1
|
Cimuanga-Mukanya A, Tshibangu-Kabamba E, Kisoko PDJN, Fauzia KA, Tshibangu FM, Wola AT, Kashala PT, Ngoyi DM, Ahuka-Mundeke S, Revathi G, Disashi-Tumba G, Kido Y, Matsumoto T, Akada J, Yamaoka Y. Synergistic effects of novel penicillin-binding protein 1A amino acid substitutions contribute to high-level amoxicillin resistance of Helicobacter pylori. mSphere 2024; 9:e0008924. [PMID: 39087788 DOI: 10.1128/msphere.00089-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/14/2024] [Indexed: 08/02/2024] Open
Abstract
The growing resistance to amoxicillin (AMX)-one of the main antibiotics used in Helicobacter pylori eradication therapy-is an increasing health concern. Several mutations of penicillin-binding protein 1A (PBP1A) are suspected of causing AMX resistance; however, only a limited set of these mutations have been experimentally explored. This study aimed to investigate four PBP1A mutations (i.e., T558S, N562H, T593A, and G595S) carried by strain KIN76, a high-level AMX-resistant clinical H. pylori isolate with an AMX minimal inhibition concentration (MIC) of 2 µg/mL. We transformed a recipient strain 26695 with the DNA containing one to four mutation allele combinations of the pbp1 gene from strain KIN76. Transformants were subjected to genomic exploration and antimicrobial susceptibility testing. The resistance was transformable, and the presence of two to four PBP1A mutations (T558S and N562H, or T593A and G595S), rather than separate single mutations, was necessary to synergistically increase the AMX MIC up to 16-fold compared with the wild-type (WT) strain 26695. An AMX binding assay of PBP1A was performed using these strains, and binding was visualized by chasing Bocillin, a fluorescent penicillin analog. This revealed that all four-mutation allele-transformed strains exhibited decreased affinity to AMX on PBP1A than the WT. Protein structure modeling indicated that functional modifications occur as a result of these amino acid substitutions. This study highlights a new synergistic AMX resistance mechanism and establishes new markers of AMX resistance in H. pylori.IMPORTANCEThe development of resistance to antibiotics, including amoxicillin, is hampering the eradication of Helicobacter pylori infection. The identification of mechanisms driving this resistance is crucial for the development of new therapeutic strategies. We have demonstrated in vitro the synergistic role of novel mutations in the pbp1 gene of H. pylori that is suspected to drive amoxicillin resistance. Also deepening our understanding of amoxicillin resistance mechanisms, this study establishes new molecular markers of amoxicillin resistance that may be useful in molecular-based antibiotic susceptibility testing approaches for clinical practice or epidemiologic investigations.
Collapse
Affiliation(s)
- Alain Cimuanga-Mukanya
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Oita, Japan
- Department of Internal Medicine, Faculty of Medicine, Pharmacy and Public Health, University of Mbujimayi, Mbujimayi, Democratic Republic of Congo
| | - Evariste Tshibangu-Kabamba
- Department of Internal Medicine, Faculty of Medicine, Pharmacy and Public Health, University of Mbujimayi, Mbujimayi, Democratic Republic of Congo
- Department of Virology and Parasitology & Research Center for Infectious Disease Sciences, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Patrick de Jesus Ngoma Kisoko
- Department of Internal Medicine, Faculty of Medicine, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Kartika Afrida Fauzia
- Research Centre for Preclinical and Clinical Medicine, National Research and Innovation Agency, Cibinong Science Center, West Java, Indonesia
| | - Fabien Mbaya Tshibangu
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Oita, Japan
- Department of Internal Medicine, Faculty of Medicine, Pharmacy and Public Health, University of Mbujimayi, Mbujimayi, Democratic Republic of Congo
| | - Antoine Tshimpi Wola
- Department of Internal Medicine, Faculty of Medicine, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | | | - Dieudonné Mumba Ngoyi
- Department of Parasitology, National Institute of Biomedical Research (INRB), Kinshasa, Democratic Republic of Congo
| | - Steve Ahuka-Mundeke
- Department of Virology, National Institute of Biomedical Research (INRB), Kinshasa, Democratic Republic of Congo
| | - Gunturu Revathi
- Department of Clinical Microbiology, Aga Khan University Hospital, Nairobi, Kenya
| | - Ghislain Disashi-Tumba
- Department of Internal Medicine, Faculty of Medicine, Pharmacy and Public Health, University of Mbujimayi, Mbujimayi, Democratic Republic of Congo
| | - Yasutoshi Kido
- Department of Virology and Parasitology & Research Center for Infectious Disease Sciences, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Takashi Matsumoto
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Oita, Japan
| | - Junko Akada
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Oita, Japan
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Oita, Japan
- Department of Medicine, Gastroenterology and Hepatology Section, Baylor College of Medicine, Houston, Texas, USA
- Research Center for Global and Local Infectious Diseases, Oita University, Yufu, Japan
- Division of Gastroentero-Hepatology, Department of Internal Medicine, Faculty of Medicine-Dr. Soetomo Teaching Hospital, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
2
|
Brkić N, Švagelj D, Omazić J. Pathohistological Changes in the Gastric Mucosa in Correlation with the Immunohistochemically Detected Spiral and Coccoid Forms of Helicobacter pylori. Microorganisms 2024; 12:1060. [PMID: 38930442 PMCID: PMC11206044 DOI: 10.3390/microorganisms12061060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/19/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND The coccoid form of Helicobacter pylori (H. pylori) is resistant to antibiotics. There are only a few studies that have analyzed the frequency of coccoid H. pylori in patients with gastritis. The aim of this work was to examine the correlation between the H. pylori form and the pathohistological characteristics of the stomach in patients with gastritis. MATERIALS AND METHODS This research was cross-sectional and focused on the gastric mucosa samples of 397 patients from one general hospital in Croatia. Two independent pathologists analyzed the samples regarding the pathohistological characteristics and the form of H. pylori. RESULTS There was a statistically significant difference in the gender of patients with H. pylori gastritis. Only the coccoid form of H. pylori was present in 9.6% of patients. There was a statistically significant difference in the frequency of a certain form of the bacterium depending on its localization in the stomach. The intensity of the bacterium was low in the samples where only the coccoid or spiral form was described. In cases of infection in the antrum, premalignant lesions and the coccoid form of H. pylori were more often present. CONCLUSION In the diagnosis of H. pylori infection, the determination of the form of the bacterium via immunohistochemistry should be included to increase the rate of eradication therapy and reduce the incidence of gastric malignancy.
Collapse
Affiliation(s)
- Nikolina Brkić
- Faculty of Medicine, J.J. Strossmayer University of Osijek, 31000 Osijek, Croatia;
- Department of Transfusion Medicine, General County Hospital Vinkovci, 32100 Vinkovci, Croatia
| | - Dražen Švagelj
- Department of Pathology and Cytology, General County Hospital Vinkovci, 32100 Vinkovci, Croatia;
| | - Jelena Omazić
- Faculty of Medicine, J.J. Strossmayer University of Osijek, 31000 Osijek, Croatia;
- Department of Laboratory and Transfusion Medicine, National Memorial Hospital “Dr. Jurjaj Njavro” Vukovar, 32000 Vukovar, Croatia
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, J.J. Strossmayer University of Osijek, 31000 Osijek, Croatia
| |
Collapse
|
3
|
Ng HK, Chua KH, Kee BP, Chuah KH, Por LY, Puah SM. Genetic variations of penicillin-binding protein 1A: insights into the current status of amoxicillin-based regimens for Helicobacter pylori eradication in Malaysia. J Med Microbiol 2024; 73. [PMID: 38712922 DOI: 10.1099/jmm.0.001832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024] Open
Abstract
Introduction. Resistance towards amoxicillin in Helicobacter pylori causes significant therapeutic impasse in healthcare settings worldwide. In Malaysia, the standard H. pylori treatment regimen includes a 14-day course of high-dose proton-pump inhibitor (rabeprazole, 20 mg) with amoxicillin (1000 mg) dual therapy.Hypothesis/Gap Statement. The high eradication rate with amoxicillin-based treatment could be attributed to the primary resistance rates of amoxicillin being relatively low at 0%, however, a low rate of secondary resistance has been documented in Malaysia recently.Aim. This study aims to investigate the amino acid mutations and related genetic variants in PBP1A of H. pylori, correlating with amoxicillin resistance in the Malaysian population.Methodology. The full-length pbp1A gene was amplified via PCR from 50 genomic DNA extracted from gastric biopsy samples of H. pylori-positive treatment-naïve Malaysian patients. The sequences were then compared with reference H. pylori strain ATCC 26695 for mutation and variant detection. A phylogenetic analysis of 50 sequences along with 43 additional sequences from the NCBI database was performed. These additional sequences included both amoxicillin-resistant strains (n=20) and amoxicillin-sensitive strains (n=23).Results. There was a total of 21 variants of amino acids, with three of them located in or near the PBP-motif (SKN402-404). The percentages of these three variants are as follows: K403X, 2%; S405I, 2% and E406K, 16%. Based on the genetic markers identified, the resistance rate for amoxicillin in our sample remained at 0%. The phylogenetic examination suggested that H. pylori might exhibit unique conserved pbp1A sequences within the Malaysian context.Conclusions. Overall, the molecular analysis of PBP1A supported the therapeutic superiority of amoxicillin-based regimens. Therefore, it is crucial to continue monitoring the amoxicillin resistance background of H. pylori with a larger sample size to ensure the sustained effectiveness of amoxicillin-based treatments in Malaysia.
Collapse
Affiliation(s)
- Heng Kang Ng
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Kek Heng Chua
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Boon Pin Kee
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Kee Huat Chuah
- Department of Medicine, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Lip Yee Por
- Department of Computer System and Technology, Faculty of Computer Science and Information Technology, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Suat Moi Puah
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
4
|
Gong X, Wang Y, An Y, Li Z, Liu D, Yong X. The crosstalk between efflux pump and resistance gene mutation in Helicobacter pylori. Gut Microbes 2024; 16:2379439. [PMID: 39052777 PMCID: PMC11275522 DOI: 10.1080/19490976.2024.2379439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/11/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024] Open
Abstract
Efflux pumps play a crucial role in the development of antibiotic resistance. The aim of this study was to investigate the relationship between efflux pump gene expression and resistance gene mutations in Helicobacter pylori. Twenty-six clinical strains with varying resistance characteristics were selected for further experiment. Seven susceptible strains were induced to become resistant, and the expression of efflux pump genes and point mutations were recorded. Four susceptible strains were selected to undergo candidate mutation construction, and changes in efflux pump gene expression were detected. Efflux pump knockout strains were constructed, and their effects on preventing and reversing antibiotic resistance gene mutations were assessed. Results showed that the expression of efflux pump genes hefA and hefD was significantly higher in the multidrug-resistant group compared to other groups. During the process of antibiotic-induced resistance, efflux pump gene expression did not exhibit a steady increase or decrease. Strains with the A2143G or A2142G point mutations in 23S rRNA exhibited lower hefA gene expression. Strains with mutations at 87K/91N, 87N/91 G, 87K/91D, or 87N/91Y in gyrA and the 194insertA mutation in rdxA showed higher hefA gene expression compared to the wild-type strain. During the process of antibiotic-induced resistance, the strain with the knockout of the efflux pump gene hefA developed mutations in the 23S rRNA, gyrA, or rdxA genes later compared to the wild-type strain. Knockout of the efflux pump gene could reverse the phenotypic resistance to clarithromycin or metronidazole in some strains but had no effect on reverse resistance gene mutation. This study suggested that different resistance gene point mutations may have varying effects on efflux pump gene expression. Knockout of the efflux pump gene can delay or prevent antibiotic resistance gene mutations to some extent and can reverse phenotypic resistance to clarithromycin and metronidazole in certain strains.
Collapse
Affiliation(s)
- Xiaoling Gong
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Department of Gastroenterology, Gastroenterology Institute of Jiangxi Province, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Digestive Diseases, Department of Gastroenterology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang, Jiangxi, China
- Department of Gastroenterology, Jiangxi Clinical Research Center for Gastroenterology, Nanchang, Jiangxi, China
| | - Youhua Wang
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Department of Gastroenterology, Gastroenterology Institute of Jiangxi Province, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Digestive Diseases, Department of Gastroenterology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang, Jiangxi, China
- Department of Gastroenterology, Jiangxi Clinical Research Center for Gastroenterology, Nanchang, Jiangxi, China
| | - Ying An
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Department of Gastroenterology, Gastroenterology Institute of Jiangxi Province, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Digestive Diseases, Department of Gastroenterology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang, Jiangxi, China
- Department of Gastroenterology, Jiangxi Clinical Research Center for Gastroenterology, Nanchang, Jiangxi, China
- Department of Medical, Jinyu Medical Laboratory Co. Ltd, Shenyang Province, Liaoning, China
| | - Zhen Li
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Department of Gastroenterology, Gastroenterology Institute of Jiangxi Province, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Digestive Diseases, Department of Gastroenterology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang, Jiangxi, China
- Department of Gastroenterology, Jiangxi Clinical Research Center for Gastroenterology, Nanchang, Jiangxi, China
- Department of Clinical Nursing, Heze Health School, Shandong Province, Jinan, China
| | - Dongsheng Liu
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Department of Gastroenterology, Gastroenterology Institute of Jiangxi Province, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Digestive Diseases, Department of Gastroenterology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang, Jiangxi, China
- Department of Gastroenterology, Jiangxi Clinical Research Center for Gastroenterology, Nanchang, Jiangxi, China
| | - Xie Yong
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Department of Gastroenterology, Gastroenterology Institute of Jiangxi Province, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Digestive Diseases, Department of Gastroenterology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang, Jiangxi, China
- Department of Gastroenterology, Jiangxi Clinical Research Center for Gastroenterology, Nanchang, Jiangxi, China
| |
Collapse
|
5
|
Jacob TV, Doshi GM. A Mini-review on Helicobacter pylori with Gastric Cancer and Available Treatments. Endocr Metab Immune Disord Drug Targets 2024; 24:277-290. [PMID: 37622707 DOI: 10.2174/1871530323666230824161901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/22/2023] [Accepted: 07/26/2023] [Indexed: 08/26/2023]
Abstract
Helicobacter pylori (H. pylori) is the most thoroughly researched etiological component for stomach inflammation and malignancies. Even though there are conventional recommendations and treatment regimens for eradicating H. pylori, failure rates continue to climb. Antibiotic resistance contributes significantly to misdiagnoses, false positive results, and clinical failures, all of which raise the chance of infection recurrence. This review aims to explore the molecular mechanisms underlying drug resistance in H. pylori and discuss novel approaches for detecting genotypic resistance. Modulation of drug uptake/ efflux, biofilm, and coccoid development. Newer genome sequencing approaches capable of detecting H. pylori genotypic resistance are presented. Prolonged infection in the stomach causes major problems such as gastric cancer. The review discusses how H. pylori causes stomach cancer, recent biomarkers such as miRNAs, molecular pathways in the development of gastric cancer, and diagnostic methods and clinical trials for the disease. Efforts have been made to summarize the recent advancements made toward early diagnosis and novel therapeutic approaches for H. pylori-induced gastric cancer.
Collapse
Affiliation(s)
- Teresa V Jacob
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V.M. Road, Vile Parle (W), Mumbai, 400056, India
| | - Gaurav M Doshi
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V.M. Road, Vile Parle (W), Mumbai, 400056, India
| |
Collapse
|
6
|
Fauzia KA, Alfaray RI, Yamaoka Y. Advantages of Whole Genome Sequencing in Mitigating the Helicobacter pylori Antimicrobial Resistance Problem. Microorganisms 2023; 11:1239. [PMID: 37317213 DOI: 10.3390/microorganisms11051239] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 04/28/2023] [Indexed: 06/16/2023] Open
Abstract
Helicobacter pylori antimicrobial resistance is a critical public health issue. Typically, antimicrobial resistance epidemiology reports include only the antimicrobial susceptibility test results for H. pylori. However, this phenotypic approach is less capable of answering queries related to resistance mechanisms and specific mutations found in particular global regions. Whole genome sequencing can help address these two questions while still offering quality control and is routinely validated against AST standards. A comprehensive understanding of the mechanisms of resistance should improve H. pylori eradication efforts and prevent gastric cancer.
Collapse
Affiliation(s)
- Kartika Afrida Fauzia
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu 879-5593, Japan
- Department of Public Health and Preventive Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya 60115, Indonesia
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Ricky Indra Alfaray
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu 879-5593, Japan
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu 879-5593, Japan
- Division of Gastroentero-Hepatology, Department of Internal Medicine, Faculty of Medicine-Dr. Soetomo Teaching Hospital, Universitas Airlangga, Surabaya 60115, Indonesia
- Department of Medicine, Gastroenterology and Hepatology Section, Baylor College of Medicine, Houston, TX 77030, USA
- Borneo Medical and Health Research Centre, University Malaysia Sabah, Kota Kinabalu, Sabah 88400, Malaysia
- Research Center for Global and Local Infectious Diseases, Oita University, Yufu 879-5593, Japan
| |
Collapse
|
7
|
Miri AH, Kamankesh M, Llopis-Lorente A, Liu C, Wacker MG, Haririan I, Asadzadeh Aghdaei H, Hamblin MR, Yadegar A, Rad-Malekshahi M, Zali MR. The Potential Use of Antibiotics Against Helicobacter pylori Infection: Biopharmaceutical Implications. Front Pharmacol 2022; 13:917184. [PMID: 35833028 PMCID: PMC9271669 DOI: 10.3389/fphar.2022.917184] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Helicobacter pylori (H. pylori) is a notorious, recalcitrant and silent germ, which can cause a variety of debilitating stomach diseases, including gastric and duodenal ulcers and gastric cancer. This microbe predominantly colonizes the mucosal layer of the human stomach and survives in the inhospitable gastric microenvironment, by adapting to this hostile milieu. In this review, we first discuss H. pylori colonization and invasion. Thereafter, we provide a survey of current curative options based on polypharmacy, looking at pharmacokinetics, pharmacodynamics and pharmaceutical microbiology concepts, in the battle against H. pylori infection.
Collapse
Affiliation(s)
- Amir Hossein Miri
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojtaba Kamankesh
- Polymer Chemistry Department, School of Science, University of Tehran, Tehran, Iran
| | - Antoni Llopis-Lorente
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Chenguang Liu
- College of Marine Life Science, Ocean University of China, Qingdao, China
| | - Matthias G. Wacker
- Department of Pharmacy, National University of Singapore, Singapore, Singapore
| | - Ismaeil Haririan
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
- *Correspondence: Michael R. Hamblin, ; Abbas Yadegar, ; Mazda Rad-Malekshahi, ; Mohammad Reza Zali,
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Michael R. Hamblin, ; Abbas Yadegar, ; Mazda Rad-Malekshahi, ; Mohammad Reza Zali,
| | - Mazda Rad-Malekshahi
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- *Correspondence: Michael R. Hamblin, ; Abbas Yadegar, ; Mazda Rad-Malekshahi, ; Mohammad Reza Zali,
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Michael R. Hamblin, ; Abbas Yadegar, ; Mazda Rad-Malekshahi, ; Mohammad Reza Zali,
| |
Collapse
|