1
|
Qian C, Liu H, Cao J, Ji Y, Lu W, Lu J, Li A, Zhu X, Shen K, Xu H, Chen Q, Zhou W, Lu H, Lin H, Zhang X, Li Q, Lin X, Li K, Xu T, Zhu M, Bao Q, Zhang H. Identification of floR Variants Associated With a Novel Tn 4371-Like Integrative and Conjugative Element in Clinical Pseudomonas aeruginosa Isolates. Front Cell Infect Microbiol 2021; 11:685068. [PMID: 34235095 PMCID: PMC8256890 DOI: 10.3389/fcimb.2021.685068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/01/2021] [Indexed: 11/24/2022] Open
Abstract
Florfenicol is widely used to control respiratory diseases and intestinal infections in food animals. However, there are increasing reports about florfenicol resistance of various clinical pathogens. floR is a key resistance gene that mediates resistance to florfenicol and could spread among different bacteria. Here, we investigated the prevalence of floR in 430 Pseudomonas aeruginosa isolates from human clinical samples and identified three types of floR genes (designated floR, floR-T1 and floR-T2) in these isolates, with floR-T1 the most prevalent (5.3%, 23/430). FloR-T2 was a novel floR variant identified in this study, and exhibited less identity with other FloR proteins than FloRv. Moreover, floR-T1 and floR-T2 identified in P. aeruginosa strain TL1285 were functionally active and located on multi-drug resistance region of a novel incomplete Tn4371-like integrative and conjugative elements (ICE) in the chromosome. The expression of the two floR variants could be induced by florfenicol or chloramphenicol. These results indicated that the two floR variants played an essential role in the host's resistance to amphenicol and the spreading of these floR variants might be related with the Tn4371 family ICE.
Collapse
Affiliation(s)
- Changrui Qian
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Hongmao Liu
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jiawei Cao
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yongan Ji
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Wei Lu
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Junwan Lu
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Aifang Li
- The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | - Xinyi Zhu
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Kai Shen
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Haili Xu
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
| | - Qianqian Chen
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Wangxiao Zhou
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Hongyun Lu
- The Second People’s Hospital of Tongxiang City, Tongxiang, China
| | - Hailong Lin
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xueya Zhang
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qiaoling Li
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xi Lin
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Kewei Li
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Teng Xu
- Institute of Translational Medicine, Baotou Central Hospital, Baotou, China
- Tongji University School of Medicine, Shanghai, China
| | - Mei Zhu
- Department of Clinical Laboratory, Zhejiang Hospital, Hangzhou, China
| | - Qiyu Bao
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Hailin Zhang
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
2
|
Kunadu APH, Aboagye EF, Colecraft EK, Otoo GE, Adjei MYB, Acquaah E, Afrifa-Anane E, Amissah JGN. Low Consumption of Indigenous Fresh Dairy Products in Ghana Attributed to Poor Hygienic Quality. J Food Prot 2019; 82:276-286. [PMID: 30682266 DOI: 10.4315/0362-028x.jfp-18-146] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This cross-sectional study was aimed at assessing consumer perceptions and microbiological quality of the fresh cow's milk products available in selected dairying communities in Ghana. Twenty-six focus groups (FGs) were conducted to understand the perceptions on barriers and facilitators to dairy consumption. These included six FGs for lactating mothers and five FGs for each of the following categories: pregnant women, women of reproductive age with children younger than 5 years, not pregnant and nonlactating women, and males. A separate quantitative survey followed and included 176 women of reproductive age (18 to 49 years) and 90 males (18 to 59 years) from 15 dairying communities in the Greater Accra, Eastern, and Central regions of Ghana. Also, 120 locally sourced fresh milk products were assessed for counts of total coliforms, fecal coliforms, and Enterococcus spp., and presence of pathogenic Streptococcus spp. , Escherichia coli, and Klebsiella pneumoniae by using standard microbiological methods. Fecal coliforms in dairy products, such as brukina, wagashi, and yogurt exceeded the specified limit of 10 CFU/mL, while the prevalence of E. coli and K. pneumoniae were 70 and 65%, respectively. Generally, respondents perceived indigenous dairy as unsafe. These perceptions were formed on the basis of visual cues of environmental and personal hygiene. Of the indigenous milk products consumed, brukina, a fermented milk and millet gruel (33%) and wagashie, a soft unfermented cheese (29%), were the most popular. However, only 19% of wagashie and 21% of brukina consumers believed these products were safe. Consistently, the odds of consuming a particular milk product was significantly higher if the consumer believed it was safe. Poor sanitation and unhygienic processing of otherwise healthy but perishable indigenous milk products has justifiably fueled the mistrust of consumers and may hinder potential intervention efforts to increase milk production and consumption in Ghana.
Collapse
Affiliation(s)
| | - Eurydice F Aboagye
- 1 Department of Nutrition and Food Science, University of Ghana, Legon, Accra, Ghana
| | - Esi K Colecraft
- 1 Department of Nutrition and Food Science, University of Ghana, Legon, Accra, Ghana
| | - Gloria E Otoo
- 1 Department of Nutrition and Food Science, University of Ghana, Legon, Accra, Ghana
| | - Maame Y B Adjei
- 1 Department of Nutrition and Food Science, University of Ghana, Legon, Accra, Ghana
| | - Ezekiel Acquaah
- 2 Office of Research Innovation and Development, University of Ghana, Legon, Accra, Ghana
| | - Ernest Afrifa-Anane
- 3 Regional Institute for Population Studies, University of Ghana, Legon, Accra, Ghana
| | - Joris G N Amissah
- 4 Department of Family and Consumer Sciences, University of Ghana, Legon, Accra, Ghana (ORCID: http://orcid.org/0000-0001-8758-0420 [A.P.-H.K.])
| |
Collapse
|
3
|
Lu J, Zhang J, Xu L, Liu Y, Li P, Zhu T, Cheng C, Lu S, Xu T, Yi H, Li K, Zhou W, Li P, Ni L, Bao Q. Spread of the florfenicol resistance floR gene among clinical Klebsiella pneumoniae isolates in China. Antimicrob Resist Infect Control 2018; 7:127. [PMID: 30410748 PMCID: PMC6211440 DOI: 10.1186/s13756-018-0415-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 09/27/2018] [Indexed: 11/10/2022] Open
Abstract
Background Florfenicol is a derivative of chloramphenicol that is used only for the treatment of animal diseases. A key resistance gene for florfenicol, floR, can spread among bacteria of the same and different species or genera through horizontal gene transfer. To analyze the potential transmission of resistance genes between animal and human pathogens, we investigated floR in Klebsiella pneumoniae isolates from patient samples. floR in human pathogens may originate from animal pathogens and would reflect the risk to human health of using antimicrobial agents in animals. Methods PCR was used to identify floR-positive strains. The floR genes were cloned, and the minimum inhibitory concentrations (MICs) were determined to assess the relative resistance levels of the genes and strains. Sequencing and comparative genomics methods were used to analyze floR gene-related sequence structure as well as the molecular mechanism of resistance dissemination. Results Of the strains evaluated, 20.42% (67/328) were resistant to florfenicol, and 86.96% (20/23) of the floR-positive strains demonstrated high resistance to florfenicol with MICs ≥512 μg/mL. Conjugation experiments showed that transferrable plasmids carried the floR gene in three isolates. Sequencing analysis of a plasmid approximately 125 kb in size (pKP18-125) indicated that the floR gene was flanked by multiple copies of mobile genetic elements. Comparative genomics analysis of a 9-kb transposon-like fragment of pKP18-125 showed that an approximately 2-kb sequence encoding lysR-floR-virD2 was conserved in the majority (79.01%, 83/105) of floR sequences collected from NCBI nucleotide database. Interestingly, the most similar sequence was a 7-kb fragment of plasmid pEC012 from an Escherichia coli strain isolated from a chicken. Conclusions Identified on a transferable plasmid in the human pathogen K. pneumoniae, the floR gene may be disseminated through horizontal gene transfer from animal pathogens. Studies on the molecular mechanism of resistance gene dissemination in different bacterial species of animal origin could provide useful information for preventing or controlling the spread of resistance between animal and human pathogens.
Collapse
Affiliation(s)
- Junwan Lu
- School of Medicine and Health, Lishui University, Lishui, 323000 China
- School of Laboratory Medicine and Life Sciences/Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, 325035 China
| | - Jinfang Zhang
- School of Laboratory Medicine and Life Sciences/Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, 325035 China
| | - Lei Xu
- School of Laboratory Medicine and Life Sciences/Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, 325035 China
| | - Yabo Liu
- School of Laboratory Medicine and Life Sciences/Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, 325035 China
| | - Pingping Li
- School of Laboratory Medicine and Life Sciences/Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, 325035 China
| | - Tingyuan Zhu
- School of Laboratory Medicine and Life Sciences/Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, 325035 China
| | - Cong Cheng
- School of Medicine and Health, Lishui University, Lishui, 323000 China
| | - Shunfei Lu
- School of Medicine and Health, Lishui University, Lishui, 323000 China
| | - Teng Xu
- School of Laboratory Medicine and Life Sciences/Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, 325035 China
| | - Huiguang Yi
- School of Laboratory Medicine and Life Sciences/Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, 325035 China
| | - Kewei Li
- School of Laboratory Medicine and Life Sciences/Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, 325035 China
| | - Wu Zhou
- School of Medicine and Health, Lishui University, Lishui, 323000 China
| | - Peizhen Li
- School of Laboratory Medicine and Life Sciences/Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, 325035 China
| | - Liyan Ni
- The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035 China
| | - Qiyu Bao
- School of Laboratory Medicine and Life Sciences/Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, 325035 China
| |
Collapse
|
4
|
Davis GS, Price LB. Recent Research Examining Links Among Klebsiella pneumoniae from Food, Food Animals, and Human Extraintestinal Infections. Curr Environ Health Rep 2017; 3:128-35. [PMID: 27022987 DOI: 10.1007/s40572-016-0089-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Klebsiella pneumoniae is a colonizer of livestock, a contaminant of retail meats and vegetables, and a cause of extraintestinal infections in humans. Antibiotic-resistant strains of K. pneumoniae are becoming increasingly prevalent among hospital and community-acquired infections. Antibiotics are used extensively in conventional food-animal production, where they select for antibiotic-resistant bacteria. Antibiotic-resistant K. pneumoniae has been isolated from livestock as well as from a variety of retail meats, seafood, and vegetables. Furthermore, recent phylogenetic analyses suggest close relationships between K. pneumoniae from humans and livestock. Therefore, it is essential that we quantify the contribution of foodborne K. pneumoniae to antibiotic-resistant human infections.
Collapse
Affiliation(s)
- Gregg S Davis
- Department of Environmental and Occupational Health, Milken Institute School of Public Health, 950 New Hampshire Ave NW, Washington, DC, 20052, USA. .,Antibiotic Resistance Action Center, Milken Institute School of Public Health, 950 New Hampshire Ave, NW, Washington, DC, 20052, USA.
| | - Lance B Price
- Department of Environmental and Occupational Health, Milken Institute School of Public Health, 950 New Hampshire Ave NW, Washington, DC, 20052, USA.,Antibiotic Resistance Action Center, Milken Institute School of Public Health, 950 New Hampshire Ave, NW, Washington, DC, 20052, USA
| |
Collapse
|