1
|
de Freitas Zanona A, Romeiro da Silva AC, Baltar do Rego Maciel A, Shirahige Gomes do Nascimento L, Bezerra da Silva A, Piscitelli D, Monte-Silva K. Sensory and motor cortical excitability changes induced by rTMS and sensory stimulation in stroke: A randomized clinical trial. Front Neurosci 2023; 16:985754. [PMID: 36760794 PMCID: PMC9907709 DOI: 10.3389/fnins.2022.985754] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 12/29/2022] [Indexed: 01/26/2023] Open
Abstract
Background The ability to produce coordinated movement is dependent on dynamic interactions through transcallosal fibers between the two cerebral hemispheres of the brain. Although typically unilateral, stroke induces changes in functional and effective connectivity across hemispheres, which are related to sensorimotor impairment and stroke recovery. Previous studies have focused almost exclusively on interhemispheric interactions in the primary motor cortex (M1). Objective To identify the presence of interhemispheric asymmetry (ASY) of somatosensory cortex (S1) excitability and to investigate whether S1 repetitive transcranial magnetic stimulation (rTMS) combined with sensory stimulation (SS) changes excitability in S1 and M1, as well as S1 ASY, in individuals with subacute stroke. Methods A randomized clinical trial. Participants with a single episode of stroke, in the subacute phase, between 35 and 75 years old, were allocated, randomly and equally balanced, to four groups: rTMS/sham SS, sham rTMS/SS, rTMS/SS, and sham rTMS/Sham SS. Participants underwent 10 sessions of S1 rTMS of the lesioned hemisphere (10 Hz, 1,500 pulses) followed by SS. SS was applied to the paretic upper limb (UL) (active SS) or non-paretic UL (sham SS). TMS-induced motor evoked potentials (MEPs) of the paretic UL and somatosensory evoked potential (SSEP) of both ULs assessed M1 and S1 cortical excitability, respectively. The S1 ASY index was measured before and after intervention. Evaluator, participants and the statistician were blinded. Results Thirty-six participants divided equally into groups (nine participants per group). Seven patients were excluded from MEP analysis because of failure to produce consistent MEP. One participant was excluded in the SSEP analysis because no SSEP was detected. All somatosensory stimulation groups had decreased S1 ASY except for the sham rTMS/Sham SS group. When compared with baseline, M1 excitability increased only in the rTMS/SS group. Conclusion S1 rTMS and SS alone or in combination changed S1 excitability and decreased ASY, but it was only their combination that increased M1 excitability. Clinical trial registration clinicaltrials.gov, identifier (NCT03329807).
Collapse
Affiliation(s)
- Aristela de Freitas Zanona
- Applied Neuroscience Laboratory, Department of Physical Therapy, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil,Occupational Therapy Department and Post-Graduate Program in Applied Health Sciences, Universidade Federal de Sergipe, São Cristóvão, Brazil
| | | | - Adriana Baltar do Rego Maciel
- Applied Neuroscience Laboratory, Department of Physical Therapy, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | | | - Amanda Bezerra da Silva
- Applied Neuroscience Laboratory, Department of Physical Therapy, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Daniele Piscitelli
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy,Department of Kinesiology, University of Connecticut, Storrs, CT, United States,*Correspondence: Daniele Piscitelli, ,
| | - Katia Monte-Silva
- Applied Neuroscience Laboratory, Department of Physical Therapy, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| |
Collapse
|
2
|
Palimeris S, Ansari Y, Remaud A, Tremblay F, Corriveau H, Boudrias MH, Milot MH. Effect of a tailored upper extremity strength training intervention combined with direct current stimulation in chronic stroke survivors: A Randomized Controlled Trial. FRONTIERS IN REHABILITATION SCIENCES 2022; 3:978257. [PMID: 36189037 PMCID: PMC9397935 DOI: 10.3389/fresc.2022.978257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 07/14/2022] [Indexed: 11/25/2022]
Abstract
Strengthening exercises are recommended for managing persisting upper limb (UL) weakness following a stroke. Yet, strengthening exercises often lead to variable gains because of their generic nature. For this randomized controlled trial (RCT), we aimed to determine whether tailoring strengthening exercises using a biomarker of corticospinal integrity, as reflected in the amplitude of motor evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS), could optimize training effects in the affected UL. A secondary aim was to determine whether applying anodal transcranial direct current stimulation (tDCS) could enhance exercise-induced training effects. For this multisite RCT, 90 adults at the chronic stage after stroke (>6 months) were recruited. Before training, participants underwent TMS to detect the presence of MEPs in the affected hand. The MEP amplitude was used to stratify participants into three training groups: (1) low-intensity, MEP <50 μV, (2) moderate-intensity, 50 μV < MEP < 120 μV, and (3) high-intensity, MEP>120 μV. Each group trained at a specific intensity based on the one-repetition maximum (1 RM): low-intensity, 35–50% 1RM; moderate-intensity, 50–65% 1RM; high-intensity, 70–85% 1RM. The strength training targeted the affected UL and was delivered 3X/week for four consecutive weeks. In each training group, participants were randomly assigned to receive either real or sham anodal tDCS (2 mA, 20 min) over the primary motor area of the affected hemisphere. Pre-/post-intervention, participants underwent a clinical evaluation of their UL to evaluate motor impairments (Fugl-Meyer Assessment), manual dexterity (Box and Blocks test) and grip strength. Post-intervention, all groups exhibited similar gains in terms of reduced impairments, improved dexterity, and grip strength, which was confirmed by multivariate and univariate analyses. However, no effect of interaction was found for tDCS or training group, indicating that tDCS had no significant impact on outcomes post-intervention. Collectively, these results indicate that adjusting training intensity based on the size of MEPs in the affected extremity provides a useful approach to optimize responses to strengthening exercises in chronic stroke survivors. Also, the lack of add-on effects of tDCS applied to the lesioned hemisphere on exercise-induced improvements in the affected UL raises questions about the relevance of combining such interventions in stroke.
Collapse
Affiliation(s)
- Stephania Palimeris
- Faculty of Medicine and Health Sciences, School of Physical and Occupational Therapy, McGill University, Montréal, QC, Canada
- BRAIN Lab, Jewish Rehabilitation Hospital, Laval, QC, Canada
- Montreal Center for Interdisciplinary Research in Rehabilitation (CRIR) and CISSS-Laval, Montréal, QC, Canada
| | | | | | - François Tremblay
- Bruyère Research Institute, Ottawa, ON, Canada
- Faculty of Health Sciences, School of Rehabilitation Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Hélène Corriveau
- Faculté de médecine et des sciences de la santé, Université de Sherbrooke, École de réadaptation, Sherbrooke, QC, Canada
- Centre de recherche sur le vieillissement, CIUSSS de l'Estrie-CHUS, Sherbrooke, QC, Canada
| | - Marie Hélène Boudrias
- Faculty of Medicine and Health Sciences, School of Physical and Occupational Therapy, McGill University, Montréal, QC, Canada
- BRAIN Lab, Jewish Rehabilitation Hospital, Laval, QC, Canada
- Montreal Center for Interdisciplinary Research in Rehabilitation (CRIR) and CISSS-Laval, Montréal, QC, Canada
| | - Marie Hélène Milot
- Faculté de médecine et des sciences de la santé, Université de Sherbrooke, École de réadaptation, Sherbrooke, QC, Canada
- Centre de recherche sur le vieillissement, CIUSSS de l'Estrie-CHUS, Sherbrooke, QC, Canada
- *Correspondence: Marie Hélène Milot
| |
Collapse
|
3
|
de Freitas Zanona A, Romeiro da Silva AC, do Rego Maciel AB, Gomes do Nascimento LS, Bezerra da Silva A, Bolognini N, Monte-Silva K. Somatosensory Cortex Repetitive Transcranial Magnetic Stimulation and Associative Sensory Stimulation of Peripheral Nerves Could Assist Motor and Sensory Recovery After Stroke. Front Hum Neurosci 2022; 16:860965. [PMID: 35479184 PMCID: PMC9036089 DOI: 10.3389/fnhum.2022.860965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/14/2022] [Indexed: 11/19/2022] Open
Abstract
Background We investigated whether transcranial magnetic stimulation (rTMS) over the primary somatosensory cortex (S1) and sensory stimulation (SS) could promote upper limb recovery in participants with subacute stroke. Methods Participants were randomized into four groups: rTMS/Sham SS, Sham rTMS/SS, rTMS/SS, and control group (Sham rTMS/Sham SS). Participants underwent ten sessions of sham or active rTMS over S1 (10 Hz, 1,500 pulses, 120% of resting motor threshold, 20 min), followed by sham or active SS. The SS involved active sensory training (exploring features of objects and graphesthesia, proprioception exercises), mirror therapy, and Transcutaneous electrical nerve stimulation (TENS) in the region of the median nerve in the wrist (stimulation intensity as the minimum intensity at which the participants reported paresthesia; five electrical pulses of 1 ms duration each at 10 Hz were delivered every second over 45 min). Sham stimulations occurred as follows: Sham rTMS, coil was held while disconnected from the stimulator, and rTMS noise was presented with computer loudspeakers with recorded sound from a real stimulation. The Sham SS received therapy in the unaffected upper limb, did not use the mirror and received TENS stimulation for only 60 seconds. The primary outcome was the Body Structure/Function: Fugl-Meyer Assessment (FMA) and Nottingham Sensory Assessment (NSA); the secondary outcome was the Activity/Participation domains, assessed with Box and Block Test, Motor Activity Log scale, Jebsen-Taylor Test, and Functional Independence Measure. Results Forty participants with stroke ischemic (n = 38) and hemorrhagic (n = 2), men (n = 19) and women (n = 21), in the subacute stage (10.6 ± 6 weeks) had a mean age of 62.2 ± 9.6 years, were equally divided into four groups (10 participants in each group). Significant somatosensory improvements were found in participants receiving active rTMS and active SS, compared with those in the control group (sham rTMS with sham SS). Motor function improved only in participants who received active rTMS, with greater effects when active rTMS was combined with active SS. Conclusion The combined use of SS with rTMS over S1 represents a more effective therapy for increasing sensory and motor recovery, as well as functional independence, in participants with subacute stroke. Clinical Trial Registration [clinicaltrials.gov], identifier [NCT03329807].
Collapse
Affiliation(s)
| | | | | | | | | | - Nadia Bolognini
- Department of Psychology, University of Milano Bicocca, Milan, Italy
- Neuropsychological Laboratory, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Katia Monte-Silva
- Applied Neuroscience Laboratory, Universidade Federal de Pernambuco, Recife, Brazil
| |
Collapse
|