1
|
Kong P, Yang H, Liu H, Tong Q, Yi MA, Zhao Y, Yan D. CMTM6 promotes hepatocellular carcinoma invasion and metastasis and tumor-associated neutrophil immunoinfiltration through the Wnt/β-catenin pathway. Eur J Med Res 2024; 29:595. [PMID: 39696705 DOI: 10.1186/s40001-024-02189-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 12/01/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND CMTM6 has been closely associated with the onset and progression of various tumor types. However, the precise mechanism by which CMTM6 operates in hepatocellular carcinoma remains elusive, necessitating further investigation. METHODS Expression levels of CMTM6 in hepatocellular carcinoma tissues and cells were analyzed using immunohistochemistry and quantitative real-time PCR. The correlation between CMTM6 expression in hepatocellular carcinoma tissues and clinical pathological characteristics, as well as patient prognosis, was investigated. Proliferation and apoptosis of hepatocellular carcinoma cells with silenced or overexpressed CMTM6 were assessed, alongside measurements of β-catenin and Wnt1 protein expression levels. In vivo research was conducted utilizing a murine subcutaneous transplantation model. Gene Set Enrichment Analysis (GSEA) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were performed to elucidate the regulatory mechanism of CMTM6. Additionally, CD66b expression levels in tumor tissue were examined using immunohistochemistry, and the immune infiltration of CMTM6 and tumor-associated neutrophils (TANs) was analyzed. RESULTS Elevated expression levels of CMTM6 in hepatocellular carcinoma tissues and cells were found to be associated with poor patient prognosis. Overexpression of CMTM6 in hepatocellular carcinoma cells was demonstrated to promote cellular proliferation and inhibit apoptosis. Mechanistically, CMTM6 expression levels in hepatocellular carcinoma tissues were observed to positively correlate with β-catenin expression. GSEA and KEGG analysis revealed significant enrichment of CMTM6 in the Wnt/β-catenin pathway, indicating its involvement in pathway regulation. Furthermore, CMTM6 was found to be associated with immune infiltration of TANs in hepatocellular carcinoma tissues. CONCLUSION CMTM6 plays a pivotal role in the development and progression of hepatocellular carcinoma through regulation of the Wnt/β-catenin pathway via β-catenin. Moreover, CMTM6 demonstrates the capacity to promote immune infiltration of TANs in hepatocellular carcinoma tissues. Consequently, CMTM6 exhibits potential as both an early diagnostic marker and a novel therapeutic target for patients with hepatocellular carcinoma.
Collapse
Affiliation(s)
- Panpan Kong
- The First Ward of Hepatobiliary and Pancreatic Surgery, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Huan Yang
- The First Ward of Hepatobiliary and Pancreatic Surgery, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Huifang Liu
- The Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Qing Tong
- The First Ward of Hepatobiliary and Pancreatic Surgery, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Mamumaimaitijiang-Abula Yi
- The First Ward of Hepatobiliary and Pancreatic Surgery, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Yong Zhao
- Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Dong Yan
- The First Ward of Hepatobiliary and Pancreatic Surgery, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang, China.
| |
Collapse
|
2
|
Han X, Fu W, Sun Q, Ning J, Zhang J, Matsas S, de Melo FF, Zhang H, Hao X, Meng Q, Gong Y, Zheng H, Zhang J, Ding S. CMTM4 inhibits gastric tumorigenesis and metastasis. J Gastrointest Oncol 2024; 15:1431-1445. [PMID: 39279978 PMCID: PMC11399846 DOI: 10.21037/jgo-24-466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/15/2024] [Indexed: 09/18/2024] Open
Abstract
Background CKLF-like MARVEL transmembrane domain-containing 4 (CMTM4) is involved in immune regulation and tumor progression; however, its role in gastric cancer (GC) remains unclear. This study explored the role and mechanism of CMTM4 in GC. Methods Immunohistochemistry was used to analyze CMTM4 expression in human gastric biopsied cells from patients with GC (N=23) or chronic superficial gastritis (N=23). To investigate the function of CMTM4 in GC cells, the gene CMTM4 was knocked down and overexpressed in human gastric adenocarcinoma cell line AGS. The gene CMTM4 was overexpressed in AGS cells and human gastric cell line SGC7901. Cell Counting Kit 8 (CCK-8) and cell clonogenic assays were used to analyze the proliferation of the GC cells. Flow cytometry was used to analyze the effects of CMTM4 on apoptosis and the cell cycle. Wound healing and transwell assays were used to analyze the migration and invasion of the gastric cells, respectively. The mechanism of CMTM4 in GC cells was explored using the tandem mass tags (TMTs) proteome and verified by western blot analysis. Results CMTM4 expression was more downregulated in the human GC tissues than the gastritis tissues. CMTM4 overexpression significantly inhibited the proliferation, migration, and invasion of the GC cells, whereas CMTM4 knockdown enhanced gastric cell proliferation (P>0.05), migration (P>0.05), and invasion (P>0.05). Flow cytometry showed that CMTM4 promoted apoptosis and resulted in G1/S arrest in the GC cells. In addition, the proteome and western blot results showed that STAT1 was significantly upregulated, and the STAT1 signaling pathways were enriched in the GC cells overexpressing CMTM4. Conclusions Our results suggest that CMTM4 plays a tumor-suppressive role in GC and may affect the growth, migration, and invasion of GC cells through the STAT1 signaling pathway. CMTM4 might have potential value as a prognosis marker and potential therapeutic target for GC therapy.
Collapse
Affiliation(s)
- Xiurui Han
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases (BZ0317), Beijing, China
| | - Weiwei Fu
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases (BZ0317), Beijing, China
| | - Qinghua Sun
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases (BZ0317), Beijing, China
- Department of Geriatric Department, Peking University First Hospital, Beijing, China
| | - Jing Ning
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases (BZ0317), Beijing, China
| | - Jing Zhang
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases (BZ0317), Beijing, China
| | - Silvio Matsas
- Centro de Estudos e Pesquisas de Hematologia e Oncologia, Santo André, SP, Brazil
| | - Fabrício Freire de Melo
- Multidisciplinary Institute of Health, Federal University of Bahia, Vitória da Conquista, Brazil
| | - Hejun Zhang
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases (BZ0317), Beijing, China
| | - Xinyu Hao
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases (BZ0317), Beijing, China
| | - Qiao Meng
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases (BZ0317), Beijing, China
| | - Yueqing Gong
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases (BZ0317), Beijing, China
| | - Huiling Zheng
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases (BZ0317), Beijing, China
| | - Jing Zhang
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases (BZ0317), Beijing, China
| | - Shigang Ding
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases (BZ0317), Beijing, China
| |
Collapse
|
3
|
Yao M, Cao J, Zhang L, Wang K, Lin H, Qin L, Zhang Q, Qu C, Miao J, Xue C. Indole-3-Lactic Acid Derived from Lacticaseibacillus paracasei Inhibits Helicobacter pylori Infection via Destruction of Bacteria Cells, Protection of Gastric Mucosa Epithelial Cells, and Alleviation of Inflammation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15725-15739. [PMID: 38973111 DOI: 10.1021/acs.jafc.4c02868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Indole-3-lactic acid (ILA) has exhibited antimicrobial properties. However, its role in inhibiting Helicobacter pylori infection remains elusive. This study investigated the inhibitory effect of ILA produced by Lacticaseibacillus paracasei on H. pylori, which was further confirmed by cell and animal experiments. 5 mg/mL ILA was sufficient to directly inhibit the growth of H. pylori in vitro, with a urease inhibitory activity reaching 60.94 ± 1.03%, and the cell morphology and structure were destroyed. ILA inhibited 56.5% adhesion of H. pylori to GES-1 and significantly reduced the number of apoptotic cells. Furthermore, ILA suppresses H. pylori colonization by approximately 38% to 63%, reduced inflammation and oxidative stress in H. pylori-infected mice, and enhanced the enrichment and variety of gut microbiota, notably fostering the growth of beneficial bacteria such as Lactobacillus and Bifidobacterium strains. The results support that ILA derived from Lactobacillus can be applicated as a novel prebiotic in anti-H. pylori functional foods.
Collapse
Affiliation(s)
- Mengke Yao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Junhan Cao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Liping Zhang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Kai Wang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Huan Lin
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Ling Qin
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Qing Zhang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Changfeng Qu
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Marine Natural Products R&D Laboratory, Qingdao Key Laboratory, Qingdao 266061, China
| | - Jinlai Miao
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Marine Natural Products R&D Laboratory, Qingdao Key Laboratory, Qingdao 266061, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
4
|
Duan SL, Jiang Y, Li GQ, Fu W, Song Z, Li LN, Li J. Research insights into the chemokine-like factor (CKLF)-like MARVEL transmembrane domain-containing family (CMTM): their roles in various tumors. PeerJ 2024; 12:e16757. [PMID: 38223763 PMCID: PMC10787544 DOI: 10.7717/peerj.16757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 12/13/2023] [Indexed: 01/16/2024] Open
Abstract
The chemokine-like factor (CKLF)-like MARVEL transmembrane domain-containing (CMTM) family includes CMTM1-8 and CKLF, and they play key roles in the hematopoietic, immune, cardiovascular, and male reproductive systems, participating in the physiological functions, cancer, and other diseases associated with these systems. CMTM family members activate and chemoattract immune cells to affect the proliferation and invasion of tumor cells through a similar mechanism, the structural characteristics typical of chemokines and transmembrane 4 superfamily (TM4SF). In this review, we discuss each CMTM family member's chromosomal location, involved signaling pathways, expression patterns, and potential roles, and mechanisms of action in pancreatic, breast, gastric and liver cancers. Furthermore, we discuss several clinically applied tumor therapies targeted at the CMTM family, indicating that CMTM family members could be novel immune checkpoints and potential targets effective in tumor treatment.
Collapse
Affiliation(s)
- Sai-Li Duan
- Department of General Surgery, Xiangya Hospital Central South University, Changsha Province, Hunan, China
- Xiangya School of Medicine, Central South University, Changsha Province, Hunan, China
| | - Yingke Jiang
- Department of General Surgery, Xiangya Hospital Central South University, Changsha Province, Hunan, China
| | - Guo-Qing Li
- Xiangya School of Medicine, Central South University, Changsha Province, Hunan, China
| | - Weijie Fu
- Xiangya School of Medicine, Central South University, Changsha Province, Hunan, China
| | - Zewen Song
- Department of Oncology, The Third Xiangya Hospital of Central South University, Changsha Province, Hunan, China
| | - Li-Nan Li
- Department of Oncology, The 1st Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Jia Li
- Department of Oncology, The 1st Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
5
|
Zheng H, Zhang T, Zhang J, Ning J, Fu W, Wang Y, Shi Y, Wei G, Zhang J, Chen X, Ding S. AUF1-mediated inhibition of autophagic lysosomal degradation contributes to CagA stability and Helicobacter pylori-induced inflammation. Gut Microbes 2024; 16:2382766. [PMID: 39068523 PMCID: PMC11285221 DOI: 10.1080/19490976.2024.2382766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/01/2024] [Accepted: 07/17/2024] [Indexed: 07/30/2024] Open
Abstract
CagA, a virulence factor of Helicobacter pylori (H. pylori), is known to drive inflammation in gastric epithelial cells and is typically degraded through autophagy. However, the molecular mechanism by which CagA evades autophagy-mediated degradation remains elusive. This study found that H. pylori inhibits autophagic flux by upregulating the expression of AU-rich element RNA-binding factor 1 (AUF1). We confirmed that AUF1 does not affect autophagy initiation but instead hampers lysosomal clearance, as evidenced by treatments with 3-MA, CQ and BafA1. Upregulated AUF1 stabilizes CagA protein levels by inhibiting the autolysosomal degradation of intracellular CagA in H. pylori-infected gastric epithelial cells. Knocking down AUF1 promotes CagA degradation, an effect that can be reversed by the lysosome inhibitor BafA1 and CQ. Transcriptome analysis of AUF1-knockdown gastric epithelial cells infected with H. pylori indicated that AUF1 regulates the expression of lysosomal-associated hydrolase genes, specifically CTSD, to inhibit autolysosomal degradation. Moreover, we observed that knockdown of AUF1 enhanced the stability of CTSD mRNA and identified AUF1 binding to the 3'UTR region of CTSD mRNA. AUF1-mediated downregulation of CTSD expression contributes to CagA stability, and AUF1 overexpression leads to an increase in CagA levels in exosomes, thus promoting extracellular inflammation. In clinical gastric mucosa, the expression of AUF1 and its cytoplasmic translocation are associated with H. pylori-associated gastritis, with CagA being necessary for the translocation of AUF1 into the cytoplasm. Our findings suggest that AUF1 is a novel host-positive regulator of CagA, and dysregulation of AUF1 expression increases the risk of H. pylori-associated gastritis.
Collapse
Affiliation(s)
- Huiling Zheng
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases (BZ0371), Beijing, China
| | - Ting Zhang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jing Zhang
- Department of Laboratory Medicine, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jing Ning
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases (BZ0371), Beijing, China
| | - Weiwei Fu
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases (BZ0371), Beijing, China
| | - Ye Wang
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases (BZ0371), Beijing, China
| | - Yanyan Shi
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, P.R. China
| | - Guochao Wei
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jing Zhang
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases (BZ0371), Beijing, China
| | - Xiangmei Chen
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Shigang Ding
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases (BZ0371), Beijing, China
| |
Collapse
|