1
|
Shang S, Wang Y, Yu X, Zhang D, Luo R, Jiang R, Zhao G, Du X, Zhang J, Irwin DM, Wang Z, Zhang S. Development of a 17-plex STR typing system for the identification of individuals and parentage testing in cattle. Sci Rep 2024; 14:24998. [PMID: 39443655 PMCID: PMC11500086 DOI: 10.1038/s41598-024-76547-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024] Open
Abstract
Accurate identification of animals and the verification of their parentage can be used to pedigree populations and support selective breeding. The International Society for Animal Genetics recommended 16 cattle STRs for individual identification and parentage testing in cattle, but no multiplex STR typing system contains these 16 STRs. Here, we develop an efficient 17-plex multiplex typing system for cattle that contains the 16 ISAG recommend STRs and a sex-determining marker. Compared to the Bovine Parenting Typing Kit (containing 11 of the 16 ISAG recommend STRs), our new typing system not only increases the number of molecular markers, but also simplifies the PCR operation and shortens the time for the typing procedure (from 4.5 h to 1 h 37 min). Profile can be generated from a single PCR reaction using as little as 1 ng of DNA. The combined probabilities of paternity exclusion CPEduo and CPEtrio were 0.999804697 and 0.999999260, respectively. These results indicate that our 17-plex typing system is a fast, sensitive and species-specific method for the identification of individuals and their parentage for cattle. The application of this system will improve the efficiency of the identification of cattle individuals and their paternity, supporting population genetic research and the selective breeding of cattle.
Collapse
Affiliation(s)
- Songyang Shang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Yutong Wang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Xiujuan Yu
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Defu Zhang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Runhong Luo
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Ri Jiang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Gang Zhao
- Liaoning Agricultural Development Service Center, Shenyang, 110032, Liaoning, China
| | - Xuehai Du
- Liaoning Agricultural Development Service Center, Shenyang, 110032, Liaoning, China
| | - Jupeng Zhang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - David M Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Zhe Wang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Shuyi Zhang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China.
| |
Collapse
|
2
|
Marasinghe MSLRP, Nilanthi RMR, Hathurusinghe HABM, Sooriyabandara MGC, Chandrasekara CHWMRB, Jayawardana KANC, Kodagoda MM, Rajapakse RC, Bandaranayake PCG. Revisiting traditional SSR based methodologies available for elephant genetic studies. Sci Rep 2021; 11:8718. [PMID: 33888797 PMCID: PMC8062488 DOI: 10.1038/s41598-021-88034-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 03/30/2021] [Indexed: 02/02/2023] Open
Abstract
Asian elephant (Elephas maximus) plays a significant role in natural ecosystems and it is considered as an endangered animal. Molecular genetics studies on elephants' dates back to 1990s. Microsatellite markers have been the preferred choice and have played a major role in ecological, evolutionary and conservation research on elephants over the past 20 years. However, technical constraints especially related to the specificity of traditionally developed microsatellite markers have brought to question their application, specifically when degraded samples are utilized for analysis. Therefore, we analyzed the specificity of 24 sets of microsatellite markers frequently used for elephant molecular work. Comparative wet lab analysis was done with blood and dung DNA in parallel with in silico work. Our data suggest cross-amplification of unspecific products when field-collected dung samples are utilized in assays. The necessity of Asian elephant specific set of microsatellites and or better molecular techniques are highlighted.
Collapse
Affiliation(s)
- M S L R P Marasinghe
- Department of Wildlife Conservation, 811/A, Jayanthipura Road, Battaramulla, 10120, Sri Lanka
| | - R M R Nilanthi
- Department of Wildlife Conservation, 811/A, Jayanthipura Road, Battaramulla, 10120, Sri Lanka
| | - H A B M Hathurusinghe
- Agricultural Biotechnology Centre, Faculty of Agriculture, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - M G C Sooriyabandara
- Department of Wildlife Conservation, 811/A, Jayanthipura Road, Battaramulla, 10120, Sri Lanka
| | - C H W M R B Chandrasekara
- Agricultural Biotechnology Centre, Faculty of Agriculture, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - K A N C Jayawardana
- Department of Wildlife Conservation, 811/A, Jayanthipura Road, Battaramulla, 10120, Sri Lanka
| | - M M Kodagoda
- Agricultural Biotechnology Centre, Faculty of Agriculture, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - R C Rajapakse
- Department of National Zoological Gardens, Anagarika Dharmapala Mawatha, Dehiwala, 10350, Sri Lanka
| | - P C G Bandaranayake
- Agricultural Biotechnology Centre, Faculty of Agriculture, University of Peradeniya, Peradeniya, 20400, Sri Lanka.
| |
Collapse
|
4
|
Development of a multiplex, PCR-based genotyping assay for African and Asian elephants for forensic purposes. Int J Legal Med 2019; 134:55-62. [PMID: 31190288 DOI: 10.1007/s00414-019-02097-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 05/27/2019] [Indexed: 10/26/2022]
Abstract
Wildlife crimes and the threats they present to elephant populations raise the need to develop and implement DNA-based methodology as an aid for wildlife forensic investigations and conservation efforts. This study describes the development of a tetra-nucleotide repeat STR multiplex, genotyping assay that will identify Asian elephant (Elephas maximus) and African elephant (Loxodonta africana) DNA. The assay targets six tetra-nucleotide STRs and two sex-typing markers simultaneously in both genera of elephants, a first for elephant genotyping assays. The developed assay has potential application in wildlife investigations to associate a biological sample to a particular individual elephant and additionally in conservation science for population management.
Collapse
|
5
|
Ishida Y, Gugala NA, Georgiadis NJ, Roca AL. Evolutionary and demographic processes shaping geographic patterns of genetic diversity in a keystone species, the African forest elephant ( Loxodonta cyclotis). Ecol Evol 2018; 8:4919-4931. [PMID: 29876070 PMCID: PMC5980461 DOI: 10.1002/ece3.4062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 03/15/2018] [Accepted: 03/19/2018] [Indexed: 11/08/2022] Open
Abstract
The past processes that have shaped geographic patterns of genetic diversity may be difficult to infer from current patterns. However, in species with sex differences in dispersal, differing phylogeographic patterns between mitochondrial (mt) and nuclear (nu) DNA may provide contrasting insights into past events. Forest elephants (Loxodonta cyclotis) were impacted by climate and habitat change during the Pleistocene, which likely shaped phylogeographic patterns in mitochondrial (mt) DNA that have persisted due to limited female dispersal. By contrast, the nuclear (nu) DNA phylogeography of forest elephants in Central Africa has not been determined. We therefore examined the population structure of Central African forest elephants by genotyping 94 individuals from six localities at 21 microsatellite loci. Between forest elephants in western and eastern Congolian forests, there was only modest genetic differentiation, a pattern highly discordant with that of mtDNA. Nuclear genetic patterns are consistent with isolation by distance. Alternatively, male-mediated gene flow may have reduced the previous regional differentiation in Central Africa suggested by mtDNA patterns, which likely reflect forest fragmentation during the Pleistocene. In species like elephants, male-mediated gene flow erases the nuclear genetic signatures of past climate and habitat changes, but these continue to persist as patterns in mtDNA because females do not disperse. Conservation implications of these results are discussed.
Collapse
Affiliation(s)
- Yasuko Ishida
- Department of Animal SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIllinois
| | - Natalie A. Gugala
- Department of Animal SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIllinois
| | | | - Alfred L. Roca
- Department of Animal SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIllinois
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinois
| |
Collapse
|
6
|
Bourgeois S, Senn H, Kaden J, Taggart JB, Ogden R, Jeffery KJ, Bunnefeld N, Abernethy K, McEwing R. Single-nucleotide polymorphism discovery and panel characterization in the African forest elephant. Ecol Evol 2018; 8:2207-2217. [PMID: 29468037 PMCID: PMC5817121 DOI: 10.1002/ece3.3854] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 12/17/2017] [Accepted: 12/29/2017] [Indexed: 12/14/2022] Open
Abstract
The continuing decline in forest elephant (Loxodonta cyclotis) numbers due to poaching and habitat reduction is driving the search for new tools to inform management and conservation. For dense rainforest species, basic ecological data on populations and threats can be challenging and expensive to collect, impeding conservation action in the field. As such, genetic monitoring is being increasingly implemented to complement or replace more burdensome field techniques. Single-nucleotide polymorphisms (SNPs) are particularly cost-effective and informative markers that can be used for a range of practical applications, including population census, assessment of human impact on social and genetic structure, and investigation of the illegal wildlife trade. SNP resources for elephants are scarce, but next-generation sequencing provides the opportunity for rapid, inexpensive generation of SNP markers in nonmodel species. Here, we sourced forest elephant DNA from 23 samples collected from 10 locations within Gabon, Central Africa, and applied double-digest restriction-site-associated DNA (ddRAD) sequencing to discover 31,851 tags containing SNPs that were reduced to a set of 1,365 high-quality candidate SNP markers. A subset of 115 candidate SNPs was then selected for assay design and validation using 56 additional samples. Genotyping resulted in a high conversion rate (93%) and a low per allele error rate (0.07%). This study provides the first panel of 107 validated SNP markers for forest elephants. This resource presents great potential for new genetic tools to produce reliable data and underpin a step-change in conservation policies for this elusive species.
Collapse
Affiliation(s)
- Stéphanie Bourgeois
- Agence Nationale des Parcs NationauxLibrevilleGabon
- WildGenes LaboratoryThe Royal Zoological Society of ScotlandEdinburgh ZooEdinburghUK
- Biological and Environmental SciencesFaculty of Natural SciencesUniversity of StirlingStirlingUK
| | - Helen Senn
- WildGenes LaboratoryThe Royal Zoological Society of ScotlandEdinburgh ZooEdinburghUK
| | - Jenny Kaden
- WildGenes LaboratoryThe Royal Zoological Society of ScotlandEdinburgh ZooEdinburghUK
| | - John B. Taggart
- Aquaculture Pathfoot BuildingUniversity of StirlingStirlingUK
| | - Rob Ogden
- TRACE Wildlife Forensics NetworkEdinburghUK
- Royal (Dick) School of Veterinary Studies & The Roslin InstituteUniversity of EdinburghEdinburghUK
| | - Kathryn J. Jeffery
- Agence Nationale des Parcs NationauxLibrevilleGabon
- Biological and Environmental SciencesFaculty of Natural SciencesUniversity of StirlingStirlingUK
- Institut de Recherche en Écologie TropicaleLibrevilleGabon
| | - Nils Bunnefeld
- Biological and Environmental SciencesFaculty of Natural SciencesUniversity of StirlingStirlingUK
| | - Katharine Abernethy
- Biological and Environmental SciencesFaculty of Natural SciencesUniversity of StirlingStirlingUK
- Institut de Recherche en Écologie TropicaleLibrevilleGabon
| | | |
Collapse
|
7
|
Groves CP, Cotterill FPD, Gippoliti S, Robovský J, Roos C, Taylor PJ, Zinner D. Species definitions and conservation: a review and case studies from African mammals. CONSERV GENET 2017. [DOI: 10.1007/s10592-017-0976-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|