1
|
Mayeur H, Leyhr J, Mulley J, Leurs N, Michel L, Sharma K, Lagadec R, Aury JM, Osborne OG, Mulhair P, Poulain J, Mangenot S, Mead D, Smith M, Corton C, Oliver K, Skelton J, Betteridge E, Dolucan J, Dudchenko O, Omer AD, Weisz D, Aiden EL, McCarthy S, Sims Y, Torrance J, Tracey A, Howe K, Baril T, Hayward A, Martinand-Mari C, Sanchez S, Haitina T, Martin K, Korsching SI, Mazan S, Debiais-Thibaud M. The sensory shark: high-quality morphological, genomic and transcriptomic data for the small-spotted catshark Scyliorhinus canicula reveal the molecular bases of sensory organ evolution in jawed vertebrates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.23.595469. [PMID: 39005470 PMCID: PMC11244906 DOI: 10.1101/2024.05.23.595469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Cartilaginous fishes (chimaeras and elasmobranchs -sharks, skates and rays) hold a key phylogenetic position to explore the origin and diversifications of jawed vertebrates. Here, we report and integrate reference genomic, transcriptomic and morphological data in the small-spotted catshark Scyliorhinus canicula to shed light on the evolution of sensory organs. We first characterise general aspects of the catshark genome, confirming the high conservation of genome organisation across cartilaginous fishes, and investigate population genomic signatures. Taking advantage of a dense sampling of transcriptomic data, we also identify gene signatures for all major organs, including chondrichthyan specializations, and evaluate expression diversifications between paralogs within major gene families involved in sensory functions. Finally, we combine these data with 3D synchrotron imaging and in situ gene expression analyses to explore chondrichthyan-specific traits and more general evolutionary trends of sensory systems. This approach brings to light, among others, novel markers of the ampullae of Lorenzini electro-sensory cells, a duplication hotspot for crystallin genes conserved in jawed vertebrates, and a new metazoan clade of the Transient-receptor potential (TRP) family. These resources and results, obtained in an experimentally tractable chondrichthyan model, open new avenues to integrate multiomics analyses for the study of elasmobranchs and jawed vertebrates.
Collapse
|
2
|
Law STS, Nong W, Li C, Chong TK, Yip HY, Swale T, Chiu SW, Chung RYN, Lam HM, Wong SYS, Wong H, Hui JHL. Genome of tropical bed bug Cimex hemipterus (Cimicidae, Hemiptera) reveals tetraspanin expanded in bed bug ancestor. INSECT SCIENCE 2024. [PMID: 38830803 DOI: 10.1111/1744-7917.13388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 04/27/2024] [Accepted: 05/02/2024] [Indexed: 06/05/2024]
Abstract
Cimex species are ectoparasites that exclusively feed on warm-blooded animals such as birds and mammals. Three cimicid species are known to be persistent pests for humans, including the tropical bed bug Cimex hemipterus, common bed bug Cimex lectularius, and Eastern bat bug Leptocimex boueti. To date, genomic information is restricted to the common bed bug C. lectularius, which limits understanding their biology and to provide controls of bed bug infestations. Here, a chromosomal-level genome assembly of C. hemipterus (495 Mb [megabase pairs]) contained on 16 pseudochromosomes (scaffold N50 = 34 Mb), together with 9 messenger RNA and small RNA transcriptomes were obtained. In comparison between hemipteran genomes, we found that the tetraspanin superfamily was expanded in the Cimex ancestor. This study provides the first genome assembly for the tropical bed bug C. hemipterus, and offers an unprecedented opportunity to address questions relating to bed bug infestations, as well as genomic evolution to hemipterans more widely.
Collapse
Affiliation(s)
- Sean Tsz Sum Law
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong, China
| | - Wenyan Nong
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong, China
| | - Chade Li
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong, China
| | - Tze Kiu Chong
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong, China
| | - Ho Yin Yip
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong, China
| | | | - Siu Wai Chiu
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Roger Yat-Nork Chung
- School of Public Health and Primary Care, CUHK Institute of Health Equity, The Chinese University of Hong Kong, Hong Kong, China
| | - Hon-Ming Lam
- School of Life Sciences, State Key Laboratory of Agrobiotechnology, Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong, China
| | - Samuel Y S Wong
- School of Public Health and Primary Care, CUHK Institute of Health Equity, The Chinese University of Hong Kong, Hong Kong, China
| | - Hung Wong
- Department of Social Work, CUHK Institute of Health Equity, Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong, China
| | - Jerome H L Hui
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
3
|
Baril T, Galbraith J, Hayward A. Earl Grey: A Fully Automated User-Friendly Transposable Element Annotation and Analysis Pipeline. Mol Biol Evol 2024; 41:msae068. [PMID: 38577785 PMCID: PMC11003543 DOI: 10.1093/molbev/msae068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/20/2024] [Accepted: 03/22/2024] [Indexed: 04/06/2024] Open
Abstract
Transposable elements (TEs) are major components of eukaryotic genomes and are implicated in a range of evolutionary processes. Yet, TE annotation and characterization remain challenging, particularly for nonspecialists, since existing pipelines are typically complicated to install, run, and extract data from. Current methods of automated TE annotation are also subject to issues that reduce overall quality, particularly (i) fragmented and overlapping TE annotations, leading to erroneous estimates of TE count and coverage, and (ii) repeat models represented by short sections of total TE length, with poor capture of 5' and 3' ends. To address these issues, we present Earl Grey, a fully automated TE annotation pipeline designed for user-friendly curation and annotation of TEs in eukaryotic genome assemblies. Using nine simulated genomes and an annotation of Drosophila melanogaster, we show that Earl Grey outperforms current widely used TE annotation methodologies in ameliorating the issues mentioned above while scoring highly in benchmarking for TE annotation and classification and being robust across genomic contexts. Earl Grey provides a comprehensive and fully automated TE annotation toolkit that provides researchers with paper-ready summary figures and outputs in standard formats compatible with other bioinformatics tools. Earl Grey has a modular format, with great scope for the inclusion of additional modules focused on further quality control and tailored analyses in future releases.
Collapse
Affiliation(s)
- Tobias Baril
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Cornwall TR10 9FE, UK
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - James Galbraith
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Cornwall TR10 9FE, UK
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Alex Hayward
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Cornwall TR10 9FE, UK
| |
Collapse
|
4
|
Wright CJ, Stevens L, Mackintosh A, Lawniczak M, Blaxter M. Comparative genomics reveals the dynamics of chromosome evolution in Lepidoptera. Nat Ecol Evol 2024; 8:777-790. [PMID: 38383850 PMCID: PMC11009112 DOI: 10.1038/s41559-024-02329-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/12/2024] [Indexed: 02/23/2024]
Abstract
Chromosomes are a central unit of genome organization. One-tenth of all described species on Earth are butterflies and moths, the Lepidoptera, which generally possess 31 chromosomes. However, some species display dramatic variation in chromosome number. Here we analyse 210 chromosomally complete lepidopteran genomes and show that the chromosomes of extant lepidopterans are derived from 32 ancestral linkage groups, which we term Merian elements. Merian elements have remained largely intact through 250 million years of evolution and diversification. Against this stable background, eight lineages have undergone extensive reorganization either through numerous fissions or a combination of fusion and fission events. Outside these lineages, fusions are rare and fissions are rarer still. Fusions often involve small, repeat-rich Merian elements and the sex-linked element. Our results reveal the constraints on genome architecture in Lepidoptera and provide a deeper understanding of chromosomal rearrangements in eukaryotic genome evolution.
Collapse
Affiliation(s)
| | - Lewis Stevens
- Tree of Life, Wellcome Sanger Institute, Cambridge, UK
| | | | | | - Mark Blaxter
- Tree of Life, Wellcome Sanger Institute, Cambridge, UK.
| |
Collapse
|
5
|
Badet T, Tralamazza SM, Feurtey A, Croll D. Recent reactivation of a pathogenicity-associated transposable element is associated with major chromosomal rearrangements in a fungal wheat pathogen. Nucleic Acids Res 2024; 52:1226-1242. [PMID: 38142443 PMCID: PMC10853768 DOI: 10.1093/nar/gkad1214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 11/30/2023] [Accepted: 12/11/2023] [Indexed: 12/26/2023] Open
Abstract
Transposable elements (TEs) are key drivers of genomic variation contributing to recent adaptation in most species. Yet, the evolutionary origins and insertion dynamics within species remain poorly understood. We recapitulate the spread of the pathogenicity-associated Styx element across five species that last diverged ∼11 000 years ago. We show that the element likely originated in the Zymoseptoria fungal pathogen genus and underwent multiple independent reactivation events. Using a global 900-genome panel of the wheat pathogen Zymoseptoria tritici, we assess Styx copy number variation and identify renewed transposition activity in Oceania and South America. We show that the element can mobilize to create additional Styx copies in a four-generation pedigree. Importantly, we find that new copies of the element are not affected by genomic defenses suggesting minimal control against the element. Styx copies are preferentially located in recombination breakpoints and likely triggered multiple types of large chromosomal rearrangements. Taken together, we establish the origin, diversification and reactivation of a highly active TE with likely major consequences for chromosomal integrity and the expression of disease.
Collapse
Affiliation(s)
- Thomas Badet
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, CH-2000 Neuchâtel, Switzerland
| | - Sabina Moser Tralamazza
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, CH-2000 Neuchâtel, Switzerland
| | - Alice Feurtey
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, CH-2000 Neuchâtel, Switzerland
- Plant Pathology, D-USYS, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, CH-2000 Neuchâtel, Switzerland
| |
Collapse
|
6
|
Höglund J, Dias G, Olsen RA, Soares A, Bunikis I, Talla V, Backström N. A Chromosome-Level Genome Assembly and Annotation for the Clouded Apollo Butterfly (Parnassius mnemosyne): A Species of Global Conservation Concern. Genome Biol Evol 2024; 16:evae031. [PMID: 38368625 PMCID: PMC10901555 DOI: 10.1093/gbe/evae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/06/2024] [Accepted: 02/10/2024] [Indexed: 02/20/2024] Open
Abstract
The clouded apollo (Parnassius mnemosyne) is a palearctic butterfly distributed over a large part of western Eurasia, but population declines and fragmentation have been observed in many parts of the range. The development of genomic tools can help to shed light on the genetic consequences of the decline and to make informed decisions about direct conservation actions. Here, we present a high-contiguity, chromosome-level genome assembly of a female clouded apollo butterfly and provide detailed annotations of genes and transposable elements. We find that the large genome (1.5 Gb) of the clouded apollo is extraordinarily repeat rich (73%). Despite that, the combination of sequencing techniques allowed us to assemble all chromosomes (nc = 29) to a high degree of completeness. The annotation resulted in a relatively high number of protein-coding genes (22,854) compared with other Lepidoptera, of which a large proportion (21,635) could be assigned functions based on homology with other species. A comparative analysis indicates that overall genome structure has been largely conserved, both within the genus and compared with the ancestral lepidopteran karyotype. The high-quality genome assembly and detailed annotation presented here will constitute an important tool for forthcoming efforts aimed at understanding the genetic consequences of fragmentation and decline, as well as for assessments of genetic diversity, population structure, inbreeding, and genetic load in the clouded apollo butterfly.
Collapse
Affiliation(s)
- Jacob Höglund
- Animal Ecology Program, Department of Ecology and Genetics (IEG), Uppsala University, Uppsala SE-752 36, Sweden
| | - Guilherme Dias
- National Bioinformatics Infrastructure Sweden (NBIS), Science for Life Laboratory, Uppsala 752 37, Sweden
| | - Remi-André Olsen
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna 17165, Sweden
| | - André Soares
- National Bioinformatics Infrastructure Sweden (NBIS), Science for Life Laboratory, Uppsala 752 37, Sweden
| | - Ignas Bunikis
- Uppsala Genome Center, Department of Immunology, Genetics and Pathology, Uppsala University, National Genomics Infrastructure hosted by SciLifeLab, Uppsala, Sweden
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala 752 37, Sweden
| | - Venkat Talla
- Evolutionary Biology Program, Department of Ecology and Genetics (IEG), Uppsala University, Uppsala SE-752 36, Sweden
| | - Niclas Backström
- Evolutionary Biology Program, Department of Ecology and Genetics (IEG), Uppsala University, Uppsala SE-752 36, Sweden
| |
Collapse
|
7
|
James DG. Monarch Butterflies in Western North America: A Holistic Review of Population Trends, Ecology, Stressors, Resilience and Adaptation. INSECTS 2024; 15:40. [PMID: 38249046 PMCID: PMC10817040 DOI: 10.3390/insects15010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/23/2024]
Abstract
Monarch butterfly populations in western North America suffered a substantial decline, from millions of butterflies overwintering in California in the 1980s to less than 400,000 at the beginning of the 21st century. The introduction of neonicotinoid insecticides in the mid-1990s and their subsequent widespread use appears to be the most likely major factor behind this sudden decline. Habitat loss and unfavorable climates (high temperatures, aridity, and winter storms) have also played important and ongoing roles. These factors kept overwintering populations stable but below 300,000 during 2001-2017. Late winter storm mortality and consequent poor spring reproduction drove winter populations to less than 30,000 butterflies during 2018-2019. Record high temperatures in California during the fall of 2020 appeared to prematurely terminate monarch migration, resulting in the lowest overwintering population (1899) ever recorded. Many migrants formed winter-breeding populations in urban areas. Normal seasonal temperatures in the autumns of 2021 and 2022 enabled overwintering populations to return to around the 300,000 level, characteristic of the previous two decades. Natural enemies (predators, parasitoids, parasites, and pathogens) may be important regional or local drivers at times but they are a consistent and fundamental part of monarch ecology. Human interference (capture, rearing) likely has the least impact on monarch populations. The rearing of monarch caterpillars, particularly by children, is an important human link to nature that has positive ramifications for insect conservation beyond monarch butterflies and should be encouraged.
Collapse
Affiliation(s)
- David G James
- Department of Entomology, Washington State University, Irrigated Agriculture Research and Extension Center, Prosser, WA 99350, USA
| |
Collapse
|
8
|
Marino A, Reboud EL, Chevalier E, Tilak MK, Contreras-Garduño J, Nabholz B, Condamine FL. Genomics of the relict species Baronia brevicornis sheds light on its demographic history and genome size evolution across swallowtail butterflies. G3 (BETHESDA, MD.) 2023; 13:jkad239. [PMID: 37847748 PMCID: PMC10700114 DOI: 10.1093/g3journal/jkad239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 05/22/2023] [Accepted: 10/09/2023] [Indexed: 10/19/2023]
Abstract
Relict species, like coelacanth, gingko, tuatara, are the remnants of formerly more ecologically and taxonomically diverse lineages. It raises the questions of why they are currently species-poor, have restrained ecology, and are often vulnerable to extinction. Estimating heterozygosity level and demographic history can guide our understanding of the evolutionary history and conservation status of relict species. However, few studies have focused on relict invertebrates compared to vertebrates. We sequenced the genome of Baronia brevicornis (Lepidoptera: Papilionidae), which is an endangered species, the sister species of all swallowtail butterflies, and is the oldest lineage of all extant butterflies. From a dried specimen, we were able to generate both long-read and short-read data and assembled a genome of 406 Mb for Baronia. We found a fairly high level of heterozygosity (0.58%) compared to other swallowtail butterflies, which contrasts with its endangered and relict status. Taking into account the high ratio of recombination over mutation, demographic analyses indicated a sharp decline of the effective population size initiated in the last million years. Moreover, the Baronia genome was used to study genome size variation in Papilionidae. Genome sizes are mostly explained by transposable elements activities, suggesting that large genomes appear to be a derived feature in swallowtail butterflies as transposable elements activity is recent and involves different transposable elements classes among species. This first Baronia genome provides a resource for assisting conservation in a flagship and relict insect species as well as for understanding swallowtail genome evolution.
Collapse
Affiliation(s)
- Alba Marino
- Institut des Sciences de l'Evolution de Montpellier (Université de Montpellier | CNRS | IRD | EPHE), Place Eugène Bataillon, 34095 Montpellier, France
| | - Eliette L Reboud
- Institut des Sciences de l'Evolution de Montpellier (Université de Montpellier | CNRS | IRD | EPHE), Place Eugène Bataillon, 34095 Montpellier, France
| | - Emmanuelle Chevalier
- Institut des Sciences de l'Evolution de Montpellier (Université de Montpellier | CNRS | IRD | EPHE), Place Eugène Bataillon, 34095 Montpellier, France
| | - Marie-Ka Tilak
- Institut des Sciences de l'Evolution de Montpellier (Université de Montpellier | CNRS | IRD | EPHE), Place Eugène Bataillon, 34095 Montpellier, France
| | - Jorge Contreras-Garduño
- Universidad Nacional Autónoma de México, Escuela Nacional de Estudios Superiores, campus Morelia, Antigua Carretera a Pátzcuaro #8701, Col. Ex-Hacienda San José de la Huerta, 58190 Morelia, Michoacán, Mexico
| | - Benoit Nabholz
- Institut des Sciences de l'Evolution de Montpellier (Université de Montpellier | CNRS | IRD | EPHE), Place Eugène Bataillon, 34095 Montpellier, France
- Institut Universitaire de France (IUF), Paris, France
| | - Fabien L Condamine
- Institut des Sciences de l'Evolution de Montpellier (Université de Montpellier | CNRS | IRD | EPHE), Place Eugène Bataillon, 34095 Montpellier, France
| |
Collapse
|
9
|
Baril T, Croll D. A pangenome-guided manually curated library of transposable elements for Zymoseptoria tritici. BMC Res Notes 2023; 16:335. [PMID: 37974222 PMCID: PMC10652580 DOI: 10.1186/s13104-023-06613-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023] Open
Abstract
OBJECTIVES High-quality species-specific transposable element (TE) libraries are required for studies to elucidate the evolutionary dynamics of TEs and gain an understanding of their impacts on host genomes. Such high-quality TE resources are severely lacking for species in the fungal kingdom. To facilitate future studies on the putative role of TEs in rapid adaptation observed in the fungal wheat pathogen Zymoseptoria tritici, we produced a manually curated TE library. This was generated by detecting TEs in 19 reference genome assemblies representing the global diversity of the species supplemented by multiple sister species genomes. Improvements over previous TE libraries have been made on TE boundary resolution, detection of ORFs, TE domains, terminal inverted repeats, and class-specific motifs. DATA DESCRIPTION A TE consensus library for Z. tritici formatted for use with RepeatMasker. This data is relevant to other researchers investigating TE-host evolutionary dynamics in Z. tritici or who are interested in comparative studies of the fungal kingdom. Further, this TE library can be used to improve gene annotation. Finally, this TE library increases the number of manually curated TE datasets, providing resources to further our understanding of TE diversity.
Collapse
Affiliation(s)
- Tobias Baril
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchatel, Rue -Argand 11, 2000, Neuchatel, Switzerland
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchatel, Rue -Argand 11, 2000, Neuchatel, Switzerland.
| |
Collapse
|
10
|
Baril T, Pym A, Bass C, Hayward A. Transposon accumulation at xenobiotic gene family loci in aphids. Genome Res 2023; 33:1718-1733. [PMID: 37852781 PMCID: PMC10691553 DOI: 10.1101/gr.277820.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 08/29/2023] [Indexed: 10/20/2023]
Abstract
The evolution of resistance is a major challenge for the sustainable control of pests and pathogens. Thus, a deeper understanding of the evolutionary and genomic mechanisms underpinning resistance evolution is required to safeguard health and food production. Several studies have implicated transposable elements (TEs) in xenobiotic-resistance evolution in insects. However, analyses are generally restricted to one insect species and/or one or a few xenobiotic gene families (XGFs). We examine evidence for TE accumulation at XGFs by performing a comparative genomic analysis across 20 aphid genomes, considering major subsets of XGFs involved in metabolic resistance to insecticides: cytochrome P450s, glutathione S-transferases, esterases, UDP-glucuronosyltransferases, and ABC transporters. We find that TEs are significantly enriched at XGFs compared with other genes. XGFs show similar levels of TE enrichment to those of housekeeping genes. But unlike housekeeping genes, XGFs are not constitutively expressed in germline cells, supporting the selective enrichment of TEs at XGFs rather than enrichment owing to chromatin availability. Hotspots of extreme TE enrichment occur around certain XGFs. We find, in aphids of agricultural importance, particular enrichment of TEs around cytochrome P450 genes with known functions in the detoxification of synthetic insecticides. Our results provide evidence supporting a general role for TEs as a source of genomic variation at host XGFs and highlight the existence of considerable variability in TE content across XGFs and host species. These findings show the need for detailed functional verification analyses to clarify the significance of individual TE insertions and elucidate underlying mechanisms at TE-XGF hotspots.
Collapse
Affiliation(s)
- Tobias Baril
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Cornwall TR10 9FE, United Kingdom
| | - Adam Pym
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Cornwall TR10 9FE, United Kingdom
| | - Chris Bass
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Cornwall TR10 9FE, United Kingdom
| | - Alex Hayward
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Cornwall TR10 9FE, United Kingdom
| |
Collapse
|
11
|
Palahí I Torres A, Höök L, Näsvall K, Shipilina D, Wiklund C, Vila R, Pruisscher P, Backström N. The fine-scale recombination rate variation and associations with genomic features in a butterfly. Genome Res 2023; 33:810-823. [PMID: 37308293 PMCID: PMC10317125 DOI: 10.1101/gr.277414.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 05/03/2023] [Indexed: 06/14/2023]
Abstract
Recombination is a key molecular mechanism that has profound implications on both micro- and macroevolutionary processes. However, the determinants of recombination rate variation in holocentric organisms are poorly understood, in particular in Lepidoptera (moths and butterflies). The wood white butterfly (Leptidea sinapis) shows considerable intraspecific variation in chromosome numbers and is a suitable system for studying regional recombination rate variation and its potential molecular underpinnings. Here, we developed a large whole-genome resequencing data set from a population of wood whites to obtain high-resolution recombination maps using linkage disequilibrium information. The analyses revealed that larger chromosomes had a bimodal recombination landscape, potentially caused by interference between simultaneous chiasmata. The recombination rate was significantly lower in subtelomeric regions, with exceptions associated with segregating chromosome rearrangements, showing that fissions and fusions can have considerable effects on the recombination landscape. There was no association between the inferred recombination rate and base composition, supporting a limited influence of GC-biased gene conversion in butterflies. We found significant but variable associations between the recombination rate and the density of different classes of transposable elements, most notably a significant enrichment of short interspersed nucleotide elements in genomic regions with higher recombination rate. Finally, the analyses unveiled significant enrichment of genes involved in farnesyltranstransferase activity in recombination coldspots, potentially indicating that expression of transferases can inhibit formation of chiasmata during meiotic division. Our results provide novel information about recombination rate variation in holocentric organisms and have particular implications for forthcoming research in population genetics, molecular/genome evolution, and speciation.
Collapse
Affiliation(s)
- Aleix Palahí I Torres
- Evolutionary Biology Program, Department of Ecology and Genetics (IEG), Uppsala University, SE-752 36 Uppsala, Sweden;
| | - Lars Höök
- Evolutionary Biology Program, Department of Ecology and Genetics (IEG), Uppsala University, SE-752 36 Uppsala, Sweden
| | - Karin Näsvall
- Evolutionary Biology Program, Department of Ecology and Genetics (IEG), Uppsala University, SE-752 36 Uppsala, Sweden
| | - Daria Shipilina
- Evolutionary Biology Program, Department of Ecology and Genetics (IEG), Uppsala University, SE-752 36 Uppsala, Sweden
| | - Christer Wiklund
- Department of Zoology: Division of Ecology, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Roger Vila
- Butterfly Diversity and Evolution Lab, Institut de Biologia Evolutiva (CSIC-UPF), 08003 Barcelona, Spain
| | - Peter Pruisscher
- Evolutionary Biology Program, Department of Ecology and Genetics (IEG), Uppsala University, SE-752 36 Uppsala, Sweden
| | - Niclas Backström
- Evolutionary Biology Program, Department of Ecology and Genetics (IEG), Uppsala University, SE-752 36 Uppsala, Sweden
| |
Collapse
|
12
|
Pezenti LF, Dionisio JF, Sosa-Gómez DR, de Souza RF, da Rosa R. Transposable elements in the transcriptome of the velvetbean caterpillar Anticarsia gemmatalis Hübner, 1818 (Lepidoptera: Erebidae). Genome 2023. [DOI: 10.1139/gen-2022-0066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Transposable elements (TEs) are DNA sequences that possess the ability to move from one genomic location to another. These sequences contribute to a significant fraction of the genomes of most eukaryotes and can impact their architecture and regulation. In this paper, we present the first data related to the identification and characterization of TEs present in the transcriptome of Anticarsia gemmatalis. Approximately, 835 transcripts showed significant similarity to TEs and (or) characteristic domains. Retrotransposons accounted for 71.2% (595 sequences) of the identified elements, while DNA transposons were less abundant, with 240 annotations (28.8%). TEs were classified into 30 superfamilies, with SINE3/5S and Gypsy being the most abundant. Based on the sequences of TEs found in the transcriptome, we were able to locate conserved regions in the chromosomes of this species. The analysis of differential expression of TEs in susceptible and resistant strains, challenged and not challenged with Bacillus thuringiensis ( Bt) from in silico analysis, indicated that exposure to Bt can regulate the transcription of mobile genetic elements in the velvetbean caterpillar. Thus, these data contribute significantly to the knowledge of the structure and composition of these elements in the genome of this species, and suggest the role of stress on their expression.
Collapse
|
13
|
Law STS, Nong W, So WL, Baril T, Swale T, Chan CB, Tobe SS, Kai ZP, Bendena WG, Hayward A, Hui JHL. Chromosomal-level reference genome of the moth Heortia vitessoides (Lepidoptera: Crambidae), a major pest of agarwood-producing trees. Genomics 2022; 114:110440. [PMID: 35905835 DOI: 10.1016/j.ygeno.2022.110440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/13/2022] [Accepted: 07/24/2022] [Indexed: 11/04/2022]
Abstract
The moth Heortia vitessoides Moore (Lepidoptera: Crambidae) is a major pest of ecologically, commercially and culturally important agarwood-producing trees in the genus Aquilaria. In particular, H. vitessoides is one of the most destructive defoliating pests of the incense tree Aquilaria sinesis, which produces a valuable fragrant wood used as incense and in traditional Chinese medicine [33]. Nevertheless, a genomic resource for H. vitessoides is lacking. Here, we present a chromosomal-level assembly for H. vitessoides, consisting of a 517 megabase (Mb) genome assembly with high physical contiguity (scaffold N50 of 18.2 Mb) and high completeness (97.9% complete BUSCO score). To aid gene annotation, 8 messenger RNA transcriptomes from different developmental stages were generated, and a total of 16,421 gene models were predicted. Expansion of gene families involved in xenobiotic metabolism and development were detected, including duplications of cytosolic sulfotransferase (SULT) genes shared among lepidopterans. In addition, small RNA sequencing of 5 developmental stages of H. vitessoides facilitated the identification of 85 lepidopteran conserved microRNAs, 94 lineage-specific microRNAs, as well as several microRNA clusters. A large proportion of the H. vitessoides genome consists of repeats, with a 29.12% total genomic contribution from transposable elements, of which long interspersed nuclear elements (LINEs) are the dominant component (17.41%). A sharp decrease in the genome-wide percentage of LINEs with lower levels of genetic distance to family consensus sequences suggests that LINE activity has peaked in H. vitessoides. In contrast, opposing patterns suggest a substantial recent increase in DNA and LTR element activity. Together with annotations of essential sesquiterpenoid hormonal pathways, neuropeptides, microRNAs and transposable elements, the high-quality genomic and transcriptomic resources we provide for the economically important moth H. vitessoides provide a platform for the development of genomic approaches to pest management, and contribute to addressing fundamental research questions in Lepidoptera.
Collapse
Affiliation(s)
- Sean T S Law
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China.
| | - Wenyan Nong
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Wai Lok So
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | | | | | - Chi Bun Chan
- School of Biological Science, The University of Hong Kong, Hong Kong, China
| | - Stephen S Tobe
- Department of Cell and Systems Biology, University of Toronto, Canada
| | - Zhen-Peng Kai
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
| | | | | | - Jerome H L Hui
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|