1
|
Morales G, Abelson B, Reasoner S, Miller J, Earl AM, Hadjifrangiskou M, Schmitz J. The Role of Mobile Genetic Elements in Virulence Factor Carriage from Symptomatic and Asymptomatic Cases of Escherichia coli Bacteriuria. Microbiol Spectr 2023; 11:e0471022. [PMID: 37195213 PMCID: PMC10269530 DOI: 10.1128/spectrum.04710-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 05/01/2023] [Indexed: 05/18/2023] Open
Abstract
Uropathogenic Escherichia coli (UPEC) is extremely diverse genotypically and phenotypically. Individual strains can variably carry diverse virulence factors, making it challenging to define a molecular signature for this pathotype. For many bacterial pathogens, mobile genetic elements (MGEs) constitute a major mechanism of virulence factor acquisition. For urinary E. coli, the total distribution of MGEs and their role in the acquisition of virulence factors is not well defined, including in the context of symptomatic infection versus asymptomatic bacteriuria (ASB). In this work, we characterized 151 isolates of E. coli, derived from patients with either urinary tract infection (UTI) or ASB. For both sets of E. coli, we catalogued the presence of plasmids, prophage, and transposons. We analyzed MGE sequences for the presence of virulence factors and antimicrobial resistance genes. These MGEs were associated with only ~4% of total virulence associated genes, while plasmids contributed to ~15% of antimicrobial resistance genes under consideration. Our analyses suggests that, across strains of E. coli, MGEs are not a prominent driver of urinary tract pathogenesis and symptomatic infection. IMPORTANCE Escherichia coli is the most common etiological agent of urinary tract infections (UTIs), with UTI-associated strains designated "uropathogenic" E. coli or UPEC. Across urinary strains of E. coli, the global landscape of MGEs and its relationship to virulence factor carriage and clinical symptomatology require greater clarity. Here, we demonstrate that many of the putative virulence factors of UPEC are not associated with acquisition due to MGEs. The current work enhances our understanding of the strain-to-strain variability and pathogenic potential of urine-associated E. coli and points toward more subtle genomic differences distinguishing ASB from UTI isolates.
Collapse
Affiliation(s)
- Grace Morales
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee, USA
| | - Benjamin Abelson
- Department of Urology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Seth Reasoner
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee, USA
| | - Jordan Miller
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee, USA
| | - Ashlee M. Earl
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, Massachusetts, USA
| | - Maria Hadjifrangiskou
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee, USA
- Department of Urology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University, Nashville, Tennessee, USA
| | - Jonathan Schmitz
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee, USA
- Department of Urology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
2
|
Saak CC, Dinh CB, Dutton RJ. Experimental approaches to tracking mobile genetic elements in microbial communities. FEMS Microbiol Rev 2020; 44:606-630. [PMID: 32672812 PMCID: PMC7476777 DOI: 10.1093/femsre/fuaa025] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 06/29/2020] [Indexed: 12/19/2022] Open
Abstract
Horizontal gene transfer is an important mechanism of microbial evolution and is often driven by the movement of mobile genetic elements between cells. Due to the fact that microbes live within communities, various mechanisms of horizontal gene transfer and types of mobile elements can co-occur. However, the ways in which horizontal gene transfer impacts and is impacted by communities containing diverse mobile elements has been challenging to address. Thus, the field would benefit from incorporating community-level information and novel approaches alongside existing methods. Emerging technologies for tracking mobile elements and assigning them to host organisms provide promise for understanding the web of potential DNA transfers in diverse microbial communities more comprehensively. Compared to existing experimental approaches, chromosome conformation capture and methylome analyses have the potential to simultaneously study various types of mobile elements and their associated hosts. We also briefly discuss how fermented food microbiomes, given their experimental tractability and moderate species complexity, make ideal models to which to apply the techniques discussed herein and how they can be used to address outstanding questions in the field of horizontal gene transfer in microbial communities.
Collapse
Affiliation(s)
- Christina C Saak
- Division of Biological Sciences, Section of Molecular Biology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Cong B Dinh
- Division of Biological Sciences, Section of Molecular Biology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Rachel J Dutton
- Division of Biological Sciences, Section of Molecular Biology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|