1
|
Rzepka Z, Rok J, Zdybel M, Pilawa B, Beberok A, Wrześniok D. Streptomycin generates oxidative stress in melanin-producing cells: In vitro study with EPR spectroscopy evidence. Toxicol In Vitro 2024; 98:105844. [PMID: 38740103 DOI: 10.1016/j.tiv.2024.105844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/12/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
Streptomycin (STR) is an aminoglycoside antibiotic with a broad-spectrum of activity and ototoxic potential. The mechanism of STR-induced inner ear damage has not been fully elucidated. It was previously found that STR binds to melanin, which may result in the accumulation of the drug in melanin-containing tissues. Melanin pigment is present in various parts of the inner ear, including the cochlea and vestibular organ. The present study aimed to assess if streptomycin generates oxidative stress and affects melanogenesis in normal human melanocytes. Moreover the variation of free radical concentration in STR-treated melanocytes was examined by electron paramagnetic resonance spectroscopy (EPR). We found that STR decreases cell metabolic activity and reduces melanin content. The observed changes in the activity of antioxidant enzymes activity in HEMn-DPs treated with streptomycin may suggest that the drug affects redox homeostasis in melanocytes. In this work EPR study expanded knowledge about free radicals in interactions of STR and melanin in melanocytes. The results may help elucidate the mechanisms of STR toxicity on pigment cells, including melanin-producing cells in the inner ear. This is important because understanding the mechanism of STR-induced ototoxicity would be helpful in developing new therapeutic strategies to protect patients' hearing.
Collapse
Affiliation(s)
- Zuzanna Rzepka
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 4 Jagiellońska Str., 41-200 Sosnowiec, Poland
| | - Jakub Rok
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 4 Jagiellońska Str., 41-200 Sosnowiec, Poland
| | - Magdalena Zdybel
- Department of Biophysics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 8 Jedności Str., 41-200 Sosnowiec, Poland
| | - Barbara Pilawa
- Department of Biophysics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 8 Jedności Str., 41-200 Sosnowiec, Poland
| | - Artur Beberok
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 4 Jagiellońska Str., 41-200 Sosnowiec, Poland
| | - Dorota Wrześniok
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 4 Jagiellońska Str., 41-200 Sosnowiec, Poland.
| |
Collapse
|
2
|
Yuan Z, Zhang X, Pang Y, Qi Y. Association analysis of PMEL gene expression and single nucleotide polymorphism with plumage color in quail. Anim Biotechnol 2023; 34:5001-5010. [PMID: 37300547 DOI: 10.1080/10495398.2023.2221697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
To explore the relationship between PMEL gene and quail plumage color, to provide a reference for subsequent quail plumage color breeding. In this experiment, RT-qPCR technology was used to analyze the relative mRNA expression levels of Korean quail (maroon) and Beijing white quail embryos at different developmental stages. Two SNPs in PMEL gene were screened based on the RNA-Seq data of skin tissues of Korean quail and Beijing white quail during embryonic stage. The KASP technology was used for genotyping in the resource population and correlation analysis was carried out with the plumage color traits of quail. Finally, the bioinformatics technology was used to predict the effects of these two SNPs on the structure and function of the encoded protein. The results showed that the expression levels of PMEL gene during the embryonic development of Beijing white quail were extremely significantly higher than that of Korean quail (p < 0.01). The frequency distribution of the three genotypes (AA, AB, and BB) of the Beijing white quail at the c. 1030C > T and c. 1374A > G mutation sites were extremely significantly different from that of the Korean quail (p < 0.01). And there was a significant correlation between the c. 1374A > G mutation site with white plumage phenotype. Bioinformatics analysis showed that SNP1 (c. c1030t) located in exon 6 was a harmful mutation site, and SNP2 (c. a1374g) located in exon 7 was a neutral mutation site. Protein conservation prediction showed that the coding protein P344S site caused by SNP1 (c. c1030t) site and the coding protein I458M site caused by SNP2 (c. g2129a) site were non-conservative sites. The results of this experiment showed that the PMEL gene was associated with the plumage color traits of quail and could be used as a candidate gene for studying the plumage color of quail.
Collapse
Affiliation(s)
- Zhiwen Yuan
- College of Animal Science, Henan University of Science and Technology, Luoyang, China
| | - Xiaohui Zhang
- College of Animal Science, Henan University of Science and Technology, Luoyang, China
- Luoyang Key Laboratory of Animal Genetic and Breeding, Luoyang, China
| | - Youzhi Pang
- College of Animal Science, Henan University of Science and Technology, Luoyang, China
- Luoyang Key Laboratory of Animal Genetic and Breeding, Luoyang, China
| | - Yanxia Qi
- College of Animal Science, Henan University of Science and Technology, Luoyang, China
- Luoyang Key Laboratory of Animal Genetic and Breeding, Luoyang, China
| |
Collapse
|
3
|
Yuan Z, Zhang X, Pang Y, Qi Y, Wang Q, Hu Y, Zhao Y, Ren S, Huo L. Association analysis of melanophilin ( MLPH) gene expression and polymorphism with plumage color in quail. Arch Anim Breed 2023; 66:131-139. [PMID: 37124941 PMCID: PMC10134764 DOI: 10.5194/aab-66-131-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 03/02/2023] [Indexed: 05/02/2023] Open
Abstract
We explore the relationship between the melanophilin (MLPH) gene and quail plumage color and provide a reference for subsequent quail plumage color breeding. In this experiment, real-time quantitative PCR (RT-qPCR) technology was used to analyze the relative mRNA expression levels of Korean quail (maroon) and Beijing white quail embryos at different developmental stages. Two single-nucleotide polymorphisms (SNPs) in the MLPH gene were screened based on the RNA-sequencing (RNA-Seq) data of skin tissues of Korean quail and Beijing white quail during the embryonic stage. Kompetitive allele-specific PCR (KASP) technology was used for genotyping in the resource population, and correlation analysis was carried out with the plumage color traits of quail. Finally, bioinformatics was used to predict the effects of these two SNPs on the structure and function of the encoded protein. The results showed that the expression level of the MLPH gene during embryonic development of Beijing white quail was significantly higher than that of Korean quail ( P < 0.01 ). The frequency distribution of the three genotypes (CC, CA and AA) of the Beijing white quail at the c.1807C > A mutation site was significantly different from that of the Korean quail ( P < 0.01 ). The frequency distribution of the three genotypes (GG, GA and AA) of the Beijing white quail at the c.2129G > A mutation site was significantly different from that of the Korean quail ( P < 0.01 ). And there was a significant correlation between the c.1807C > A mutation site and the white plumage phenotype. Bioinformatics showed that SNP1 (c.1807C > A) was a neutral mutation and that SNP2 (c.2129G > A) was a deleterious mutation. The prediction of protein conservation showed that the mutation sites of coding proteins R603S and G710D caused by SNP1 (c.1807C > A) and SNP2 (c.2129G > A) were highly conserved.
Collapse
Affiliation(s)
- Zhiwen Yuan
- College of Animal Science and Technology, Henan University of Science and Technology,
Luoyang 471003, China
| | - Xiaohui Zhang
- College of Animal Science and Technology, Henan University of Science and Technology,
Luoyang 471003, China
- Luoyang Key Laboratory of Animal Genetics and Breeding, Luoyang
471003, China
| | - Youzhi Pang
- College of Animal Science and Technology, Henan University of Science and Technology,
Luoyang 471003, China
- Luoyang Key Laboratory of Animal Genetics and Breeding, Luoyang
471003, China
| | - Yanxia Qi
- College of Animal Science and Technology, Henan University of Science and Technology,
Luoyang 471003, China
- Luoyang Key Laboratory of Animal Genetics and Breeding, Luoyang
471003, China
| | - Qiankun Wang
- College of Animal Science and Technology, Henan University of Science and Technology,
Luoyang 471003, China
| | - Yunqi Hu
- College of Animal Science and Technology, Henan University of Science and Technology,
Luoyang 471003, China
| | - Yiwei Zhao
- College of Animal Science and Technology, Henan University of Science and Technology,
Luoyang 471003, China
| | - Shiwei Ren
- College of Animal Science and Technology, Henan University of Science and Technology,
Luoyang 471003, China
| | - Linke Huo
- College of Animal Science and Technology, Henan University of Science and Technology,
Luoyang 471003, China
| |
Collapse
|
4
|
Abstract
Melanogenesis is a highly regulated process through which the pigment melanin is produced in skin cells. Irregularities in the molecular events that govern the process of skin pigmentation can cause disorders like vitiligo. In order to understand the biology of disease progression, it is important to have an in depth understanding of intracellular events. Mathematical models provide an integrated view of intracellular signalling. There are very few models to date that incorporate intracellular processes relevant to melanogenesis and only one to our knowledge that simulates the dynamics of response to varying levels of input. Here, we report the formulation of the largest Boolean model (265 nodes) for melanogenesis to date. The model was built on the basis of a detailed interaction network graph published by Raghunath et al. Through additional manual curation of the reported interactions, we converted the graph into a set of Boolean rules, following the procedure of the first Boolean model (62 nodes) for melanogenesis published by Lee et al. Simulations show that the predicted response to varying UV levels for most of the nodes is similar to the predictions of the existing model. The greater complexity allows investigation of the sensitivity of melanin to additional nodes. We carried out perturbation analysis of the network through node deletion and constitutive activation to identify sensitivity of outcomes, and compared the nodes identified as sensitive to previous reports.
Collapse
Affiliation(s)
- Pooja Dnyane
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune 411008, India. Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad 201002, India
| | | |
Collapse
|
5
|
Malhotra AG, Singh S, Jha M, Pandey KM. A Parametric Targetability Evaluation Approach for Vitiligo Proteome Extracted through Integration of Gene Ontologies and Protein Interaction Topologies. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2019; 16:1830-1842. [PMID: 29994537 DOI: 10.1109/tcbb.2018.2835459] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Vitiligo is a well-known skin disorder with complex etiology. Vitiligo pathogenesis is multifaceted with many ramifications. A computational systemic path was designed to first propose candidate disease proteins by merging properties from protein interaction networks and gene ontology terms. All in all, 109 proteins were identified and suggested to be involved in the onset of disease or its progression. Later, a composite approach was employed to prioritize vitiligo disease proteins by comparing and benchmarking the properties against standard target identification criteria. This includes sequence-based, structural, functional, essentiality, protein-protein interaction, vulnerability, secretability, assayability, and druggability information. The existing information was seamlessly integrated into efficient pipelines to propose a novel protocol for assessment of targetability of disease proteins. Using the online data resources and the scripting, an illustrative list of 68 potential drug targets was generated for vitiligo. While this list is broadly consistent with the research community's current interest in certain specific proteins, and suggests novel target candidates that may merit further study, it can still be modified to correspond to a user-specific environment, either by adjusting the weights for chosen criteria (i.e., a quantitative approach) or by changing the considered criteria (i.e., a qualitative approach).
Collapse
|
6
|
Abstract
Human skin and hair color are visible traits that can vary dramatically within and across ethnic populations. The genetic makeup of these traits-including polymorphisms in the enzymes and signaling proteins involved in melanogenesis, and the vital role of ion transport mechanisms operating during the maturation and distribution of the melanosome-has provided new insights into the regulation of pigmentation. A large number of novel loci involved in the process have been recently discovered through four large-scale genome-wide association studies in Europeans, two large genetic studies of skin color in Africans, one study in Latin Americans, and functional testing in animal models. The responsible polymorphisms within these pigmentation genes appear at different population frequencies, can be used as ancestry-informative markers, and provide insight into the evolutionary selective forces that have acted to create this human diversity.
Collapse
Affiliation(s)
- William J Pavan
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Richard A Sturm
- Dermatology Research Centre, The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Queensland 4102, Australia;
| |
Collapse
|
7
|
Zhu X, Li Y, Meng Q. Islet-1 promotes the proliferation and invasion, and inhibits the apoptosis of A375 human melanoma cells. Int J Mol Med 2018; 41:3680-3690. [PMID: 29568936 DOI: 10.3892/ijmm.2018.3569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 03/12/2018] [Indexed: 11/06/2022] Open
Abstract
The aim of this study was to examine the effects of the insulin gene enhancer-binding protein, islet-1 (ISL1), on the proliferation, invasion and apoptosis of the human melanoma cell line, A375. An ISL1 overexpression lentiviral vector was constructed and transfected into the A375 cells. The proliferation of the A375 cells transfected with the ISL1 vector (termed A375/ISL1 cells) was examined by MTT assay, flow cytometry and TUNEL assay, and cell invasion was examined by Transwell assay. The expression levels of matrix metalloproteinase (MMP)-2 and MMP-9 were measured by qPCR and western blot analysis; the expression levels of Akt and p-Akt were measured in the cells treated with vascular endothelial growth factor (VEGF) and the PI3K/Akt inhibitor, LY294002, by western blot analysis. The optical density value of the A375/ISL1 cells was increased after 12 h of culture (P<0.001), as shown by MTT assay. The ratio of apoptotic A375/ISL1 cells was significantly decreased (P<0.001), as shown by flow cytometry and TUNEL assay. In addition, the average penetration rate of the A375/ISL1 cells significantly increased (P<0.001), as shown by Transwell assay. The expression levels of MMP-2 and MMP-9 were significantly increased in the A375/ISL1 cells, as shown by qPCR and western blot analysis (P<0.001). Moreover, treatment of the A375/ISL1 cells with VEGF for 48 h increased the expression of Akt and p-Akt compared with the control cells transfected with A375/green fluorescent protein (GFP) (P<0.05; P<0.001, respectively). In addition, in the A375/ISL1 cells treated with the LY294002 inhibitor for 24 and 48 h, the level of Akt was also found to increase compared to the control A375/GFP cells (P<0.05). On the whole, the findings of this study indicate that the overexpression of ISL1 promotes the proliferation and invasion, and inhibits the apoptosis of A375 melanoma cells. ISL1 thus plays an important role in A375 cell survival, and these effects are possibly mediate via the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Xiaoling Zhu
- Department of Dermatology, The First Hospital of Harbin, Harbin, Heilongjiang 150010, P.R. China
| | - Yuzhen Li
- Department of Dermatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Qinggang Meng
- Department of Orthopaedic Surgery, The First Hospital of Harbin, Harbin, Heilongjiang 150010, P.R. China
| |
Collapse
|
8
|
Tudor D, Nenu I, Filip GA, Olteanu D, Cenariu M, Tabaran F, Ion RM, Gligor L, Baldea I. Combined regimen of photodynamic therapy mediated by Gallium phthalocyanine chloride and Metformin enhances anti-melanoma efficacy. PLoS One 2017; 12:e0173241. [PMID: 28278159 PMCID: PMC5344368 DOI: 10.1371/journal.pone.0173241] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 02/18/2017] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Melanoma therapy is challenging, especially in advanced cases, due to multiple developed tumor defense mechanisms. Photodynamic therapy (PDT) might represent an adjuvant treatment, because of its bimodal action: tumor destruction and immune system awakening. In this study, a combination of PDT mediated by a metal substituted phthalocyanine-Gallium phthalocyanine chloride (GaPc) and Metformin was used against melanoma. The study aimed to: (1) find the anti-melanoma efficacy of GaPc-PDT, (2) assess possible beneficial effects of Metformin addition to PDT, (3) uncover some of the mechanisms underlining cell killing and anti-angiogenic effects. METHODS Two human lightly pigmented melanoma cell lines: WM35 and M1/15 subjected to previous Metformin exposure were treated by GaPc-PDT. Cell viability, death mechanism, cytoskeleton alterations, oxidative damage, were assessed by means of colorimetry, flowcytometry, confocal microscopy, spectrophotometry, ELISA, Western Blotting. RESULTS GaPc proved an efficient photosensitizer. Metformin addition enhanced cell killing by mechanisms dependent on the cell line, namely apoptosis in the metastatic M1/15 and necrosis in the radial growth phase, WM35. Cell death mechanism relied on the inhibition of nuclear transcription factor (NF)-κB activation and tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) sensitization, leading to TRAIL and TNF-α induced apoptosis. Metformin diminished the anti-angiogenic effect of PDT. CONCLUSIONS Metformin addition to GaPc-PDT increased tumor cell killing through enhanced oxidative damage and induction of proapoptotic mechanisms, but altered PDT anti-angiogenic effects. GENERAL SIGNIFICANCE Combination of Metformin and PDT might represent a solution to enhance the efficacy, leading to a potential adjuvant role of PDT in melanoma therapy.
Collapse
Affiliation(s)
- Diana Tudor
- Department of Physiology, University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Iuliana Nenu
- Department of Physiology, University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | | | - Diana Olteanu
- Department of Physiology, University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mihai Cenariu
- Department of Biochemistry, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Flaviu Tabaran
- Department of Pathology University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Rodica Mariana Ion
- Nanomedicine Research Group, National Institute for Research & Development in Chemistry and Petrochemistry - ICECHIM, Bucharest, Romania
| | - Lucian Gligor
- OSRAM Opto Semiconductors, OSRAM Romania, Global City Business Park, Voluntari, Ilfov, Romania
| | - Ioana Baldea
- Department of Physiology, University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
9
|
Melanogenesis and DNA damage following photodynamic therapy in melanoma with two meso-substituted porphyrins. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 161:402-10. [DOI: 10.1016/j.jphotobiol.2016.06.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 06/06/2016] [Accepted: 06/07/2016] [Indexed: 12/31/2022]
|