from the white kidney bean flour, especially in the sourdough fermented by L. plantarum and K. marxianus (WKS-LK) compared to that by P. pentosaceus and K. marxianus (WKS-JK). Meanwhile, the content of lactic acid and acetic acid and the proportion of peptides with molecular weights ranging from <500 to 5000 Da were increased in the sourdoughs (WKS-LK > WKS-JK). Compared to the control (WK), microstructural characteristics of the dough seemed to be improved in WKS-LK followed by WKS-JK in terms of their corresponding gluten network consistency. Moreover, mixed fermentation led to a reduced starch digestibility accompanied by a higher content of resistant starch and slowly digestible starch. In contrast, protein digestibility was enhanced in WKS-LK and WKS-JK sourdough breads. More importantly, the changes in gut microbiota composition, short-chain fatty acid (SCFA) production, systemic inflammation, glucose tolerance and liver tissue histopathology following 21-day consumption of the sourdough bread were also evaluated via an animal model. The intake of sourdough breads reduced the abundance of the pathogenic microbiota Escherichia shigella. In contrast, the corresponding abundance of Rikenellaceae, Akkermansiaceae, Erysipelotrichaceae, Prevotellaceae and Eubacterium coprostanoligenes was increased, followed by enhanced SCFA generation, with the highest in WKS-LK and then WKS-JK. Meanwhile, a reduced level of pro-inflammatory cytokines IL-1β, IL-6 and TNF-α in the serum and improved glucose tolerance and liver tissue histopathology following the bread consumption were also achieved in the order of WKS-LK, then WKS-JK mice compared to WK.
Collapse
Affiliation(s)
- Cheng Chen
- State Key Laboratory of Food Science and Technology, Laboratory of Baking and Fermentation Science, Cereals/Sourdough and Nutritional Functionality Research, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Jing Huang
- State Key Laboratory of Food Science and Technology, Laboratory of Baking and Fermentation Science, Cereals/Sourdough and Nutritional Functionality Research, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Jacob Ojobi Omedi
- State Key Laboratory of Food Science and Technology, Laboratory of Baking and Fermentation Science, Cereals/Sourdough and Nutritional Functionality Research, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Chengye Huang
- State Key Laboratory of Food Science and Technology, Laboratory of Baking and Fermentation Science, Cereals/Sourdough and Nutritional Functionality Research, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Xin Cheng
- State Key Laboratory of Food Science and Technology, Laboratory of Baking and Fermentation Science, Cereals/Sourdough and Nutritional Functionality Research, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Binle Zhang
- State Key Laboratory of Food Science and Technology, Laboratory of Baking and Fermentation Science, Cereals/Sourdough and Nutritional Functionality Research, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Ning Li
- Guangzhou Puratos Food Co. Ltd, Guangzhou 511400, China
| | - Tiecheng Gao
- Guangzhou Puratos Food Co. Ltd, Guangzhou 511400, China
| | - Li Liang
- State Key Laboratory of Food Science and Technology, Laboratory of Baking and Fermentation Science, Cereals/Sourdough and Nutritional Functionality Research, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Jianxian Zheng
- College of Food and Bioengineering, South China University of Technology, and Guangzhou Institute of Food Industry, Guangzhou, Guangdong 510000, China
| | - Yongqing Zeng
- College of Food and Bioengineering, South China University of Technology, and Guangzhou Institute of Food Industry, Guangzhou, Guangdong 510000, China
| | - Zhongkai Zhou
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Weining Huang
- State Key Laboratory of Food Science and Technology, Laboratory of Baking and Fermentation Science, Cereals/Sourdough and Nutritional Functionality Research, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
15
|
Chudan S, Ishibashi R, Nishikawa M, Tabuchi Y, Nagai Y, Ikushiro S, Furusawa Y. Effect of Wheat-Derived Arabinoxylan on the Gut Microbiota Composition and Colonic Regulatory T Cells. Molecules 2023; 28:molecules28073079. [PMID: 37049841 PMCID: PMC10096111 DOI: 10.3390/molecules28073079] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/25/2023] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
The health benefits of wheat-derived arabinoxylan, a commonly consumed dietary fiber, have been studied for decades. However, its effect on the gut microenvironment and inflammatory bowel disease remains unclear. The objective of this study was to understand the effect of wheat-derived arabinoxylan on gut microbiota, colonic regulatory T cells (Tregs), and experimental colitis. In this study, healthy and chronic colitis model mice were fed chow containing cellulose or wheat-derived arabinoxylan for 2-6 weeks and subjected to subsequent analysis. A 16S-based metagenomic analysis of the fecal DNA revealed that Lachnospiraceae, comprising butyrate-producing and Treg-inducing bacteria, were overrepresented in arabinoxylan-fed mice. In line with the changes in the gut microbiota, both the fecal butyrate concentration and the colonic Treg population were elevated in the arabinoxylan-fed mice. In a T cell transfer model of chronic colitis, wheat-derived arabinoxylan ameliorated body weight loss and colonic tissue inflammation, which may, in part, be mediated by Treg induction. Moreover, wheat-derived arabinoxylan suppressed TNFα production from type 1 helper T cells in this colitis model. In conclusion, wheat-derived arabinoxylans, by altering the gut microenvironment, may be a promising prebiotic for the prevention of colitis.
Collapse
Affiliation(s)
- Seita Chudan
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, Toyama 939-0398, Japan
| | - Riko Ishibashi
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, Toyama 939-0398, Japan
| | - Miyu Nishikawa
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, Toyama 939-0398, Japan
| | - Yoshiaki Tabuchi
- Division of Molecular Genetics Research, Life Science Research Center, University of Toyama, Toyama 930-0194, Japan
| | - Yoshinori Nagai
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, Toyama 939-0398, Japan
| | - Shinichi Ikushiro
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, Toyama 939-0398, Japan
| | - Yukihiro Furusawa
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, Toyama 939-0398, Japan
- Division of Molecular Genetics Research, Life Science Research Center, University of Toyama, Toyama 930-0194, Japan
| |
Collapse
|
16
|
Kadyan S, Park G, Singh P, Arjmandi B, Nagpal R. Prebiotic mechanisms of resistant starches from dietary beans and pulses on gut microbiome and metabolic health in a humanized murine model of aging. Front Nutr 2023; 10:1106463. [PMID: 36824174 PMCID: PMC9941547 DOI: 10.3389/fnut.2023.1106463] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/19/2023] [Indexed: 02/10/2023] Open
Abstract
Dietary pulses, being a rich source of fiber and proteins, offer an ideal and inexpensive food choice for older adults to promote gut and metabolic health. However, the prebiotic effects of dietary pulses-derived resistant starches (RS), compared to RS from cereals and tubers, remain relatively underexplored, particularly in context to their gut modulatory potential in old age. We herein investigate the prebiotic effects of pulses-derived RS on the gut microbiome and intestinal health in aged (60-week old) mice colonized with human microbiota. C57B6/J mice were fed for 20 weeks with either a western-style high-fat diet (control; CTL) or CTL diet supplemented (5% w/w) with RS from pinto beans (PTB), black-eyed-peas (BEP), lentils (LEN), chickpeas (CKP), or inulin (INU; reference control). We find that the RS supplementation modulates gut microbiome in a sex-dependent manner. For instance, CKP enriched α-diversity only in females, while β-diversity deviated for both sexes. Further, different RS groups exhibited distinct microbiome differences at bacterial phyla and genera levels. Notably, LEN fostered Firmicutes and depleted Proteobacteria abundance, whereas Bacteroidota was promoted by CKP and INU. Genus Dubosiella increased dominantly in males for all groups except PTB, whilst Faecalibaculum decreased in females by CKP and INU groups. Linear discriminant analysis effect size (LEfSe) and correlational analyzes reveal RS-mediated upregulation of key bacterial genera associated with short-chain fatty acids (butyrate) production and suppression of specific pathobionts. Subsequent machine-learning analysis validate decreased abundance of notorious genera, namely, Enterococcus, Odoribacter, Desulfovibrio, Alistipes and Erysipelatoclostridium among RS groups. CKP and LEN groups partly protected males against post-prandial glycemia. Importantly, RS ameliorated high-fat diet-induced gut hyperpermeability and enhanced expression of tight-junction proteins (claudin-1 and claudin-4), which were more pronounced for LEN. In addition, IL10 upregulation was more prominent for LEN, while TNF-α was downregulated by LEN, CKP, and INU. Together, these findings demonstrate that RS supplementation beneficially modulates the gut microbiome with a reduction in gut leakiness and inflammation, indicating their prebiotic potential for functional food and nutritional applications.
Collapse
Affiliation(s)
- Saurabh Kadyan
- Department of Nutrition and Integrative Physiology, College of Health and Human Sciences, Florida State University, Tallahassee, FL, United States
| | - Gwoncheol Park
- Department of Nutrition and Integrative Physiology, College of Health and Human Sciences, Florida State University, Tallahassee, FL, United States
| | - Prashant Singh
- Department of Nutrition and Integrative Physiology, College of Health and Human Sciences, Florida State University, Tallahassee, FL, United States
| | - Bahram Arjmandi
- Department of Nutrition and Integrative Physiology, College of Health and Human Sciences, Florida State University, Tallahassee, FL, United States
| | | |
Collapse
|
17
|
Qin S, Zhang K, Ding X, Bai S, Wang J, Tian G, Xuan Y, Su Z, Zeng Q. Microbiome-metabolomics analysis insight into the effects of dietary resistant starch on intestinal integrity. Food Chem 2023; 401:134148. [DOI: 10.1016/j.foodchem.2022.134148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/08/2022] [Accepted: 09/04/2022] [Indexed: 01/06/2023]
|
18
|
Smith AD, Chen C, Cheung L, Dawson HD. Raw potato starch alters the microbiome, colon and cecal gene expression, and resistance to Citrobacter rodentium infection in mice fed a Western diet. Front Nutr 2023; 9:1057318. [PMID: 36704785 PMCID: PMC9871501 DOI: 10.3389/fnut.2022.1057318] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/05/2022] [Indexed: 01/11/2023] Open
Abstract
Resistant starches (RS) are fermented in the cecum and colon to produce short-chain fatty acids and other microbial metabolites that can alter host physiology and the composition of the microbiome. We previously showed that mice fed a Total Western Diet (TWD) based on NHANES data that mimics the composition of a typical American diet, containing resistant potato starch (RPS), produced concentration dependent changes to the cecal short-chain fatty acids, the microbiome composition as well as gene expression changes in the cecum and colon that were most prevalent in mice fed the 10% RPS diet. We were then interested in whether feeding TWD/RPS would alter the resistance to bacterial-induced colitis caused by Citrobacter rodentium (Cr), a mouse pathogen that shares 66.7% of encoded genes with Enteropathogenic Escherichia coli. Mice were fed the TWD for 6 weeks followed by a 3-weeks on the RPS diets before infecting with Cr. Fecal Cr excretion was monitored over time and fecal samples were collected for 16S sequencing. Mice were euthanized on day 12 post-infection and cecal contents collected for 16S sequencing. Cecum and colon tissues were obtained for gene expression analysis, histology and to determine the level of mucosa-associated Cr. Feeding RPS increased the percentage of mice productively infected by Cr and fecal Cr excretion on day 4 post-infection. Mice fed the TWD/10% RPS diet also had greater colonization of colonic tissue at day 12 post-infection and colonic pathology. Both diet and infection altered the fecal and cecal microbiome composition with increased levels of RPS resulting in decreased α-diversity that was partially reversed by Cr infection. RNASeq analysis identified several mechanistic pathways that could be associated with the increased colonization of Cr-infected mice fed 10% RPS. In the distal colon we found a decrease in enrichment for genes associated with T cells, B cells, genes associated with the synthesis of DHA-derived SPMs and VA metabolism/retinoic acid signaling. We also found an increase in the expression of the potentially immunosuppressive gene, Ido1. These results suggest that high-level consumption of RPS in the context of a typical American diet, may alter susceptibility to gastrointestinal bacterial infections.
Collapse
|
19
|
Zhuang T, Hu M, Wang J, Mei L, Zhu X, Zhang H, Jin F, Shao J, Wang T, Wang C, Niu X, Wu D. Sodium houttuyfonate effectively treats acute pulmonary infection of Pseudomonas aeruginosa by affecting immunity and intestinal flora in mice. Front Cell Infect Microbiol 2022; 12:1022511. [PMID: 36530439 PMCID: PMC9751016 DOI: 10.3389/fcimb.2022.1022511] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/14/2022] [Indexed: 12/04/2022] Open
Abstract
Introduction Pseudomonas aeruginosa is a major nosocomial pathogen that frequently causes ventilator-associated pneumonia in specific populations. Sodium houttuyfonate (SH) has shown mild antibacterial activity against P. aeruginosa in vitro, but the mechanism of potent antimicrobial activity of SH against P. aeruginosa infection in vivo remains unclear. Methods Here, using the mouse pneumonia model induced by P. aeruginosa nasal drip to explore the therapeutic effects of SH. Results We found that SH exhibits dose-dependent therapeutic effects of reducing P. aeruginosa burden and systemic inflammation in pneumonia mice. SH ameliorates inflammatory gene expression and production of inflammatory proteins, such as interleukin-6 (IL-6), nuclear factor kappa-B (NF-κB) and toll-like receptor 4 (TLR4), associated with the TLR4/NF-κB pathway in mice with P. aeruginosa pneumonia. Furthermore, we analyzed the intestinal flora of mice and found that compared with the model group, the abundance and diversity of beneficial bacterial flora of SH treatment groups increased significantly, suggesting that SH can improve the intestinal flora disorder caused by inflammation. In addition, SH improves alpha and beta diversity index and reduces species abundance differences of intestinal flora in pneumonia mice. Discussion Taken together, our presented results indicate that SH may effectively alleviate the acute pulmonary infection induced by P. aeruginosa by reducing the disturbance of regulating immunity and intestinal flora in mice.
Collapse
Affiliation(s)
- Tian Zhuang
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China,Research Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, China
| | - Mengxue Hu
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China,Research Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, China
| | - Jian Wang
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China,Pathology Department, First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Longfei Mei
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China,Research Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, China
| | - Xiaoxiao Zhu
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China,Research Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, China
| | - Haitao Zhang
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China,Research Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, China
| | - Feng Jin
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China,Research Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, China
| | - Jing Shao
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China,Research Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, China,Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - Tianming Wang
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - Changzhong Wang
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China,Research Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, China,Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - Xiaojia Niu
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China,Research Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, China,Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China,*Correspondence: Daqiang Wu, ; Xiaojia Niu,
| | - Daqiang Wu
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China,Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China,*Correspondence: Daqiang Wu, ; Xiaojia Niu,
| |
Collapse
|
20
|
Sun S, Mao J, Wang Y. The Role of Gut Microbiota in the Pathogenesis of Alzheimer’s Disease. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
As a degenerative disease of the central nervous system, Alzheimer’s disease (AD) is featured by mental and behavioral dysfunction, and progressive memory loss, which is the most common type of dementia. The incidence of AD is increasing as life expectancy is prolonged, but the
pathogenesis of AD remains largely unknown. Recently, the role of gut microbiota in the pathogenesis of AD has drawn increasing attention. The composition of gut microbiota varies across age groups, and the changes in the microbiota metabolites may influence the central nervous system via
the brain-gut axis. So far, it has been confirmed that gut bacteria are involved in various pathogenic mechanisms of AD, including amyloid β-protein deposition, Tau protein hyperphosphorylation, neuroinflammation, oxidative stress injury, increased blood-brain barrier permeability,
neurotransmitter imbalance, reduced generation of brain-derived neurotrophic factor, and insulin resistance. An important direction of research is to investigate the regulation of gut microbiota for the prevention and treatment of AD.
Collapse
Affiliation(s)
- Shaoqiang Sun
- Department of Gastroenterology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116000, China
| | - Jingwei Mao
- Department of Gastroenterology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116000, China
| | - Yingde Wang
- Department of Gastroenterology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116000, China
| |
Collapse
|
21
|
Octenyl Succinic Anhydride-Modified Starch Attenuates Body Weight Gain and Changes Intestinal Environment of High-Fat Diet-Fed Mice. Foods 2022; 11:foods11192980. [PMID: 36230056 PMCID: PMC9563757 DOI: 10.3390/foods11192980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/05/2022] [Accepted: 09/14/2022] [Indexed: 11/24/2022] Open
Abstract
Effects of octenylsuccinate (OS) starch on body composition and intestinal environment in high-fat diet-fed mice were investigated. C57BL/6J mice were treated with a regular-fat (RF) diet, a high-fat (HF) diet, or a high-fat diet supplemented with OS starch (HFOSS). Fecal short-chain fatty acids (SCFAs) were quantified using gas chromatography, and the fecal microbiota profile was analyzed by 16S rDNA sequencing. One-way ANOVA and metastats analysis were performed for statistical analysis. After 22 weeks of feeding, mice in the HFOSS group had significantly lower body weight, body fat, liver weight, and cumulative food intake than those in the HF group but higher than that of the RF group. Fecal total SCFA, acetic, propionic, and butyric acid concentrations were significantly higher in the HFOSS group than that in the HF and RF groups. OS starch intervention increased the relative abundance of Parabacteroides, Alistipes, and Ruminiclostridium_5 and decreased that of Tyzzerella, Oscillibacter, Desulfovibrio, and Anaerotruncus compared with the RF and HF groups. The relative abundance of Lachnospiraceae_UCG-006 in the HFOSS group was lower than that in the HF group but higher than that in the RF group. In conclusion, OS starch prevents fat accumulation in high-fat diet-fed mice and might provide potential health benefits due to its fermentability in the gut and its ability to regulate gut microbial community structure.
Collapse
|
22
|
Wang Z, Chen Y, Wang W, Huang C, Hu Y, Johnston L, Wang F. Dietary Supplementation With Fine-Grinding Wheat Bran Improves Lipid Metabolism and Inflammatory Response via Modulating the Gut Microbiota Structure in Pregnant Sow. Front Microbiol 2022; 13:835950. [PMID: 35418966 PMCID: PMC8999112 DOI: 10.3389/fmicb.2022.835950] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
Abstract
This study investigated the effects of fine-grinding wheat bran on pregnant sow body condition, lipid metabolism, inflammatory response, and gut microbiota. In this study, wheat bran was crushed into three particle sizes. A total of 60 Landrace × Yorkshire second parity sows were allotted to two groups: CWB (a diet containing coarse wheat bran with particle size of 605 μm) and FWB (a diet containing fine wheat bran with particle size of 438 μm). Fine-grinding wheat bran had higher soluble dietary fiber concentration, swelling capacity, water-holding capacity, and fermentability than coarse wheat bran. Pregnant sows fed FWB throughout pregnancy had lower body weight and fat deposition than sows fed CWB. And the piglet body weight at birth of the FWB group was remarkably increased. Serum concentrations of lipids (triglycerides, total cholesterol, and free fatty acid), interleukin 6, leptin, and resistin were decreased on day 90 of pregnancy by fine wheat bran supplementation. Feeding FWB significantly decreased abundance of Firmicutes and dramatically increased the abundance of Bacteroidetes at phylum level. At genus level, the abundance of Terrisporobacter was decreased in FWB feeding sows, but the abundance of Parabacteroides was increased. Fecal total short-chain fatty acids, propionate, and butyrate contents were markedly increased in the FWB group. The results suggested that the physicochemical properties of finely ground wheat bran had been improved. Dietary supplementation with fine wheat bran changed the gut microbiota structure and enhanced the short-chain fatty acids level, which improved the maternal body condition, metabolic and inflammatory status, and reproductive performance in sows.
Collapse
Affiliation(s)
- Zijie Wang
- State Key Lab of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing, China
| | - Yifan Chen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Wenhui Wang
- State Key Lab of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing, China
| | - Caiyun Huang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yongfei Hu
- State Key Lab of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing, China
| | - Lee Johnston
- Swine Nutrition and Production, West Central Research and Outreach Center, University of Minnesota, Morris, MN, United States
| | - Fenglai Wang
- State Key Lab of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing, China
| |
Collapse
|
23
|
Yao W, Gong Y, Li L, Hu X, You L. The effects of dietary fibers from rice bran and wheat bran on gut microbiota: An overview. Food Chem X 2022; 13:100252. [PMID: 35498986 PMCID: PMC9040006 DOI: 10.1016/j.fochx.2022.100252] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 12/19/2022] Open
Abstract
The physicochemical properties of DFs are related to their digestive behaviors. DFs are degraded in the intestines due to the fermentation of gut microbiota. DFs and their metabolites exert beneficial effects on gut microbiota. The fermentation of DFs improve gut barrier function and immune function. Whole grain is the primary food providing abundant dietary fibers (DFs) in the human diet. DFs from rice bran and wheat bran have been well documented in modulating gut microbiota. This review aims to summarize the physicochemical properties and digestive behaviors of DFs from rice bran and wheat bran and their effects on host gut microbiota. The physicochemical properties of DFs are closely related to their fermentability and digestive behaviors. DFs from rice bran and wheat bran modulate specific bacteria and promote SAFCs-producing bacteria to maintain host health. Moreover, their metabolites stimulate the production of mucus-associated bacteria to enhance the intestinal barrier and regulate the immune system. They also reduce the level of related inflammatory cytokines and regulate Tregs activation. Therefore, DFs from rice bran and wheat bran will serve as prebiotics, and diets rich in whole grain will be a biotherapeutic strategy for human health.
Collapse
Affiliation(s)
- Wanzi Yao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Yufeng Gong
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Laihao Li
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Xiao Hu
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Lijun You
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| |
Collapse
|
24
|
DeMartino P, Johnston EA, Petersen KS, Kris-Etherton PM, Cockburn DW. Additional Resistant Starch from One Potato Side Dish per Day Alters the Gut Microbiota but Not Fecal Short-Chain Fatty Acid Concentrations. Nutrients 2022; 14:nu14030721. [PMID: 35277080 PMCID: PMC8840755 DOI: 10.3390/nu14030721] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 01/11/2023] Open
Abstract
The composition of the gut microbiota and their metabolites are associated with cardiometabolic health and disease risk. Intake of dietary fibers, including resistant starch (RS), has been shown to favorably affect the health of the gut microbiome. The aim of this research was to measure changes in the gut microbiota and fecal short-chain fatty acids as part of a randomized, crossover supplemental feeding study. Fifty participants (68% female, aged 40 ± 13 years, BMI 24.5 ± 3.6 kg/m2) completed this study. Potato dishes (POT) contained more RS than refined grain dishes (REF) (POT: 1.31% wet basis (95% CI: 0.94, 1.71); REF: 0.73% wet basis (95% CI: 0.34, 1.14); p = 0.03). Overall, potato dish consumption decreased alpha diversity, but beta diversity was not impacted. Potato dish consumption was found to increase the abundance of Hungatella xylanolytica, as well as that of the butyrate producing Roseburia faecis, though fecal butyrate levels were unchanged. Intake of one potato-based side dish per day resulted in modest changes in gut microbiota composition and diversity, compared to isocaloric intake of refined grains in healthy adults. Studies examining foods naturally higher in RS are needed to understand microbiota changes in response to dietary intake of RS and associated health effects.
Collapse
Affiliation(s)
- Peter DeMartino
- Department of Food Science, Pennsylvania State University, University Park, PA 16802, USA;
| | - Emily A. Johnston
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA 16802, USA; (E.A.J.); (K.S.P.); (P.M.K.-E.)
| | - Kristina S. Petersen
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA 16802, USA; (E.A.J.); (K.S.P.); (P.M.K.-E.)
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Penny M. Kris-Etherton
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA 16802, USA; (E.A.J.); (K.S.P.); (P.M.K.-E.)
| | - Darrell W. Cockburn
- Department of Food Science, Pennsylvania State University, University Park, PA 16802, USA;
- Correspondence: ; Tel.: +1-814-863-2950
| |
Collapse
|
25
|
Beukema M, Akkerman R, Jermendi É, Koster T, Laskewitz A, Kong C, Schols HA, Faas MM, de Vos P. Pectins that Structurally Differ in the Distribution of Methyl-Esters Attenuate Citrobacter rodentium-Induced Colitis. Mol Nutr Food Res 2021; 65:e2100346. [PMID: 34369649 PMCID: PMC9285458 DOI: 10.1002/mnfr.202100346] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/29/2021] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Pectins have anti-inflammatory properties on intestinal immunity through direct interactions on Toll-like receptors (TLRs) in the small intestine or via stimulating microbiota-dependent effects in the large intestine. Both the degree of methyl-esterification (DM) and the distribution of methyl-esters (degree of blockiness; DB) of pectins contribute to this influence on immunity, but whether and how the DB impacts immunity through microbiota-dependent effects in the large intestine is unknown. Therefore, this study tests pectins that structurally differ in DB in a mouse model with Citrobacter rodentium induced colitis and studies the impact on the intestinal microbiota composition and associated attenuation of inflammation. METHODS AND RESULTS Both low and high DB pectins induce a more rich and diverse microbiota composition. These pectins also lower the bacterial load of C. rodentium in cecal digesta. Through these effects, both low and high DB pectins attenuate C. rodentium induced colitis resulting in reduced intestinal damage, reduced numbers of Th1-cells, which are increased in case of C. rodentium induced colitis, and reduced levels of GATA3+ Tregs, which are related to tissue inflammation. CONCLUSION Pectins prevent C. rodentium induced colonic inflammation by lowering the C. rodentium load in the caecum independently of the DB.
Collapse
Affiliation(s)
- Martin Beukema
- ImmunoendocrinologyDivision of Medical BiologyDepartment of Pathology and Medical BiologyUniversity Medical Center GroningenGroningenThe Netherlands
| | - Renate Akkerman
- ImmunoendocrinologyDivision of Medical BiologyDepartment of Pathology and Medical BiologyUniversity Medical Center GroningenGroningenThe Netherlands
| | - Éva Jermendi
- Laboratory of Food ChemistryWageningen University and ResearchWageningenThe Netherlands
| | - Taco Koster
- ImmunoendocrinologyDivision of Medical BiologyDepartment of Pathology and Medical BiologyUniversity Medical Center GroningenGroningenThe Netherlands
| | - Anne Laskewitz
- ImmunoendocrinologyDivision of Medical BiologyDepartment of Pathology and Medical BiologyUniversity Medical Center GroningenGroningenThe Netherlands
| | - Chunli Kong
- ImmunoendocrinologyDivision of Medical BiologyDepartment of Pathology and Medical BiologyUniversity Medical Center GroningenGroningenThe Netherlands
| | - Henk A. Schols
- Laboratory of Food ChemistryWageningen University and ResearchWageningenThe Netherlands
| | - Marijke M. Faas
- ImmunoendocrinologyDivision of Medical BiologyDepartment of Pathology and Medical BiologyUniversity Medical Center GroningenGroningenThe Netherlands
| | - Paul de Vos
- ImmunoendocrinologyDivision of Medical BiologyDepartment of Pathology and Medical BiologyUniversity Medical Center GroningenGroningenThe Netherlands
| |
Collapse
|
26
|
Peters V, Dijkstra G, Campmans-Kuijpers MJE. Are all dietary fibers equal for patients with inflammatory bowel disease? A systematic review of randomized controlled trials. Nutr Rev 2021; 80:1179-1193. [PMID: 34486663 PMCID: PMC8990763 DOI: 10.1093/nutrit/nuab062] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
CONTEXT Conflicting practice-based dietary recommendations are sometimes given to patients with inflammatory bowel disease (IBD); whereas intake of fiber should increase during remission, it should be avoided during relapse. Moreover, European countries set daily requirements of total fiber and do not specify any types. OBJECTIVE This systematic review appraised data from randomized clinical trials (RCTs) of the types of fibers beneficial for patients in the treatment of IBD to guide dietary fiber advice. DATA SOURCES The PubMED database was searched following PRISMA guidelines. DATA EXTRACTION RCTs evaluating the effects of any type of fiber on clinical and physiological outcomes in patients with IBD were assessed. Quality assessment of the selected full-text articles was conducted using the Cochrane Risk of Bias Tool. DATA ANALYSIS Eight studies were included reporting on 5 types of fibers. In 2 RCTs, germinated barley foodstuff (GBF) was shown to lower pro-inflammatory cytokines and clinical disease activity scores. Fructo-oligosaccharides (FOS) were demonstrated to lower IBD Questionnaire scores (lower well-being), in contrast to inulin, which decreased disease activity scores. An RCT could not find lower remission rates in the psyllium treatment group, while another RCT reported that administration led to less symptoms in patients. In RCTs, no concrete evidence was found that wheat bran improves disease course. CONCLUSIONS Although the evidence is sparse, GBF and inulin seem propitious and merit further exploration. Evidence on wheat bran and psyllium is still too limited. Adequately powered long-term human RCTs with objective outcomes are needed to improve dietary advice on types of fiber in IBD.
Collapse
Affiliation(s)
- Vera Peters
- Department of Gastroenterology and Hepatology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Gerard Dijkstra
- Department of Gastroenterology and Hepatology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Marjo J E Campmans-Kuijpers
- Department of Gastroenterology and Hepatology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
27
|
Ma Y, Lu Y, Petrofsky K, Liu J, Cheng Y, Ruan R, Chen C. Double-Edged Metabolic Effects from Short-Term Feeding of Functionalized Wheat Bran to Mouse Revealed by Metabolomic Profiling. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:6543-6555. [PMID: 34096702 DOI: 10.1021/acs.jafc.1c02314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Health-promoting activities of wheat bran are limited by the high-degree crosslinking of its dietary fiber and the low bioavailability of its phenolics. In this study, functionalized wheat bran (FWB) was prepared through a combination of milling, alkaline hydrolysis, high-shear mixing, and high-pressure homogenization treatments. Feasibility and metabolic effects of feeding FWB were investigated by a short-term mouse feeding trial and liquid chromatography-mass spectrometry-based metabolomic analysis. The combinatorial processing dramatically enhanced the function-associated physicochemical properties of wheat bran, including viscosity, fiber compositions, free ferulic acid, and antioxidant capacity. FWB feeding led to diverse positive metabolic effects, including fecal sequestration of bile acids and cholesterol, reduced serum triacylglycerols and cholesterol, elevated fermentation for short-chain fatty acids, increased bioavailability of ferulic acid and its microbial metabolites, and improved redox balance. However, FWB feeding also negatively affected the nutritional status by decreasing the bioavailability of essential amino acids through the excessive loss of amino acids in feces and disrupting lipid homeostasis by reducing choline supply in the liver. These double-edged metabolic effects warrant further investigations on how to achieve the balance between the functionalization of wheat bran bioactives and the disruption of nutrient bioavailability.
Collapse
Affiliation(s)
- Yiwei Ma
- Department of Food Science and Nutrition, University of Minnesota, 1334 Eckles Avenue, 225 FScN, St. Paul, Minnesota 55108, United States
| | - Yuwei Lu
- Department of Food Science and Nutrition, University of Minnesota, 1334 Eckles Avenue, 225 FScN, St. Paul, Minnesota 55108, United States
| | - Keith Petrofsky
- Department of Bioproducts and Biosystems Engineering, Center for Biorefining, University of Minnesota, 1390 Eckles Avenue, St. Paul, Minnesota 55108, United States
| | - Juer Liu
- Department of Bioproducts and Biosystems Engineering, Center for Biorefining, University of Minnesota, 1390 Eckles Avenue, St. Paul, Minnesota 55108, United States
| | - Yanling Cheng
- Department of Bioproducts and Biosystems Engineering, Center for Biorefining, University of Minnesota, 1390 Eckles Avenue, St. Paul, Minnesota 55108, United States
| | - Roger Ruan
- Department of Bioproducts and Biosystems Engineering, Center for Biorefining, University of Minnesota, 1390 Eckles Avenue, St. Paul, Minnesota 55108, United States
| | - Chi Chen
- Department of Food Science and Nutrition, University of Minnesota, 1334 Eckles Avenue, 225 FScN, St. Paul, Minnesota 55108, United States
| |
Collapse
|
28
|
Protective effects of Antarctic krill oil in dextran sulfate sodium-induced ulcerative colitis mice. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104394] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
29
|
Qin R, Wang J, Chao C, Yu J, Copeland L, Wang S, Wang S. RS5 Produced More Butyric Acid through Regulating the Microbial Community of Human Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3209-3218. [PMID: 33630575 DOI: 10.1021/acs.jafc.0c08187] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The objective of this research was to compare the in vitro fermentability of three resistant starches (RS2, RS3, and RS5). Structural analyses showed that there were small changes in the long- and short-range ordered structure of three RSs after fermentation by human gut microbiota. The fermentation of RSs by gut microbiota produced large amounts of short-chain fatty acids, with RS5 producing more butyric acid and RS3 producing more lactic acid. RS3 and RS5 decreased the pH of the fermentation culture to a greater extent compared with RS2. Moreover, RS5 increased significantly the relative abundance of Bifidobacterium, Dialister, Collinsella, Romboutsia, and Megamonas. The results suggested that the form of RS was the main factor affecting the physiological function of RS and that RS5, as a recently recognized form of resistant starch, could be a better functional ingredient to improve health compared with RS2 and RS3.
Collapse
Affiliation(s)
- Renbing Qin
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
- School of Food Science and Technology Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Jin Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Chen Chao
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
- School of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jinglin Yu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Les Copeland
- Sydney Institute of Agriculture, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Shujun Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
- School of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| |
Collapse
|
30
|
Inglis GD, Wright BD, Sheppard SA, Abbott DW, Oryschak MA, Montina T. Expeller-Pressed Canola ( Brassica napus) Meal Modulates the Structure and Function of the Cecal Microbiota, and Alters the Metabolome of the Pancreas, Liver, and Breast Muscle of Broiler Chickens. Animals (Basel) 2021; 11:ani11020577. [PMID: 33672178 PMCID: PMC7926547 DOI: 10.3390/ani11020577] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/08/2021] [Accepted: 02/16/2021] [Indexed: 12/17/2022] Open
Abstract
The inoculation of one-day-old broiler chicks with the cecal contents from a mature broiler breeder resulted in a highly diverse and uniform cecal bacterial community. CM did not affect feed consumption, weight gain, nor the richness, evenness, or diversity of the cecal bacterial community. However, the structure of the bacterial community was altered in birds fed the CM diet. Although the CM diet was formulated to contain equivalent metabolizable energy to the control diet, it contained more dietary fiber. The abundance of bacterial families, including those that are known to contain species able to metabolize fiber was altered (e.g., bacteria within the families, Methanobacteriaceae, Atopobiaceae, Prevotellaceae, Clostridiales Family XIII, Peptostreptococcaceae, and Succinivibrionaceae), and concentrations of SCFAs were higher in the ceca of birds fed the CM diet. Moreover, concentrations of isoleucine, isobutyrate, glutamate, and 2-oxoglutarate were higher, whereas concentrations of phenyllactic acid, indole, glucose, 3-phenylpropionate, and 2-oxobutyrate were lower in the digesta of chickens that were fed CM. The metabolic profiles of pancreas, liver, and breast muscle tissues of birds fed the CM diet differed from control birds. Metabolites that were associated with energy production, protection against oxidative stress, and pathways of amino acid and glycerophospholipid metabolism had altered concentrations in these tissues. Some of the observed changes in metabolite levels may indicate an increased disease risk in birds fed the CM diet (e.g., pancreatitis), and others suggested that birds mounted metabolic response to offset the adverse impacts of CM (e.g., oxidative stress in the liver).
Collapse
Affiliation(s)
- G. Douglas Inglis
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada;
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (B.D.W.); (S.A.S.)
- Correspondence: (G.D.I.); (T.M.); Tel.: +1-403-317-3355 (G.D.I.); +1-403-394-3927 (T.M.)
| | - Benjamin D. Wright
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (B.D.W.); (S.A.S.)
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Stephanie A. Sheppard
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (B.D.W.); (S.A.S.)
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - D. Wade Abbott
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada;
| | | | - Tony Montina
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
- Southern Alberta Genome Sciences Centre, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
- Correspondence: (G.D.I.); (T.M.); Tel.: +1-403-317-3355 (G.D.I.); +1-403-394-3927 (T.M.)
| |
Collapse
|
31
|
Changes of Gut-Microbiota-Liver Axis in Hepatitis C Virus Infection. BIOLOGY 2021; 10:biology10010055. [PMID: 33451143 PMCID: PMC7828638 DOI: 10.3390/biology10010055] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/02/2021] [Accepted: 01/08/2021] [Indexed: 12/12/2022]
Abstract
Simple Summary Gut microbiota alteration is linked to many health disorders including hepatitis C virus (HCV) infection. This dysbiosis in turn impacts the coordination between the gut and the liver that is known as the gut–liver-axis. Here, we discuss the latest findings regarding the changes in gut microbiota structure and functionality post HCV infection and its treatment regimens. In addition, we underline the contribution of the microbiota alterations to HCV associated liver complications. Abstract The gut–liver-axis is a bidirectional coordination between the gut, including microbial residents, the gut microbiota, from one side and the liver on the other side. Any disturbance in this crosstalk may lead to a disease status that impacts the functionality of both the gut and the liver. A major cause of liver disorders is hepatitis C virus (HCV) infection that has been illustrated to be associated with gut microbiota dysbiosis at different stages of the disease progression. This dysbiosis may start a cycle of inflammation and metabolic disturbance that impacts the gut and liver health and contributes to the disease progression. This review discusses the latest literature addressing this interplay between the gut microbiota and the liver in HCV infection from both directions. Additionally, we highlight the contribution of gut microbiota to the metabolism of antivirals used in HCV treatment regimens and the impact of these medications on the microbiota composition. This review sheds light on the potential of the gut microbiota manipulation as an alternative therapeutic approach to control the liver complications post HCV infection.
Collapse
|
32
|
Wan J, Wu Y, Pham Q, Yu L, Chen MH, Boue SM, Yokoyama W, Li B, Wang TTY. Effects of Rice with Different Amounts of Resistant Starch on Mice Fed a High-Fat Diet: Attenuation of Adipose Weight Gain. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:13046-13055. [PMID: 31642669 DOI: 10.1021/acs.jafc.9b05505] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Increasing the amount of resistant starch (RS) in the diet may confer protective effects against chronic diseases. Rice, a good dietary source of carbohydrates, also contains RS. However, it remains unclear if RS at the amount consumed in cooked rice has a health benefit. To address the question, we examined the effects of cooked rice containing different levels of RS in a diet-induced obesity rodent model. Rice containing RS as low as 1.07% attenuated adipose weight and adipocyte size gain, induced by a moderately high-fat (HF) diet, which correlated with lower leptin levels in plasma and adipose tissue. Rice with 8.61% RS increased fecal short-chain fatty acid levels, modulated HF-diet-induced adipose triacylglycerol metabolism and inflammation-related gene expression, and increased fecal triglyceride excretion. Hence, including rice with RS level at ≥1.07% may attenuate risks associated with the consumption of a moderately HF diet.
Collapse
Affiliation(s)
- Jiawei Wan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
- Diet Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center (BHNRC), Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Beltsville, Maryland 20705, United States
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland 20742, United States
| | - Yanbei Wu
- Diet Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center (BHNRC), Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Beltsville, Maryland 20705, United States
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland 20742, United States
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology and Business University, Beijing 100084, People's Republic of China
| | - Quynhchi Pham
- Diet Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center (BHNRC), Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Beltsville, Maryland 20705, United States
| | - Liangli Yu
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland 20742, United States
| | - Ming-Hsuan Chen
- Dale Bumpers National Rice Research Center, Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Stuttgart, Arkansas 72160, United States
| | - Stephen M Boue
- Southern Regional Research Center, Agricultural Research Service (ARS), United States Department of Agriculture (USDA), New Orleans, Louisiana 70124, United States
| | - Wallace Yokoyama
- Healthy Processed Foods Research Unit, Western Regional Research Center (WRRC), Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Albany, California 94710, United States
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Thomas T Y Wang
- Diet Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center (BHNRC), Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Beltsville, Maryland 20705, United States
| |
Collapse
|
33
|
Zhang T, Zhao W, Xie B, Liu H. Effects of Auricularia auricula and its polysaccharide on diet-induced hyperlipidemia rats by modulating gut microbiota. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104038] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
34
|
Sehgal R, Bedi O, Trehanpati N. Role of Microbiota in Pathogenesis and Management of Viral Hepatitis. Front Cell Infect Microbiol 2020; 10:341. [PMID: 32850467 PMCID: PMC7431464 DOI: 10.3389/fcimb.2020.00341] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/04/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatitis is a condition that can be self-limiting or can progress to fibrosis (scarring), cirrhosis, or liver cancer. These days, gut microbiota becomes an important part of our immune system, which is important for disease progression or recovery. Translocation of gut microbial and metabolic products causes intestinal inflammation by modulating immune cells leading to impairment of the primary barrier. But there are limited studies discussing pathogenesis and management of hepatitis with gut microbiota. In this review, we have discussed the role of gut microbiota in pathogenesis and management of various hepatitis, especially hepatitis B and C. We have discussed the role of bacterial products, LPS-TLR4 pathway, and unmethylated CpG DNA, which ultimately affects downstream NF-kB signaling in hepatitis. Finally, we have discussed the role of fecal microbiota transplantation in the management of hepatitis.
Collapse
Affiliation(s)
- Rashi Sehgal
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Onkar Bedi
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Nirupma Trehanpati
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| |
Collapse
|
35
|
Sandri M, Sgorlon S, Scarsella E, Stefanon B. Effect of different starch sources in a raw meat-based diet on fecal microbiome in dogs housed in a shelter. ACTA ACUST UNITED AC 2020; 6:353-361. [PMID: 33005769 PMCID: PMC7503078 DOI: 10.1016/j.aninu.2020.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/11/2020] [Accepted: 03/15/2020] [Indexed: 12/18/2022]
Abstract
A dietary intervention study was assessed to determine if different sources of starch in homemade diets could significantly modify fecal microbiome of dogs. Twenty-seven adult dogs were enrolled and fed a diet based on a mixture of rice and pasta with fresh raw meat (CD). After 90 d, 8 dogs continued to receive CD diet, 10 dogs received a diet made of a raw meat and a complementary food with rice as the main source of starch (B1), and 9 dogs were fed a diet with the same raw meat and a complementary food with potato as the main source of starch (B2). Samples of feces were collected from each dog in the mornings at the beginning of the study and after 15 d and analyzed for pH, ammonia N (N–NH3) and total N, short chain fatty acids (SCFA) and lactic acid. Relative abundance of fecal microbiota was assessed by sequencing and annotating the V3–V4 regions of the 16S rRNA. Total starch intake was similar between diets but differed in the in vitro rate digestion and in the resistant starch, which was higher in B2 than in B1 and CD diets. Dogs fed B2 diet showed lower (P < 0.05) N–NH3 and pH but higher (P < 0.05) molar proportion of lactic acid. Linear discriminant analysis of the genera relative abundances indicated a significant (P < 0.01) increase of SMB53 genus at the end of the study in B1 diet and of Megamonas genus in B1 and B2 diets in comparison to CD diet. These results suggest that changes of starch source in a raw meat-based diet have limited effects on fecal microbiome in healthy dogs, but underline a high variability of microbiota among dogs.
Collapse
Affiliation(s)
- Misa Sandri
- Department of AgriFood, Environmental and Animal Science, University of Udine, Udine, 33100, Italy
| | - Sandy Sgorlon
- Department of AgriFood, Environmental and Animal Science, University of Udine, Udine, 33100, Italy
| | - Elisa Scarsella
- Department of AgriFood, Environmental and Animal Science, University of Udine, Udine, 33100, Italy
| | - Bruno Stefanon
- Department of AgriFood, Environmental and Animal Science, University of Udine, Udine, 33100, Italy
| |
Collapse
|
36
|
Bendiks ZA, Knudsen KEB, Keenan MJ, Marco ML. Conserved and variable responses of the gut microbiome to resistant starch type 2. Nutr Res 2020; 77:12-28. [PMID: 32251948 DOI: 10.1016/j.nutres.2020.02.009] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/31/2020] [Accepted: 02/14/2020] [Indexed: 12/12/2022]
Abstract
Resistant starch type 2 (RS2), a dietary fiber comprised solely of glucose, has been extensively studied in clinical trials and animal models for its capacity to improve metabolic and systemic health. Because the health modulatory effects of RS2 and other dietary fibers are thought to occur through modification of the gut microbiome, those studies frequently include assessments of RS2-mediated changes to intestinal microbial composition and function. In this review, we identify the conserved responses of the gut microbiome among 13 human and 35 animal RS2 intervention studies. Consistent outcomes of RS2 interventions include reductions in bacterial α-diversity; increased production of lumenal short-chain fatty acids; and enrichment of Ruminococcus bromii, Bifidobacterium adolescentis, and other gut taxa. Different taxa are usually responsive in animal models, and many RS2-mediated changes to the gut microbiome vary within and between studies. The root causes for this variation are examined with regard to methodological and analytical differences, host genetics and age, species differences (eg, human, animal), health status, intervention dose and duration, and baseline microbial composition. The significant variation found for this single dietary compound highlights the challenges in targeting the gut microbiome to improve health with dietary interventions. This knowledge on RS2 also provides opportunities to improve the design of nutrition studies targeting the gut microbiome and to ultimately identify the precise mechanisms via which dietary fiber benefits human health.
Collapse
Affiliation(s)
- Zachary A Bendiks
- Department of Food Science & Technology, University of California-Davis, Davis, CA.
| | - Knud E B Knudsen
- Department of Animal Science, Aarhus University, 8830, Tjele, Denmark.
| | - Michael J Keenan
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA.
| | - Maria L Marco
- Department of Food Science & Technology, University of California-Davis, Davis, CA.
| |
Collapse
|
37
|
Qin SM, Zhang KY, Ding XM, Bai SP, Wang JP, Zeng QF. Effect of dietary graded resistant potato starch levels on growth performance, plasma cytokines concentration, and intestinal health in meat ducks. Poult Sci 2019; 98:3523-3532. [PMID: 31329991 DOI: 10.3382/ps/pez186] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 03/18/2019] [Indexed: 12/15/2022] Open
Abstract
The objective of the present study was to investigate the effect of dietary graded raw potato starch (RPS) levels on growth performance, plasma cytokines concentration, ileal barrier function, and cecal short-chain fatty acids (SCFA) concentration in meat ducks from 1 to 35 D of age. This study included 2 experiments. In experiment (Exp.) 1, sixteen 35-day-old meat ducks were used to evaluate the AME of RPS by orogastric administration. Results showed the AME value of RPS on ducks is 2.76 kcal/g. In Exp. 2, a total of 600 one-day-old ducklings were randomly assigned to 5 isonitrogenous and isoenergetic dietary treatments that included 0 (control), 6, 12, 18, and 24% RPS, respectively. Samples were collected at both of 14 and 35 D. Neither growth performance nor ileal parameters (length, weight, and pH) at both of 14 and 35 D was affected by dietary RPS. However, the mucosal thickness (14 D), villus height (except for 18% RPS at 14 D), and the villus height: crypt depth ratio (14 and 35 D) of the ileum were increased in the 12 and 18% RPS diets when compared to 0% RPS diet. Meanwhile, proinflammatory factors such as plasma interleukin (IL)-1β and IL-6 (14 D) reduced in 12% RPS diet and tumor necrosis factor α decreased in 12% (except for 14 D) and 18% RPS groups. When compared with the control group, diets with 18% RPS significantly increased mucin 2 gene expression at 14 D, and 12% RPS elevated the mRNA expression of tight junction proteins including Zonula occludens-1 and Claudin 1 (except for 14 D) in the ileal mucosa of birds. Furthermore, ducks fed 12% RPS diet had higher concentrations of acetate, propionate, and butyrate in cecal digesta than other groups. These findings indicated that diets with 12 and/or 18% RPS increased the cecal SCFA concentration, which subsequently enhanced the barrier function and improved intestinal health in the ileum for 14 and 35-day-old meat ducks.
Collapse
Affiliation(s)
- S M Qin
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - K Y Zhang
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - X M Ding
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - S P Bai
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - J P Wang
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Q F Zeng
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| |
Collapse
|
38
|
Dietary administration of resistant starch improved caecal barrier function by enhancing intestinal morphology and modulating microbiota composition in meat duck. Br J Nutr 2019; 123:172-181. [PMID: 31495347 DOI: 10.1017/s0007114519002319] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Resistant starch (RS) was recently approved to exert a powerful influence on gut health, but the effect of RS on the caecal barrier function in meat ducks has not been well defined. Thus, the effect of raw potato starch (RPS), a widely adopted RS material, on microbial composition and barrier function of caecum for meat ducks was determined. A total of 360 Cherry Valley male ducks of 1-d-old were randomly divided and fed diets with 0 (control), 12, or 24 % RPS for 35 d. Diets supplemented with RPS significantly elevated villus height and villus height:crypt depth ratio in the caecum. The 16S rRNA sequence analysis indicated that the diet with 12 % RPS had a higher relative abundance of Firmicutes and the butyrate-producing bacteria Faecalibacterium, Subdoligranulum, and Erysipelatoclostridium were enriched in all diets. Lactobacillus and Bifidobacterium were significantly increased in the 24 % RPS diet v. the control diet. When compared with the control diet, the diet with 12 % RPS was also found to notably increase acetate, propionate and butyrate contents and up-regulated barrier-related genes including claudin-1, zonula occludens-1, mucin-2 and proglucagon in the caecum. Furthermore, the addition of 12 % RPS significantly reduced plasma TNF-α, IL-1β and endotoxin concentrations. These data revealed that diets supplemented with 12 % RPS partially improved caecal barrier function in meat ducks by enhancing intestinal morphology and barrier markers expression, modulating the microbiota composition and attenuating inflammatory markers.
Collapse
|
39
|
Waters JL, Ley RE. The human gut bacteria Christensenellaceae are widespread, heritable, and associated with health. BMC Biol 2019; 17:83. [PMID: 31660948 PMCID: PMC6819567 DOI: 10.1186/s12915-019-0699-4] [Citation(s) in RCA: 444] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 12/18/2022] Open
Abstract
The Christensenellaceae, a recently described family in the phylum Firmicutes, is emerging as an important player in human health. The relative abundance of Christensenellaceae in the human gut is inversely related to host body mass index (BMI) in different populations and multiple studies, making its relationship with BMI the most robust and reproducible link between the microbial ecology of the human gut and metabolic disease reported to date. The family is also related to a healthy status in a number of other different disease contexts, including obesity and inflammatory bowel disease. In addition, Christensenellaceae is highly heritable across multiple populations, although specific human genes underlying its heritability have so far been elusive. Further research into the microbial ecology and metabolism of these bacteria should reveal mechanistic underpinnings of their host-health associations and enable their development as therapeutics.
Collapse
Affiliation(s)
- Jillian L Waters
- Department of Microbiome Science, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076, Tuebingen, Germany
| | - Ruth E Ley
- Department of Microbiome Science, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076, Tuebingen, Germany.
| |
Collapse
|
40
|
Snelson M, Jong J, Manolas D, Kok S, Louise A, Stern R, Kellow NJ. Metabolic Effects of Resistant Starch Type 2: A Systematic Literature Review and Meta-Analysis of Randomized Controlled Trials. Nutrients 2019; 11:nu11081833. [PMID: 31398841 PMCID: PMC6723691 DOI: 10.3390/nu11081833] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/02/2019] [Accepted: 08/05/2019] [Indexed: 12/21/2022] Open
Abstract
Published evidence exploring the effects of dietary resistant starch (RS) on human cardiometabolic health is inconsistent. This review aimed to investigate the effect of dietary RS type 2 (RS2) supplementation on body weight, satiety ratings, fasting plasma glucose, glycated hemoglobin (HbA1c), insulin resistance and lipid levels in healthy individuals and those with overweight/obesity, the metabolic syndrome (MetS), prediabetes or type 2 diabetes mellitus (T2DM). Five electronic databases were searched for randomized controlled trials (RCTs) published in English between 1982 and 2018, with trials eligible for inclusion if they reported RCTs involving humans where at least one group consumed ≥ 8 g of RS2 per day and measured body weight, satiety, glucose and/or lipid metabolic outcomes. Twenty-two RCTs involving 670 participants were included. Meta-analyses indicated that RS2 supplementation significantly reduced serum triacylglycerol concentrations (mean difference (MD) = -0.10 mmol/L; 95% CI -0.19, -0.01, P = 0.03) in healthy individuals (n = 269) and reduced body weight (MD = -1.29 kg; 95% CI -2.40, -0.17, P = 0.02) in people with T2DM (n = 90). However, these outcomes were heavily influenced by positive results from a small number of individual studies which contradicted the conclusions of the majority of trials. RS2 had no effects on any other metabolic outcomes. All studies ranged from 1-12 weeks in duration and contained small sample sizes (10-60 participants), and most had an unclear risk of bias. Short-term RS2 supplementation in humans is of limited cardiometabolic benefit.
Collapse
Affiliation(s)
- Matthew Snelson
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Jessica Jong
- Department of Nutrition, Dietetics & Food, Monash University, Level 1, 264 Ferntree Gully Road, Notting Hill, VIC 3168, Australia
| | - Deanna Manolas
- Department of Nutrition, Dietetics & Food, Monash University, Level 1, 264 Ferntree Gully Road, Notting Hill, VIC 3168, Australia
| | - Smonda Kok
- Department of Nutrition, Dietetics & Food, Monash University, Level 1, 264 Ferntree Gully Road, Notting Hill, VIC 3168, Australia
| | - Audrey Louise
- Department of Nutrition, Dietetics & Food, Monash University, Level 1, 264 Ferntree Gully Road, Notting Hill, VIC 3168, Australia
| | - Romi Stern
- Department of Nutrition, Dietetics & Food, Monash University, Level 1, 264 Ferntree Gully Road, Notting Hill, VIC 3168, Australia
| | - Nicole J Kellow
- Department of Nutrition, Dietetics & Food, Monash University, Level 1, 264 Ferntree Gully Road, Notting Hill, VIC 3168, Australia.
| |
Collapse
|
41
|
Maurer LH, Cazarin CBB, Quatrin A, Minuzzi NM, Costa EL, Morari J, Velloso LA, Leal RF, Rodrigues E, Bochi VC, Júnior MRM, Emanuelli T. Grape peel powder promotes intestinal barrier homeostasis in acute TNBS-colitis: A major role for dietary fiber and fiber-bound polyphenols. Food Res Int 2019; 123:425-439. [PMID: 31284994 DOI: 10.1016/j.foodres.2019.04.068] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 04/28/2019] [Accepted: 04/29/2019] [Indexed: 02/07/2023]
Abstract
Inflammatory bowel diseases are characterized by impaired intestinal barrier function. This study aimed to evaluate the effects of grape peel powder (GPP) and its bioactive rich-fractions on the barrier function and colonic injury in a model of colitis induced by 2,4,6 trinitrobenzene sulfonic acid (TNBS). Wistar rats received diets supplemented with either GPP (8%), extractable polyphenols (EP), non-extractable polyphenols-rich fraction (NEP-F), or polyphenols-poor, fiber-rich fraction (F) from grapes at amounts equivalent to the GPP group during 15 days before and for 7 days after colitis induction. NEP-F has decreased the extension of colonic lesion but the other grape peel bioactive fractions did not protect against macroscopic or microscopic colonic damage, EP diet increased macroscopic colonic damage. GPP, EP, and NEP-F reduced claudin-2 mRNA expression, whereas GPP and F fraction increased occludin and ZO-1 mRNA expression. All experimental diets reduced the colitis-triggered increase of MMP-9 mRNA expression. Colitis reduced by 30% the production of cecal short-chain fatty acids (SCFA). GPP and NEP-F completely protected against this effect, whereas F fraction was ineffective. Only GPP and NEP-F were able to decrease the upregulation of GRP94 mRNA triggered by colitis. Dietary fiber seems to reestablish the intestinal barrier function, whereas fiber-bound phenolics were able to restore cecal metabolism to produce beneficial metabolites like SCFA and to reduce the activation of the unfolded protein response.
Collapse
Affiliation(s)
- Luana Haselein Maurer
- Graduate Program on Food Science and Technology, Center of Rural Sciences, Federal University of Santa Maria, 97105-900 Santa Maria, Rio Grande do Sul, Brazil; Federal Institute of Education, Science, and Technology Farroupilha, 97555-000 Alegrete, Rio Grande do Sul, Brazil
| | - Cinthia Baú Betim Cazarin
- School of Food Engineering, Department of Food and Nutrition, University of Campinas, Campinas, São Paulo 13083-862, Brazil
| | - Andréia Quatrin
- Federal Institute of Education, Science, and Technology Farroupilha, 97555-000 Alegrete, Rio Grande do Sul, Brazil
| | - Natália Machado Minuzzi
- Integrated Center for Laboratory Analysis Development (NIDAL), Department of Food Technology and Science, Center of Rural Sciences, Federal University of Santa Maria, 97105-900 Santa Maria, Rio Grande do Sul, Brazil
| | - Eduarda Lasch Costa
- Integrated Center for Laboratory Analysis Development (NIDAL), Department of Food Technology and Science, Center of Rural Sciences, Federal University of Santa Maria, 97105-900 Santa Maria, Rio Grande do Sul, Brazil
| | - Joseane Morari
- School of Medical Sciences, Laboratory of Cell Signaling, University of Campinas, Campinas, São Paulo 13084-970, Brazil
| | - Lício Augusto Velloso
- School of Medical Sciences, Laboratory of Cell Signaling, University of Campinas, Campinas, São Paulo 13084-970, Brazil
| | - Raquel Franco Leal
- School of Medical Sciences, Department of Surgery, University of Campinas, Campinas, São Paulo 13083-887, Brazil
| | - Eliseu Rodrigues
- Federal University of Rio Grande do Sul, Institute of Food Science and Technology, 91501-970 Porto Alegre, RS, Brazil
| | - Vivian Caetano Bochi
- Federal University of Health Sciences of Porto Alegre, Department of Nutrition, 90050-170 Porto Alegre, RS, Brazil
| | - Mário Roberto Maróstica Júnior
- School of Food Engineering, Department of Food and Nutrition, University of Campinas, Campinas, São Paulo 13083-862, Brazil
| | - Tatiana Emanuelli
- Graduate Program on Food Science and Technology, Center of Rural Sciences, Federal University of Santa Maria, 97105-900 Santa Maria, Rio Grande do Sul, Brazil; Integrated Center for Laboratory Analysis Development (NIDAL), Department of Food Technology and Science, Center of Rural Sciences, Federal University of Santa Maria, 97105-900 Santa Maria, Rio Grande do Sul, Brazil.
| |
Collapse
|
42
|
Kaur A, Chen T, Green SJ, Mutlu E, Martin BR, Rumpagaporn P, Patterson JA, Keshavarzian A, Hamaker BR. Physical Inaccessibility of a Resistant Starch Shifts Mouse Gut Microbiota to Butyrogenic Firmicutes. Mol Nutr Food Res 2019; 63:e1801012. [PMID: 30659764 DOI: 10.1002/mnfr.201801012] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 01/03/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Amandeep Kaur
- Whistler Center for Carbohydrate ResearchDepartment of Food SciencePurdue University West Lafayette IN 47907 USA
| | - Tingting Chen
- Whistler Center for Carbohydrate ResearchDepartment of Food SciencePurdue University West Lafayette IN 47907 USA
| | - Stefan J. Green
- Sequencing CoreUniversity of Illinois at Chicago Chicago IL 60612 USA
| | - Ece Mutlu
- Rush University Medical CenterDivision of Digestive Diseases and Nutrition Chicago IL 60612 USA
| | - Berdine R. Martin
- Department of Nutrition SciencePurdue University West Lafayette IN 47907 USA
| | - Pinthip Rumpagaporn
- Department of Food Science and TechnologyKasetsart University Bangkok 10900 Thailand
| | - John A. Patterson
- Department of Animal SciencePurdue University West Lafayette IN 47907 USA
| | - Ali Keshavarzian
- Rush University Medical CenterDivision of Digestive Diseases and Nutrition Chicago IL 60612 USA
| | - Bruce R. Hamaker
- Whistler Center for Carbohydrate ResearchDepartment of Food SciencePurdue University West Lafayette IN 47907 USA
| |
Collapse
|
43
|
Lange ME, Uwiera RRE, Inglis GD. Housing Gnotobiotic Mice in Conventional Animal Facilities. ACTA ACUST UNITED AC 2019; 9:e59. [DOI: 10.1002/cpmo.59] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Máximo E. Lange
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre; Lethbridge Alberta Canada
- Department of Agricultural, Food, and Nutritional Science, University of Alberta; Edmonton Alberta Canada
| | - Richard R. E. Uwiera
- Department of Agricultural, Food, and Nutritional Science, University of Alberta; Edmonton Alberta Canada
| | - G. Douglas Inglis
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre; Lethbridge Alberta Canada
| |
Collapse
|
44
|
Lépine AF, de Hilster RHJ, Leemhuis H, Oudhuis L, Buwalda PL, de Vos P. Higher Chain Length Distribution in Debranched Type-3 Resistant Starches (RS3) Increases TLR Signaling and Supports Dendritic Cell Cytokine Production. Mol Nutr Food Res 2019; 63:e1801007. [PMID: 30412339 PMCID: PMC6767581 DOI: 10.1002/mnfr.201801007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 10/20/2018] [Indexed: 12/16/2022]
Abstract
SCOPE Resistant starches (RSs) are classically considered to elicit health benefits through fermentation. However, it is recently shown that RSs can also support health by direct immune interactions. Therefore, it has been hypothesized that the structural traits of RSs might impact the health benefits associated with their consumption. METHODS AND RESULTS Effects of crystallinity, molecular weight, and chain length distribution of RSs are determined on immune Toll-like receptors (TLRs), dendritic cells (DCs), and T-cell cytokines production. To this end, four type-3 RSs (RS3) are compared, namely Paselli WFR, JD150, debranched Etenia, and Amylose fraction V, which are extracted from potatoes and enzymatically modified. Dextrose equivalent seems to be the most important feature influencing immune signaling via activation of TLRs. TLR2 and TLR4 are most strongly stimulated. Especially Paselli WFR is a potent activator of multiple receptors. Moreover, the presence of amylose, even to residual levels, enhances DC and T-cell cytokine responses. Paselli WFR and Amylose fraction V influence T-cell polarization. CONCLUSIONS It has been shown here that chain length and particularly dextrose equivalent are critical features for immune activation. This knowledge might lead to tailoring and design of immune-active RS formulations.
Collapse
Affiliation(s)
- Alexia F.P. Lépine
- ImmunoendocrinologyDivision of Medical BiologyDepartment of Pathology and Medical BiologyUniversity of Groningen, University Medical Center GroningenHanzeplein 19700RBGroningenThe Netherlands
- Food and Biobased ResearchWageningen University and Research centerBornse Weilanden 96708WGWageningenThe Netherlands
| | - Roderick H. J. de Hilster
- ImmunoendocrinologyDivision of Medical BiologyDepartment of Pathology and Medical BiologyUniversity of Groningen, University Medical Center GroningenHanzeplein 19700RBGroningenThe Netherlands
| | - Hans Leemhuis
- AVEBE Innovation CenterP.O.Box 159640AAVeendamThe Netherlands
| | - Lizette Oudhuis
- AVEBE Innovation CenterP.O.Box 159640AAVeendamThe Netherlands
| | - Piet L. Buwalda
- AVEBE Innovation CenterP.O.Box 159640AAVeendamThe Netherlands
- Biobased Chemistry and TechnologyWageningen University and Research centerBornse Weilanden 96708WGWageningenThe Netherlands
| | - Paul de Vos
- ImmunoendocrinologyDivision of Medical BiologyDepartment of Pathology and Medical BiologyUniversity of Groningen, University Medical Center GroningenHanzeplein 19700RBGroningenThe Netherlands
| |
Collapse
|
45
|
Xu GD, Cai L, Ni YS, Tian SY, Lu YQ, Wang LN, Chen LL, Ma WY, Deng SP. Comparisons of Effects on Intestinal Short-Chain Fatty Acid Concentration after Exposure of Two Glycosidase Inhibitors in Mice. Biol Pharm Bull 2018; 41:1024-1033. [PMID: 29962399 DOI: 10.1248/bpb.b17-00978] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Acarbose and voglibose are the most widely used diabetes drugs as glycosidase inhibitors. In this study, the use of these two inhibitors significantly increased the content of starch in large intestine, and altered the concentration of short-chain fatty acids (SCFAs) by affecting the intestinal microbiota. However, there are some differences in the intestinal microbiome of the two groups of mice, mainly in bacteria such as Bacteroidaceae bacteroides and Desulfovibrionaceae desulfovibrio. The productions of acetate and propionate in caecum in voglibose group were significantly higher than those in acarbose group and two kinds of glycosidase inhibitors were close in the production of butyrate in caecum. The Tax4Fun analysis based on Kyoto Encyclopedia of Genes and Genomes (KEGG) data indicated that different productions of acetate and propionate between acarbose group and voglibose group may be related to 2-oxoisovalerate dehydrogenase and pyruvate oxidase. In addition, in-vitro experiments suggested that voglibose had less effect on epithelial cells than acarbose after direct stimulation. According to the recent researches of SCFAs produced by intestinal microbiota, our comparative study shown higher concentration of these beneficial fatty acids in the lumen of voglibose-treated mice, which implied a lower level of inflammation.
Collapse
Affiliation(s)
- Guo-Dong Xu
- Food Sensory Science Laboratory, School of Food Science and Biotechnology, Zhejiang Gongshang University
| | - Lei Cai
- Food Sensory Science Laboratory, School of Food Science and Biotechnology, Zhejiang Gongshang University
| | - Yi-Shu Ni
- Food Sensory Science Laboratory, School of Food Science and Biotechnology, Zhejiang Gongshang University
| | - Shi-Yi Tian
- Food Sensory Science Laboratory, School of Food Science and Biotechnology, Zhejiang Gongshang University
| | - Ying-Qi Lu
- Food Sensory Science Laboratory, School of Food Science and Biotechnology, Zhejiang Gongshang University
| | - Li-Na Wang
- Food Sensory Science Laboratory, School of Food Science and Biotechnology, Zhejiang Gongshang University
| | - Lian-Lian Chen
- Food Sensory Science Laboratory, School of Food Science and Biotechnology, Zhejiang Gongshang University
| | - Wen-Ya Ma
- Food Sensory Science Laboratory, School of Food Science and Biotechnology, Zhejiang Gongshang University
| | - Shao-Ping Deng
- Food Sensory Science Laboratory, School of Food Science and Biotechnology, Zhejiang Gongshang University
| |
Collapse
|
46
|
Varankovich N, Grigoryan A, Brown K, Inglis GD, Uwiera RRE, Nickerson MT, Korber DR. Pea-protein alginate encapsulation adversely affects development of clinical signs of Citrobacter rodentium-induced colitis in mice treated with probiotics. Can J Microbiol 2018; 64:744-760. [PMID: 29958098 DOI: 10.1139/cjm-2018-0166] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The efficacy of two strains of Lactobacillus probiotics (Lactobacillus rhamnosus R0011 and Lactobacillus helveticus R0052) immobilized in microcapsules composed of pea protein isolate (PPI) and alginate microcapsules was assessed using a mouse model of Citrobacter rodentium-induced colitis. Accordingly, 4-week-old mice were fed diets supplemented with freeze-dried probiotics (group P), probiotic-containing microcapsules (group PE) (lyophilized PPI-alginate microcapsules containing probiotics), or PPI-alginate microcapsules containing no probiotics (group E). Half of the mice (controls, groups P, PE, and E) received C. rodentium by gavage 2 weeks after initiation of feeding. Daily monitoring of disease symptoms (abnormal behavior, diarrhea, etc.) and body weights was undertaken. Histopathological changes in colonic and cecal tissues, cytokine expression levels, and pathogen and probiotic densities in feces were examined, and the microbial communities of the distal colon mucosa were characterized by 16S rRNA sequencing. Infection with C. rodentium led to marked progression of infectious colitis, as revealed by symptomatic and histopathological data, changes in cytokine expression, and alteration of composition of mucosal communities. Probiotics led to changes in most of the disease markers but did not have a significant impact on cytokine profiles in infected animals. On the basis of cytokine expression analyses and histopathological data, it was evident that encapsulation materials (pea protein and calcium alginate) contributed to inflammation and worsened a set of symptoms in the cecum. These results suggest that even though food ingredients may be generally recognized as safe, they may in fact contribute to the development of an inflammatory response in certain animal disease models.
Collapse
Affiliation(s)
- Natallia Varankovich
- a Department of Food and Bioproduct Sciences, 51 Campus Drive, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Alexander Grigoryan
- a Department of Food and Bioproduct Sciences, 51 Campus Drive, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Kirsty Brown
- b Agriculture and Agri-Food Canada, 5403-1st Avenue South, Lethbridge, AB T1J 4P4, Canada
| | - G Douglas Inglis
- b Agriculture and Agri-Food Canada, 5403-1st Avenue South, Lethbridge, AB T1J 4P4, Canada
| | - Richard R E Uwiera
- c Department of Agricultural Food and Nutritional Science, University of Alberta, 410 Agriculture/Forestry Centre, Edmonton, AB T6G 2R3, Canada
| | - Michael T Nickerson
- a Department of Food and Bioproduct Sciences, 51 Campus Drive, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Darren R Korber
- a Department of Food and Bioproduct Sciences, 51 Campus Drive, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| |
Collapse
|
47
|
Liu P, Zhao J, Wang W, Guo P, Lu W, Wang C, Liu L, Johnston LJ, Zhao Y, Wu X, Xu C, Zhang J, Ma X. Dietary Corn Bran Altered the Diversity of Microbial Communities and Cytokine Production in Weaned Pigs. Front Microbiol 2018; 9:2090. [PMID: 30233555 PMCID: PMC6131307 DOI: 10.3389/fmicb.2018.02090] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 08/16/2018] [Indexed: 01/08/2023] Open
Abstract
Corn bran (CB) has been used as an ingredient for pigs, but the underlying mechanisms that improve gut health is less clear. This study was conducted to investigate effects of dietary CB on growth performance, nutrient digestibility, plasma indices related to gut hormones and immunity, gut microbiota composition, and fermentation products in weaned pigs. A total of 60 weaned pigs were allocated to two dietary treatments, and piglets in each group received control (CON) diet or 5% CB diet for 28 days. Growth performance, nutrient digestibility, indices of gut hormones and immunity in plasma were evaluated. Microbiota composition in feces was determined using 16S rRNA amplicon sequencing, and fermentation products were measured by high-performance ion chromatography. The results showed that dietary CB did not affect growth performance, nutrient digestibility, gut hormones, or fermentation products in the trial (P > 0.05). There was an increased response to CB inclusion on interleukin-10 production (P < 0.05). On day 28, piglets fed dietary CB had a higher shannon index (P < 0.05). The population of the Firmicutes in CB treatment were decreased (P < 0.05), while the percentage of the Bacteroidetes were increased (P < 0.05). In particular, the populations of Eubacterium corprostanoligenes, Pevotella, and Fibrobacter related to polysaccharide fermentation of cereal bran were increased (P < 0.05). In conclusion, a post-weaning diet containing 5% CB increased intestinal microbial diversity, especially higher richness of fibrolytic bacteria, and promoted anti-inflammatory response to some extent in piglets, these changes should facilitate the adaptation of the digestive system of piglets in the subsequent growing phases.
Collapse
Affiliation(s)
- Ping Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jinbiao Zhao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Wei Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Pingting Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Wenqing Lu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Chunlin Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ling Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lee J Johnston
- Swine Nutrition and Production, West Central Research and Outreach Center, University of Minnesota, Morris, MN, United States
| | - Yuan Zhao
- Ningxia DaBeiNong Science and Technology Co., Ltd. (DBN), Yinchuan, China
| | - Xianhua Wu
- Ningxia DaBeiNong Science and Technology Co., Ltd. (DBN), Yinchuan, China
| | - Chi Xu
- Ningxia DaBeiNong Science and Technology Co., Ltd. (DBN), Yinchuan, China
| | - Jie Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China.,Department of Animal Husbandry and Veterinary, Beijing Vocational College of Agriculture, Beijing, China
| | - Xi Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China.,Ningxia DaBeiNong Science and Technology Co., Ltd. (DBN), Yinchuan, China.,Department of Internal Medicine, Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, United States.,College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
48
|
Folkerts J, Stadhouders R, Redegeld FA, Tam SY, Hendriks RW, Galli SJ, Maurer M. Effect of Dietary Fiber and Metabolites on Mast Cell Activation and Mast Cell-Associated Diseases. Front Immunol 2018; 9:1067. [PMID: 29910798 PMCID: PMC5992428 DOI: 10.3389/fimmu.2018.01067] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 04/30/2018] [Indexed: 12/14/2022] Open
Abstract
Many mast cell-associated diseases, including allergies and asthma, have seen a strong increase in prevalence during the past decades, especially in Western(ized) countries. It has been suggested that a Western diet may contribute to the prevalence and manifestation of allergies and asthma through reduced intake of dietary fiber and the subsequent production of their metabolites. Indeed, dietary fiber and its metabolites have been shown to positively influence the development of immune disorders via changes in microbiota composition and the regulation of B- and T-cell activation. However, the effects of these dietary components on the activation of mast cells, key effector cells of the inflammatory response in allergies and asthma, remain poorly characterized. Due to their location in the gut and vascularized tissues, mast cells are exposed to high concentrations of dietary fiber and/or its metabolites. Here, we provide a focused overview of current findings regarding the direct effects of dietary fiber and its various metabolites on the regulation of mast cell activity and the pathophysiology of mast cell-associated diseases.
Collapse
Affiliation(s)
- Jelle Folkerts
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands.,Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands.,Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States.,Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ralph Stadhouders
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands.,Department of Cell Biology, Erasmus MC, Rotterdam, Netherlands
| | - Frank A Redegeld
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - See-Ying Tam
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | - Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands
| | - Stephen J Galli
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | - Marcus Maurer
- Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
49
|
Mohamadkhani A. On the potential role of intestinal microbial community in hepatocarcinogenesis in chronic hepatitis B. Cancer Med 2018; 7:3095-3100. [PMID: 29761927 PMCID: PMC6051233 DOI: 10.1002/cam4.1550] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 03/17/2018] [Accepted: 04/19/2018] [Indexed: 12/12/2022] Open
Abstract
The chronic infection of hepatitis B virus (HBV) is the most potent risk factor for the development of cirrhosis and hepatocellular carcinoma (HCC). The association of intestinal microbiota alteration with progressive liver disease has been investigated in recent studies. Overgrowth of potentially pathogenic bacteria of gram‐negative species and, in particular, a significant increase in the fecal count of Escherichia coli (E. coli) are characterized in the presence of HCC. This study was conducted to describe the characteristics of the intestinal microbiota related to the presence of HCC in HBV‐carrier patients. The available literature indicates the colonization of E. coli as principal source of portal vein lipopolysaccharide (LPS), in the gut may contribute to the carcinogenesis process by inducing chronic inflammation. This understanding could help to predict the clinical outcomes in HBV‐carrier patients and innovative strategies to reduce the virulence of liver disease from intestinal dysbiosis.
Collapse
Affiliation(s)
- Ashraf Mohamadkhani
- Liver and Pancreatobiliary Disease Research Center, Digestive Disease Research institute, Shariati Hospital, Tehran University of Medical Science, Tehran, Iran
| |
Collapse
|
50
|
Herrmann E, Young W, Reichert-Grimm V, Weis S, Riedel CU, Rosendale D, Stoklosinski H, Hunt M, Egert M. In Vivo Assessment of Resistant Starch Degradation by the Caecal Microbiota of Mice Using RNA-Based Stable Isotope Probing-A Proof-of-Principle Study. Nutrients 2018; 10:nu10020179. [PMID: 29415499 PMCID: PMC5852755 DOI: 10.3390/nu10020179] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 01/19/2018] [Accepted: 01/30/2018] [Indexed: 02/07/2023] Open
Abstract
Resistant starch (RS) is the digestion resistant fraction of complex polysaccharide starch. By reaching the large bowel, RS can function as a prebiotic carbohydrate, i.e., it can shape the structure and activity of bowel bacterial communities towards a profile that confers health benefits. However, knowledge about the fate of RS in complex intestinal communities and the microbial members involved in its degradation is limited. In this study, 16S ribosomal RNA (rRNA)-based stable isotope probing (RNA-SIP) was used to identify mouse bowel bacteria involved in the assimilation of RS or its derivatives directly in their natural gut habitat. Stable-isotope [U13C]-labeled native potato starch was administrated to mice, and caecal contents were collected before 0 h and 2 h and 4 h after administration. 'Heavy', isotope-labeled [13C]RNA species, presumably derived from bacteria that have metabolized the labeled starch, were separated from 'light', unlabeled [12C]RNA species by fractionation of isolated total RNA in isopycnic-density gradients. Inspection of different density gradients showed a continuous increase in 'heavy' 16S rRNA in caecal samples over the course of the experiment. Sequencing analyses of unlabeled and labeled 16S amplicons particularly suggested a group of unclassified Clostridiales, Dorea, and a few other taxa (Bacteroides, Turicibacter) to be most actively involved in starch assimilation in vivo. In addition, metabolic product analyses revealed that the predominant 13C-labeled short chain fatty acid (SCFA) in caecal contents produced from the [U13C] starch was butyrate. For the first time, this study provides insights into the metabolic transformation of RS by intestinal bacterial communities directly within a gut ecosystem, which will finally help to better understand its prebiotic potential and possible applications in human health.
Collapse
Affiliation(s)
- Elena Herrmann
- Institute of Precision Medicine, Faculty of Medical & Life Sciences, Furtwangen University, 78054 Villingen-Schwenningen, Germany; (E.H.); (S.W.)
- Institute of Microbiology and Biotechnology, University of Ulm, 89069 Ulm, Germany; (V.R.-G.); (C.U.R.)
| | - Wayne Young
- AgResearch Limited, Food Nutrition and Health Team, Grasslands Research Centre, Palmerston North 4474, New Zealand;
- Riddet Institute, Massey University, Palmerston North 4474, New Zealand
- High-Value Nutrition, National Science Challenge, University of Auckland, Auckland 1142, New Zealand
| | - Verena Reichert-Grimm
- Institute of Microbiology and Biotechnology, University of Ulm, 89069 Ulm, Germany; (V.R.-G.); (C.U.R.)
| | - Severin Weis
- Institute of Precision Medicine, Faculty of Medical & Life Sciences, Furtwangen University, 78054 Villingen-Schwenningen, Germany; (E.H.); (S.W.)
| | - Christian U. Riedel
- Institute of Microbiology and Biotechnology, University of Ulm, 89069 Ulm, Germany; (V.R.-G.); (C.U.R.)
| | - Douglas Rosendale
- The New Zealand Institute for Plant & Food Research Limited, Palmerston North 4474, New Zealand; (D.R.); (H.S.); (M.H.)
| | - Halina Stoklosinski
- The New Zealand Institute for Plant & Food Research Limited, Palmerston North 4474, New Zealand; (D.R.); (H.S.); (M.H.)
| | - Martin Hunt
- The New Zealand Institute for Plant & Food Research Limited, Palmerston North 4474, New Zealand; (D.R.); (H.S.); (M.H.)
| | - Markus Egert
- Institute of Precision Medicine, Faculty of Medical & Life Sciences, Furtwangen University, 78054 Villingen-Schwenningen, Germany; (E.H.); (S.W.)
- Correspondence: ; Tel.: +49-7720-307-4554
| |
Collapse
|