1
|
Lawrence J, Sorra K. Photobiomodulation as Medicine: Low-Level Laser Therapy (LLLT) for Acute Tissue Injury or Sport Performance Recovery. J Funct Morphol Kinesiol 2024; 9:181. [PMID: 39449475 PMCID: PMC11503318 DOI: 10.3390/jfmk9040181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 10/26/2024] Open
Abstract
Background/Objectives: Low-level laser therapy (LLLT) has gained traction in sports and exercise medicine as a non-invasive therapeutic for preconditioning the body, exertion recovery, repair and injury rehabilitation. LLLT is hypothesized to modulate cellular metabolism, tissue microenvironment(s) and to decrease inflammation while posing few adverse risks. This review critically examines the evidence-base for LLLT effectiveness focusing on immediate care settings and acute/subacute applications (<6 months post-injury). Methods: A comprehensive literature search was conducted, prioritizing systematic reviews, meta-analyses and their primary research papers. Results: Findings are relevant to trainers and athletes as they manage a wide range of issues from superficial abrasions to deeper tissue concerns. LLLT parameters in the research literature include wide ranges. For body surface structures, studies show that LLLT holds promise in accelerating wound healing. In sport performance studies, LLLT is typically delivered pre-exercise and reveals beneficial effects on exertion recovery, improvements in muscle strength, endurance and reduced fatigue. Evidence is less convincing for acute, deep tissue injury models, where most studies do not report significant benefits for functional outcomes over conventional therapeutic modalities. Conclusions: Variability in LLLT delivery parameters and findings across studies underscores a need for clear treatment guidelines for the profession. Technical properties of laser light delivery to the body also differ materially from LED devices. Sport physiotherapists, team physicians, trainers and athletes should understand limitations in the current evidence-base informing photobiomodulation use in high-performance sport settings and weigh potential benefits versus shortcomings of LLLT use in the mentioned therapeutic contexts.
Collapse
Affiliation(s)
| | - Karin Sorra
- Arroscience Inc., Toronto, ON M2J 4R3, Canada;
- Rotman School of Management, University of Toronto, Toronto, ON M5S 3E6, Canada
| |
Collapse
|
2
|
Elawar A, Livache A, Patault S, Vila D. Combined Photobiomodulation and Static Magnetic Fields to Reduce Side Effects from Laser and Radiofrequency Treatments for Dermatological Conditions. THE JOURNAL OF CLINICAL AND AESTHETIC DERMATOLOGY 2023; 16:24-28. [PMID: 36909868 PMCID: PMC10005803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Background Photobiomodulation therapy (PBMT) can significantly reduce inflammation and relieve pain, including postoperative pain and edema. The study aimed to evaluate the performance of a photobiomodulation-based device that includes a static magnetic field (SMF) to treat laser- or intensive and fractional radiofrequency-related side effects, such as pain, redness, and edema in patients treated for different dermatological conditions. Methods The study had a prospective, non-randomized, single-center design. Male and female patients aged 18 years or older underwent one or two PBMT-SMF (anti-inflammatory or anti-edematous) sessions on the same day, once or twice a week, after laser or radiofrequency facial treatments due to various dermatological disorders. Variables and efficacy assessments were pain, redness, edema, and their reduction from baseline to the last visit. Results Twenty-seven patients were included, seven (25.9%) men and 20 (74.1%) women, with a mean (SD) age of 43.7 (14.1) years. Seven (25.9%) patients were treated with radiofrequency, and 20 (74.1%) patients with a vascular laser (three [15%] for angioma, two [10%] for scars, three [15%] for erythrosis, and 12 [60%] for rosacea). After the PBMT-SMF protocol, overall mean pain reduction was 40 percent, and redness and edema reduction were shown by the pictures taken before and after the PBMT-SMF procedure. Limitations The primary limitations were the small number of patients and no quantitative variables for redness and edema. Conclusion PBMT-SMF reduced edema and inflammation after treatment with lasers or intensive or fractional radiofrequency for facial conditions, and probably, analgesic and anti-inflammatory drugs.
Collapse
Affiliation(s)
- Anwar Elawar
- Dr. Elawar, Ms. Livache, and Ms. Patault are with the Aesthetic Dermatological Laser Center in Marseille, France
| | - Audrey Livache
- Dr. Elawar, Ms. Livache, and Ms. Patault are with the Aesthetic Dermatological Laser Center in Marseille, France
| | - Stéphanie Patault
- Dr. Elawar, Ms. Livache, and Ms. Patault are with the Aesthetic Dermatological Laser Center in Marseille, France
| | - Damien Vila
- Mr. Vila is with the Faculty of Medicine of Montpellier-Nîmes at the University of Montpellier in Montpellier, France
| |
Collapse
|
3
|
Ailioaie LM, Litscher G. Photobiomodulation and Sports: Results of a Narrative Review. Life (Basel) 2021; 11:1339. [PMID: 34947870 PMCID: PMC8706093 DOI: 10.3390/life11121339] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 11/17/2022] Open
Abstract
Benefits of photobiomodulation (PBM) have been known for several decades. More recently, PBM applied in sports offers a special chance to support the modeling of the performance and recovery. Increasingly complex physical activities and fierce competition in the world of sports generate a state of psycho-emotional and physical stress that can induce chronic fatigue syndrome, failure in physical training, predisposition to muscle damage, physical and emotional exhaustion etc., for which PBM could be an excellent solution. To evaluate and identify all risk factors and the influence of PBM on health and performance in sport and for a better understanding of its effects, we did a search for "Photobiomodulation and Sports" on PubMed, to update the PBM science applied in sports, and we retained for analysis the articles published from 2014 to date. The term "PBM" is recent, and we did not include previous studies with "low level laser therapy" or "LLLT" before 2014. In the present research, PBM has been shown to have valuable protective and ergogenic effects in 25 human studies, being the key to success for high performance and recovery, facts supported also by 22 animal studies. PBM applied creatively and targeted depending on sport and size of the level of physical effort could perfectly modulate the mitochondrial activity and thus lead to remarkable improvements in performance. PBM with no conclusive results or without effects from this review (14 studies from a total of 39 on humans) was analyzed and we found the motivations of the authors from the perspective of multiple causes related to technological limitations, participants, the protocols for physical activity, the devices, techniques and PBM parameters. In the near future, dose-response experiments on physical activity should be designed and correlated with PBM dose-response studies, so that quantification of PBM parameters to allow the energy, metabolic, immune, and neuro-endocrine modulation, perfectly coupled with the level of training. There is an urgent need to continuously improve PBM devices, delivery methods, and protocols in new ingenious future sports trials. Latest innovations and nanotechnologies applied to perform intracellular signaling analysis, while examining extracellular targets, coupled with 3D and 4D sports motion analysis and other high-tech devices, can be a challenge to learn how to maximize PBM efficiency while achieving unprecedented sports performance and thus fulfilling the dream of millions of elite athletes.
Collapse
Affiliation(s)
- Laura Marinela Ailioaie
- Department of Medical Physics, Alexandru Ioan Cuza University, 11 Carol I Boulevard, 700506 Iasi, Romania;
| | - Gerhard Litscher
- Research Unit of Biomedical Engineering in Anesthesia and Intensive Care Medicine, Research Unit for Complementary and Integrative Laser Medicine, and Traditional Chinese Medicine (TCM) Research Center Graz, Medical University of Graz, Auenbruggerplatz 39, 8036 Graz, Austria
| |
Collapse
|
4
|
Aleixo-Junior IDO, Leal-Junior ECP, Casalechi HL, Vanin AA, de Paiva PRV, Machado CDSM, Dias LB, Lino MMA, Teixeira AM, Johnson DS, Tomazoni SS. Immediate effects of photobiomodulation therapy combined with a static magnetic field on the subsequent performance: a preliminary randomized crossover triple-blinded placebo-controlled trial. BIOMEDICAL OPTICS EXPRESS 2021; 12:6940-6953. [PMID: 34858690 PMCID: PMC8606121 DOI: 10.1364/boe.442075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
There is evidence about the effects of photobiomodulation therapy (PBMT) alone and combined with a static magnetic field (PBMT-sMF) on skeletal muscle fatigue, physical performance and post-exercise recovery in different types of exercise protocols and sports activity. However, the effects of PBMT-sMF to improve the subsequent performance after a first set of exercises are unknown. Therefore, the aim of this study was to investigate the effects of PBMT-sMF, applied between two sets of exercises, on the subsequent physical performance. A randomized, crossover, triple-blinded (assessors, therapist, and volunteers), placebo-controlled trial was carried out. Healthy non-athlete male volunteers were randomized and treated with a single application of PBMT-sMF and placebo between two sets of an exercise protocol performed on isokinetic dynamometer. The order of interventions was randomized. The primary outcome was fatigue index and the secondary outcomes were total work, peak work, and blood lactate levels. Twelve volunteers were randomized and analyzed to each sequence. PBMT-sMF decreased the fatigue index compared to the placebo PBMT-sMF at second set of the exercise protocol (MD = -6.08, 95% CI -10.49 to -1.68). In addition, PBMT-sMF decreased the blood lactate levels post-intervention, and after the second set of the exercise protocol compared to placebo (p<0.05). There was no difference between PBMT-sMF and placebo in the remaining outcomes tested. Volunteers did not report adverse events. Our results suggest that PBMT-sMF is able to decrease skeletal muscle fatigue, accelerating post-exercise recovery and, consequently, increasing subsequent physical performance when applied between two sets of exercises.
Collapse
Affiliation(s)
- Ivo de Oliveira Aleixo-Junior
- Laboratory of Phototherapy and Innovative Technologies in Health (LaPIT), Post-graduate Program in Rehabilitation Sciences, Nove de Julho University, São Paulo, Brazil
| | - Ernesto Cesar Pinto Leal-Junior
- Laboratory of Phototherapy and Innovative Technologies in Health (LaPIT), Post-graduate Program in Rehabilitation Sciences, Nove de Julho University, São Paulo, Brazil
- Physiotherapy Research Group, Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
- ELJ Consultancy, Scientific Consultants, São Paulo, Brazil
| | - Heliodora Leão Casalechi
- Laboratory of Phototherapy and Innovative Technologies in Health (LaPIT), Post-graduate Program in Rehabilitation Sciences, Nove de Julho University, São Paulo, Brazil
| | - Adriane Aver Vanin
- Laboratory of Phototherapy and Innovative Technologies in Health (LaPIT), Post-graduate Program in Rehabilitation Sciences, Nove de Julho University, São Paulo, Brazil
| | - Paulo Roberto Vicente de Paiva
- Laboratory of Phototherapy and Innovative Technologies in Health (LaPIT), Post-graduate Program in Rehabilitation Sciences, Nove de Julho University, São Paulo, Brazil
| | - Caroline dos Santos Monteiro Machado
- Laboratory of Phototherapy and Innovative Technologies in Health (LaPIT), Post-graduate Program in Rehabilitation Sciences, Nove de Julho University, São Paulo, Brazil
| | - Luana Barbosa Dias
- Laboratory of Phototherapy and Innovative Technologies in Health (LaPIT), Post-graduate Program in Rehabilitation Sciences, Nove de Julho University, São Paulo, Brazil
| | - Matheus Marinho Aguiar Lino
- Laboratory of Phototherapy and Innovative Technologies in Health (LaPIT), Post-graduate Program in Rehabilitation Sciences, Nove de Julho University, São Paulo, Brazil
| | - Adeilson Matias Teixeira
- Laboratory of Phototherapy and Innovative Technologies in Health (LaPIT), Post-graduate Program in Rehabilitation Sciences, Nove de Julho University, São Paulo, Brazil
| | | | - Shaiane Silva Tomazoni
- Physiotherapy Research Group, Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| |
Collapse
|
5
|
Mahran HG. Effect of photobiomodulation therapy on trunk flexor performance after incisional hernia repair: a randomized controlled trial. Lasers Med Sci 2021; 37:929-940. [PMID: 34052928 DOI: 10.1007/s10103-021-03337-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/09/2021] [Indexed: 11/25/2022]
Abstract
To investigate the effect of two photobiomodulation approaches on trunk flexor performance after incisional hernia repair and to compare the effects of both wavelengths. Forty-five patients were randomly distributed after isokinetic trunk flexor assessments into infrared laser, red laser, and placebo groups. Each patient received laser treatment followed by a traditional physical therapy program. In laser treatment, 24 points in both recti were irradiated by infrared or red laser light with the following parameters; 0.6 J per point, 214.28 J/cm2 as energy density, and 17.85 W/cm2 as intensity, while the control group received a placebo approach. All groups received clinical treatments at a rate of 3 sessions per week for 4 weeks; in addition, the physical therapy program was continued on other days for all groups. Isokinetic trunk flexor strength was measured before treatment and 4 weeks after treatment as in each measurement, fatigue protocol was designed, and the trunk flexor strength was measured before fatigue test while the trunk flexor resistance to fatigue was measured after fatigue test. After 4 weeks, pre-and post-fatigue trunk flexor strengths in both laser groups were significantly increased compared to pre-and post-fatigue trunk flexor strength in the placebo group, respectively, and there was no significant difference between the two laser groups. Photobiomodulation approaches enhance trunk flexor response to exercise after incisional hernia repair. This enhancement leads to greater strength and more fatigue resistance for the trunk flexors in photobiomodulation groups compared to the placebo group and no difference between the two photobiomodulation effects.
Collapse
Affiliation(s)
- Hesham Galal Mahran
- Department of Physical Therapy for Surgery, Faculty of Physical Therapy, Cairo University, 7Ahmed El-Zayat St. Bien El-Sarayat, Dokki, Giza, 11432, Egypt.
| |
Collapse
|