1
|
Nasrullah M, Kc R, Nickel K, Parent K, Kucharski C, Meenakshi Sundaram DN, Rajendran AP, Jiang X, Brandwein J, Uludağ H. Lipopolymer/siRNA Nanoparticles Targeting the Signal Transducer and Activator of Transcription 5A Disrupts Proliferation of Acute Lymphoblastic Leukemia. ACS Pharmacol Transl Sci 2024; 7:2840-2855. [PMID: 39296267 PMCID: PMC11406681 DOI: 10.1021/acsptsci.4c00336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/03/2024] [Accepted: 08/07/2024] [Indexed: 09/21/2024]
Abstract
The therapeutic potential of small interfering RNAs (siRNAs) in gene-targeted treatments is substantial, but their suboptimal delivery impedes widespread clinical applications. Critical among these is the inability of siRNAs to traverse the cell membranes due to their anionic nature and high molecular weight. This limitation is particularly pronounced in lymphocytes, which pose additional barriers due to their smaller size and scant cytoplasm. Addressing this, we introduce an innovative lipid-conjugated polyethylenimine lipopolymer platform, engineered for delivery of therapeutic siRNAs into lymphocytes. This system utilizes the cationic nature of the polyethylenimine for forming stable complexes with anionic siRNAs, while the lipid component facilitates cellular entry of siRNA. The resulting lipopolymer/siRNA complexes are termed lipopolymer nanoparticles (LPNPs). We comprehensively profiled the efficacy of this platform in human peripheral blood mononuclear cells (PBMCs) as well as in vitro and in vivo models of acute lymphoblastic leukemia (ALL), emphasizing the inhibition of the oncogenic signal transducer and activator of transcription 5A (STAT5A) gene. The lipopolymers demonstrated high efficiency in delivering siRNA to ALL cell lines (RS4;11 and SUP-B15) and primary patient cells, effectively silencing the STAT5A gene. The resultant gene silencing induced apoptosis and significantly reduced colony formation in vitro. Furthermore, in vivo studies showed a significant decrease in tumor volumes without causing substantial toxicity. The lipopolymers did not induce the secretion of proinflammatory cytokines (IL-6, TNF-α, and INF-γ) in PBMCs from healthy volunteers, underscoring their immune safety profile. Our observations indicate that LPNP-based siRNA delivery systems offer a promising therapeutic approach for ALL in terms of both safety and therapeutic efficacy.
Collapse
Affiliation(s)
- Mohammad Nasrullah
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2H1, Canada
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta T6G 1R1, Canada
| | - Remant Kc
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta T6G 1R1, Canada
| | - Kyle Nickel
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta T6G 1R1, Canada
| | - Kylie Parent
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta T6G 1R1, Canada
| | - Cezary Kucharski
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta T6G 1R1, Canada
| | | | - Amarnath Praphakar Rajendran
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta T6G 1R1, Canada
| | - Xiaoyan Jiang
- Terry Fox Laboratory, British Colombia Cancer Research Institute and Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Joseph Brandwein
- Division of Hematology, Department of Medicine, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta T6G 2R7, Canada
| | - Hasan Uludağ
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2H1, Canada
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta T6G 1R1, Canada
| |
Collapse
|
2
|
Nucleic acid therapy in pediatric cancer. Pharmacol Res 2022; 184:106441. [PMID: 36096420 DOI: 10.1016/j.phrs.2022.106441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/02/2022] [Accepted: 09/07/2022] [Indexed: 12/24/2022]
Abstract
The overall survival, progress free survival, and life quality of cancer patients have improved due to the advance in minimally invasive surgery, precision radiotherapy, and various combined chemotherapy in the last decade. Furthermore, the discovery of new types of therapeutics, such as immune checkpoint inhibitors and immune cell therapies have facilitated both patients and doctors to fight with cancers. Moreover, in the context of the development in biocompatible and cell type targeting nano-carriers as well as nucleic acid-based drugs for initiating and enhancing the anti-tumor response have come to the age. The treatment paradigms utilization of nucleic acids, including short interfering RNA (siRNA), antisense oligonucleotides (ASO), and messenger RNA (mRNA), can target specific protein expression to achieve the therapeutic effects. Over ten nucleic acid therapeutics have been approved by the FDA and EMA in rare diseases and genetic diseases as well as dozens of registered clinical trails for varies cancers. Though generally less dangerous of pediatric cancers than adult cancers was observed during the past decades, yet pediatric cancers accounted for a significant proportion of child deaths which hurt those family very deeply. Therefore, it is necessary to pay more attention for improving the treatment of pediatric cancer and discovering new nucleic acid therapeutics which may help to improve the therapeutic effect and prognoses in turns to ameliorate the survival period and quality of life for children patient. In this review, we focus on the nucleic acid therapy in pediatric cancers.
Collapse
|
3
|
Role of Notch Receptors in Hematologic Malignancies. Cells 2020; 10:cells10010016. [PMID: 33374160 PMCID: PMC7823720 DOI: 10.3390/cells10010016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023] Open
Abstract
Notch receptors are single-pass transmembrane proteins that play a critical role in cell fate decisions and have been implicated in the regulation of many developmental processes. The human Notch family comprises of four receptors (Notch 1 to 4) and five ligands. Their signaling can regulate extremely basic cellular processes such as differentiation, proliferation and death. Notch is also involved in hematopoiesis and angiogenesis, and increasing evidence suggests that these genes are involved and frequently deregulated in several human malignancies, contributing to cell autonomous activities that may be either oncogenic or tumor suppressive. It was recently proposed that Notch signaling could play an active role in promoting and sustaining a broad spectrum of lymphoid malignancies as well as mutations in Notch family members that are present in several disorders of T- and B-cells, which could be responsible for altering the related signaling. Therefore, different Notch pathway molecules could be considered as potential therapeutic targets for hematological cancers. In this review, we will summarize and discuss compelling evidence pointing to Notch receptors as pleiotropic regulators of hematologic malignancies biology, first describing the physiological role of their signaling in T- and B-cell development and homeostasis, in order to fully understand the pathological alterations reported.
Collapse
|