1
|
Gupta A, Pandey P, Gupta R, Tiwari S, Singh SP. Responding to light signals: a comprehensive update on photomorphogenesis in cyanobacteria. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1915-1930. [PMID: 38222287 PMCID: PMC10784256 DOI: 10.1007/s12298-023-01386-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 01/16/2024]
Abstract
Cyanobacteria are ancestors of chloroplast and perform oxygen-evolving photosynthesis similar to higher plants and algae. However, an obligatory requirement of photons for their growth results in the exposure of cyanobacteria to varying light conditions. Therefore, the light environment could act as a signal to drive the developmental processes, in addition to photosynthesis, in cyanobacteria. These Gram-negative prokaryotes exhibit characteristic light-dependent developmental processes that maximize their fitness and resource utilization. The development occurring in response to radiance (photomorphogenesis) involves fine-tuning cellular physiology, morphology and metabolism. The best-studied example of cyanobacterial photomorphogenesis is chromatic acclimation (CA), which allows a selected number of cyanobacteria to tailor their light-harvesting antenna called phycobilisome (PBS). The tailoring of PBS under existing wavelengths and abundance of light gives an advantage to cyanobacteria over another photoautotroph. In this work, we will provide a comprehensive update on light-sensing, molecular signaling and signal cascades found in cyanobacteria. We also include recent developments made in other aspects of CA, such as mechanistic insights into changes in the size and shape of cells, filaments and carboxysomes.
Collapse
Affiliation(s)
- Anjali Gupta
- Department of Botany, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, UP 221005 India
| | - Priyul Pandey
- Department of Botany, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, UP 221005 India
| | - Rinkesh Gupta
- Department of Botany, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, UP 221005 India
| | - Sapna Tiwari
- Department of Botany, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, UP 221005 India
| | - Shailendra Pratap Singh
- Department of Botany, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, UP 221005 India
| |
Collapse
|
2
|
Holzhausen A, Stingl N, Rieth S, Kühn C, Schubert H, Rensing SA. Establishment and optimization of a new model organism to study early land plant evolution: Germination, cultivation and oospore variation of Chara braunii Gmelin, 1826. FRONTIERS IN PLANT SCIENCE 2022; 13:987741. [PMID: 36438147 PMCID: PMC9691404 DOI: 10.3389/fpls.2022.987741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
For studying land plant evolution, the establishment and optimization of model organisms representing streptophytic algae, sister to land plants, is essential. Long-term cultivation experiments with Chara braunii S276 were performed over 8 years, since 4 years (Nov. 2018) under constant conditions. Additionally, short-term experiments for optimization of culture conditions were performed with three strains of C. braunii (S276, NIES-1604 and Lausiger Teiche, LaT-2708). Germination success after application of sterilization agents, addition of gibberellic acid and under different incubation conditions with respect to pre-treatment, irradiance regime and substrate was investigated in order to develop protocols for generative cultivation of at least unialgal cultures. The resulting cultivation protocols for C. braunii S276, allowing maintenance of vegetative as well as generative cultures are presented in detail, including protocols for germination induction and growth of sterilized and unsterilized oospores.
Collapse
Affiliation(s)
- Anja Holzhausen
- Department of Biology, Plant Cell Biology, University of Marburg, Marburg, Germany
- Institute for Biosciences, Physiology of Plant Metabolism, University of Rostock, Rostock, Germany
| | - Nora Stingl
- Department of Biology, Plant Cell Biology, University of Marburg, Marburg, Germany
| | - Sophie Rieth
- Department of Biology, Plant Cell Biology, University of Marburg, Marburg, Germany
| | - Christine Kühn
- Department of Biology, Plant Cell Biology, University of Marburg, Marburg, Germany
- Institute for Biosciences, Ecology, University of Rostock, Rostock, Germany
| | - Hendrik Schubert
- Institute for Biosciences, Physiology of Plant Metabolism, University of Rostock, Rostock, Germany
| | - Stefan Andreas Rensing
- Department of Biology, Plant Cell Biology, University of Marburg, Marburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
3
|
Gabriel E, Krauß N, Lamparter T. Evidence for evolutionary relationship between archaeplastidal and cyanobacterial phytochromes based on their chromophore pockets. Photochem Photobiol Sci 2022; 21:1961-1974. [PMID: 35906526 DOI: 10.1007/s43630-022-00271-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Phytochromes are photoreceptor proteins with a bilin chromophore that undergo photoconversion between two spectrally different forms, Pr and Pfr. In plants, phytochromes play a central role in growth and differentiation during the entire life cycle. Phytochromes of plants and other groups of archaeplastida have a common evolutionary origin in prokaryotes, but the exact prokaryotic origin is as yet uncertain. Two possibilities are presently discussed: either, archaeplastidal phytochromes arose from the last eukaryotic common ancestor (LECA) or they arose from the cyanobacterial endosymbiont that gave rise to plastids. We first constructed standard phylogenetic trees based on N-terminal protein sequences of the chromophore module. As usual, variation of algorithms and parameters led to different trees. A relationship between cyanobacteria and archaeplastida was observed in 7 out of 36 trees. The lack of consistency between results obtained from variation of parameters of tree constructions reflects the uncertainty of archaeplastidal origin. To gain more information about a possible cyanobacterial and archaeplastidal relationship, we performed phylogenetic studies based on the amino acids that line the chromophore pockets. These amino acids are highly conserved and could provide more accurate information about long evolutionary time scales, but the reduction of traits could also lead to insignificant results. From 30 selected chromophore-binding amino acids, 6 were invariant. The subsequent studies were thus based on the information dependent on 24 or fewer amino acid positions. Again, multiple trees were constructed to get information about the robustness of relationships. The very low number of information-containing traits resulted in low bootstrap values and many indistinguishable leaves. However, the major groups fungi, bacteria, cyanobacteria, and plants remained united. Without exception, cyanobacteria and archaeplastida were always closely linked. In this respect, the results were more robust than those of the classic approach, based on long contiguous sequences. We therefore consider cyanobacteria as the most likely origin of archaeplastidal phytochromes.
Collapse
Affiliation(s)
- Eva Gabriel
- Karlsruhe Institute of Technology KIT, Botanical Institute, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
| | - Norbert Krauß
- Karlsruhe Institute of Technology KIT, Botanical Institute, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
| | - Tilman Lamparter
- Karlsruhe Institute of Technology KIT, Botanical Institute, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany.
| |
Collapse
|
4
|
Lamparter T, Xue P, Elkurdi A, Kaeser G, Sauthof L, Scheerer P, Krauß N. Phytochromes in Agrobacterium fabrum. FRONTIERS IN PLANT SCIENCE 2021; 12:642801. [PMID: 33995441 PMCID: PMC8117939 DOI: 10.3389/fpls.2021.642801] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/18/2021] [Indexed: 05/31/2023]
Abstract
The focus of this review is on the phytochromes Agp1 and Agp2 of Agrobacterium fabrum. These are involved in regulation of conjugation, gene transfer into plants, and other effects. Since crystal structures of both phytochromes are known, the phytochrome system of A. fabrum provides a tool for following the entire signal transduction cascade starting from light induced conformational changes to protein interaction and the triggering of DNA transfer processes.
Collapse
Affiliation(s)
- Tilman Lamparter
- Botanical Institute, Karlsruhe Institute of Technology KIT, Karlsruhe, Germany
| | - Peng Xue
- Botanical Institute, Karlsruhe Institute of Technology KIT, Karlsruhe, Germany
| | - Afaf Elkurdi
- Botanical Institute, Karlsruhe Institute of Technology KIT, Karlsruhe, Germany
| | - Gero Kaeser
- Botanical Institute, Karlsruhe Institute of Technology KIT, Karlsruhe, Germany
| | - Luisa Sauthof
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Group Protein X-ray Crystallography and Signal Transduction, Berlin, Germany
| | - Patrick Scheerer
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Group Protein X-ray Crystallography and Signal Transduction, Berlin, Germany
| | - Norbert Krauß
- Botanical Institute, Karlsruhe Institute of Technology KIT, Karlsruhe, Germany
| |
Collapse
|
5
|
Wiltbank LB, Kehoe DM. Diverse light responses of cyanobacteria mediated by phytochrome superfamily photoreceptors. Nat Rev Microbiol 2020; 17:37-50. [PMID: 30410070 DOI: 10.1038/s41579-018-0110-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cyanobacteria are an evolutionarily and ecologically important group of prokaryotes. They exist in diverse habitats, ranging from hot springs and deserts to glaciers and the open ocean. The range of environments that they inhabit can be attributed in part to their ability to sense and respond to changing environmental conditions. As photosynthetic organisms, one of the most crucial parameters for cyanobacteria to monitor is light. Cyanobacteria can sense various wavelengths of light and many possess a range of bilin-binding photoreceptors belonging to the phytochrome superfamily. Vital cellular processes including growth, phototaxis, cell aggregation and photosynthesis are tuned to environmental light conditions by these photoreceptors. In this Review, we examine the physiological responses that are controlled by members of this diverse family of photoreceptors and discuss the signal transduction pathways through which these photoreceptors operate. We highlight specific examples where the activities of multiple photoreceptors function together to fine-tune light responses. We also discuss the potential application of these photosensing systems in optogenetics and synthetic biology.
Collapse
Affiliation(s)
- Lisa B Wiltbank
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - David M Kehoe
- Department of Biology, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
6
|
Xue P, El Kurdi A, Kohler A, Ma H, Kaeser G, Ali A, Fischer R, Krauß N, Lamparter T. Evidence for weak interaction between phytochromes Agp1 and Agp2 from Agrobacterium fabrum. FEBS Lett 2019; 593:926-941. [PMID: 30941759 DOI: 10.1002/1873-3468.13376] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/25/2019] [Accepted: 03/28/2019] [Indexed: 11/09/2022]
Abstract
During bacterial conjugation, plasmid DNA is transferred from cell to cell. In Agrobacterium fabrum, conjugation is regulated by the phytochrome photoreceptors Agp1 and Agp2. Both contribute equally to this regulation. Agp1 and Agp2 are histidine kinases, but, for Agp2, we found no autophosphorylation activity. A clear autophosphorylation signal, however, was obtained with mutants in which the phosphoaccepting Asp of the C-terminal response regulator domain is replaced. Thus, the Agp2 histidine kinase differs from the classical transphosphorylation pattern. We performed size exclusion, photoconversion, dark reversion, autophosphorylation, chromophore assembly kinetics and fluorescence resonance energy transfer measurements on mixed Agp1/Agp2 samples. These assays pointed to an interaction between both proteins. This could partially explain the coaction of both phytochromes in the cell.
Collapse
Affiliation(s)
- Peng Xue
- Botanical Institute, Karlsruhe Institute of Technology, Germany
| | - Afaf El Kurdi
- Botanical Institute, Karlsruhe Institute of Technology, Germany
| | - Anja Kohler
- Botanical Institute, Karlsruhe Institute of Technology, Germany
| | - Hongju Ma
- Botanical Institute, Karlsruhe Institute of Technology, Germany
| | - Gero Kaeser
- Botanical Institute, Karlsruhe Institute of Technology, Germany
| | - Arin Ali
- Institute for Applied Biosciences, Karlsruhe Institute of Technology, Germany
| | - Reinhard Fischer
- Institute for Applied Biosciences, Karlsruhe Institute of Technology, Germany
| | - Norbert Krauß
- Botanical Institute, Karlsruhe Institute of Technology, Germany
| | | |
Collapse
|
7
|
|
8
|
Duanmu D, Rockwell NC, Lagarias JC. Algal light sensing and photoacclimation in aquatic environments. PLANT, CELL & ENVIRONMENT 2017; 40:2558-2570. [PMID: 28245058 PMCID: PMC5705019 DOI: 10.1111/pce.12943] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 02/13/2017] [Accepted: 02/15/2017] [Indexed: 05/05/2023]
Abstract
Anoxygenic photosynthetic prokaryotes arose in ancient oceans ~3.5 billion years ago. The evolution of oxygenic photosynthesis by cyanobacteria followed soon after, enabling eukaryogenesis and the evolution of complex life. The Archaeplastida lineage dates back ~1.5 billion years to the domestication of a cyanobacterium. Eukaryotic algae have subsequently radiated throughout oceanic/freshwater/terrestrial environments, adopting distinctive morphological and developmental strategies for adaptation to diverse light environments. Descendants of the ancestral photosynthetic alga remain challenged by a typical diurnally fluctuating light supply ranging from ~0 to ~2000 μE m-2 s-1 . Such extreme changes in light intensity and variations in light quality have driven the evolution of novel photoreceptors, light-harvesting complexes and photoprotective mechanisms in photosynthetic eukaryotes. This minireview focuses on algal light sensors, highlighting the unexpected roles for linear tetrapyrroles (bilins) in the maintenance of functional chloroplasts in chlorophytes, sister species to streptophyte algae and land plants.
Collapse
Affiliation(s)
- Deqiang Duanmu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Corresponding authors: Deqiang Duanmu, State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China. Tel:+86-27-87282101; Fax:+86-27-87282469; ; J. Clark Lagarias, Department of Molecular and Cellular Biology, University of California, Davis CA 95616. Tel: 530-752-1865; Fax: 530-752-3085;
| | - Nathan C. Rockwell
- Department of Molecular and Cellular Biology, University of California, Davis CA 95616
| | - J. Clark Lagarias
- Department of Molecular and Cellular Biology, University of California, Davis CA 95616
- Corresponding authors: Deqiang Duanmu, State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China. Tel:+86-27-87282101; Fax:+86-27-87282469; ; J. Clark Lagarias, Department of Molecular and Cellular Biology, University of California, Davis CA 95616. Tel: 530-752-1865; Fax: 530-752-3085;
| |
Collapse
|
9
|
Nies F, Wörner S, Wunsch N, Armant O, Sharma V, Hesselschwerdt A, Falk F, Weber N, Weiß J, Trautmann A, Posten C, Prakash T, Lamparter T. Characterization of Phormidium lacuna strains from the North Sea and the Mediterranean Sea for biotechnological applications. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.05.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Rockwell NC, Lagarias JC. Phytochrome diversification in cyanobacteria and eukaryotic algae. CURRENT OPINION IN PLANT BIOLOGY 2017; 37:87-93. [PMID: 28445833 PMCID: PMC5483197 DOI: 10.1016/j.pbi.2017.04.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 04/04/2017] [Accepted: 04/05/2017] [Indexed: 05/12/2023]
Abstract
Phytochromes control almost every aspect of plant biology, including germination, growth, development, and flowering, in response to red and far-red light. These photoreceptors thus hold considerable promise for engineering crop plant responses to light. Recently, structural research has shed new light on how phytochromes work. Genomic and transcriptomic studies have improved our understanding of phytochrome loss, retention, and diversification during evolution. We are also beginning to understand phytochrome function in cyanobacteria and eukaryotic algae.
Collapse
Affiliation(s)
- Nathan C Rockwell
- Department of Molecular and Cellular Biology, 31 Briggs Hall, One Shields Avenue, University of California, Davis, CA 95616, United States of America
| | - J Clark Lagarias
- Department of Molecular and Cellular Biology, 31 Briggs Hall, One Shields Avenue, University of California, Davis, CA 95616, United States of America.
| |
Collapse
|
11
|
Lamparter T, Krauß N, Scheerer P. Phytochromes from Agrobacterium fabrum. Photochem Photobiol 2017; 93:642-655. [DOI: 10.1111/php.12761] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 02/22/2017] [Indexed: 01/24/2023]
Affiliation(s)
- Tilman Lamparter
- Karlsruhe Institute of Technology (KIT); Botanical Institute; Karlsruhe Germany
| | - Norbert Krauß
- Karlsruhe Institute of Technology (KIT); Botanical Institute; Karlsruhe Germany
| | - Patrick Scheerer
- Charité - Universitätsmedizin Berlin; Institute of Medical Physics and Biophysics (CC2); Group Protein X-ray Crystallography and Signal Transduction; Berlin Germany
| |
Collapse
|
12
|
Kooß S, Lamparter T. Cyanobacterial origin of plant phytochromes. PROTOPLASMA 2017; 254:603-607. [PMID: 26869366 DOI: 10.1007/s00709-016-0951-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 01/29/2016] [Indexed: 06/05/2023]
Abstract
Phytochromes are widely distributed photoreceptors with similar domain arrangements. The evolutionary origin of plant and green algal phytochromes is currently under debate. We used different algorithms to generate multiple phylogenetic trees for the N-terminal chromophore module and the C-terminal histidine kinase domains. The evolution of the chromophore module and the histidine kinase (like) regions follows different patterns, indicating several rearrangements between both parts of the protein. Out of 22 trees, 19 revealed a close relationship between cyanobacteria and Archaeplastida, the group encompassing plants and green algae. Opposed to other studies, a cyanobacterial origin of plant phytochromes is strongly supported by our results.
Collapse
Affiliation(s)
- Sandra Kooß
- Karlsruhe Institute of Technology (KIT), Botanical Institute, Kaiserstr. 2, 76131, Karlsruhe, Germany
| | - Tilman Lamparter
- Karlsruhe Institute of Technology (KIT), Botanical Institute, Kaiserstr. 2, 76131, Karlsruhe, Germany.
| |
Collapse
|
13
|
Loughlin PC, Duxbury Z, Mugerwa TTM, Smith PMC, Willows RD, Chen M. Spectral properties of bacteriophytochrome AM1_5894 in the chlorophyll d-containing cyanobacterium Acaryochloris marina. Sci Rep 2016; 6:27547. [PMID: 27282102 PMCID: PMC4901347 DOI: 10.1038/srep27547] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 05/20/2016] [Indexed: 12/12/2022] Open
Abstract
Acaryochloris marina, a unicellular oxygenic photosynthetic cyanobacterium, has uniquely adapted to far-red light-enriched environments using red-shifted chlorophyll d. To understand red-light use in Acaryochloris, the genome of this cyanobacterium was searched for red/far-red light photoreceptors from the phytochrome family, resulting in identification of a putative bacteriophytochrome AM1_5894. AM1_5894 contains three standard domains of photosensory components as well as a putative C-terminal signal transduction component consisting of a histidine kinase and receiver domain. The photosensory domains of AM1_5894 autocatalytically assemble with biliverdin in a covalent fashion. This assembled AM1_5894 shows the typical photoreversible conversion of bacterial phytochromes with a ground-state red-light absorbing (Pr) form with λBV max[Pr] 705 nm, and a red-light inducible far-red light absorbing (Pfr) form with λBV max[Pfr] 758 nm. Surprisingly, AM1_5894 also autocatalytically assembles with phycocyanobilin, involving photoreversible conversion of λPCB max[Pr] 682 nm and λPCB max[Pfr] 734 nm, respectively. Our results suggest phycocyanobilin is also covalently bound to AM1_5894, while mutation of a cysteine residue (Cys11Ser) abolishes this covalent binding. The physiological function of AM1_5894 in cyanobacteria containing red-shifted chlorophylls is discussed.
Collapse
Affiliation(s)
- Patrick C Loughlin
- School of Biological Sciences, University of Sydney, NSW 2006, Australia
| | - Zane Duxbury
- School of Biological Sciences, University of Sydney, NSW 2006, Australia
| | | | - Penelope M C Smith
- School of Biological Sciences, University of Sydney, NSW 2006, Australia
| | - Robert D Willows
- Department of Chemistry and Biomolecular Sciences, Macquarie University, NSW 2109, Australia
| | - Min Chen
- School of Biological Sciences, University of Sydney, NSW 2006, Australia
| |
Collapse
|
14
|
Bai Y, Rottwinkel G, Feng J, Liu Y, Lamparter T. Bacteriophytochromes control conjugation in Agrobacterium fabrum. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 161:192-9. [PMID: 27261700 DOI: 10.1016/j.jphotobiol.2016.05.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 05/11/2016] [Indexed: 10/21/2022]
Abstract
Bacterial conjugation, the transfer of single stranded plasmid DNA from donor to recipient cell, is mediated through the type IV secretion system. We performed conjugation assays using a transmissible artificial plasmid as reporter. With this assay, conjugation in Agrobacterium fabrum was modulated by the phytochromes Agp1 and Agp2, photoreceptors that are most sensitive in the red region of visible light. In conjugation studies with wild-type donor cells carrying a pBIN-GUSINT plasmid as reporter that lacked the Ti (tumor inducing) plasmid, no conjugation was observed. When either agp1(-) or agp2(-) knockout donor strains were used, plasmid DNA was delivered to the recipient, indicating that both phytochromes suppress conjugation in the wild type donor. In the recipient strains, the loss of Agp1 or Agp2 led to diminished conjugation. When wild type cells with Ti plasmid and pBIN-GUS reporter plasmid were used as donor, a high rate of conjugation was observed. The DNA transfer was down regulated by red or far-red light by a factor of 3.5. With agp1(-) or agp2(-) knockout donor cells, conjugation in the dark was about 10 times lower than with the wild type donor, and with the double knockout donor no conjugation was observed. These results imply that the phytochrome system has evolved to inhibit conjugation in the light. The decrease of conjugation under different temperature correlated with the decrease of phytochrome autophosphorylation.
Collapse
Affiliation(s)
- Yingnan Bai
- Karlsruhe Institute of Technology (KIT), Botanical Institute, Kaiserstr. 2, D-76131 Karlsruhe, Germany; University of Electronic Science and Technology of China (UESTC), School of Science and Technology, No. 4, Sections 2, North Jianshe Road, Chengdu 610054, China
| | - Gregor Rottwinkel
- Karlsruhe Institute of Technology (KIT), Botanical Institute, Kaiserstr. 2, D-76131 Karlsruhe, Germany
| | - Juan Feng
- University of Electronic Science and Technology of China (UESTC), School of Science and Technology, No. 4, Sections 2, North Jianshe Road, Chengdu 610054, China
| | - Yiyao Liu
- University of Electronic Science and Technology of China (UESTC), School of Science and Technology, No. 4, Sections 2, North Jianshe Road, Chengdu 610054, China
| | - Tilman Lamparter
- Karlsruhe Institute of Technology (KIT), Botanical Institute, Kaiserstr. 2, D-76131 Karlsruhe, Germany.
| |
Collapse
|
15
|
Li FW, Mathews S. Evolutionary aspects of plant photoreceptors. JOURNAL OF PLANT RESEARCH 2016; 129:115-22. [PMID: 26843269 DOI: 10.1007/s10265-016-0785-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 12/27/2015] [Indexed: 05/04/2023]
Abstract
Plant photoreceptors link environmental light cues with physiological responses, determining how individual plants complete their life cycles. Structural and functional evolution of photoreceptors has co-occurred as plants diversified and faced the challenge of new light environments, during the transition of plants to land and as substantial plant canopies evolved. Large-scale comparative sequencing projects allow us for the first time to document photoreceptor evolution in understudied clades, revealing some surprises. Here we review recent progress in evolutionary studies of three photoreceptor families: phytochromes, phototropins and neochromes.
Collapse
Affiliation(s)
- Fay-Wei Li
- Department of Biology, Duke University, Durham, NC, 27708, USA.
- University Herbarium and Department of Integrative Biology, University of California, Berkeley, CA, 94720, USA.
| | - Sarah Mathews
- CSIRO National Research Collections Australia, Australian National Herbarium, Canberra, ACT, 2601, Australia.
| |
Collapse
|