1
|
Abbas R, Luo J, Qi X, Naz A, Khan IA, Liu H, Yu S, Wei J. Silver Nanoparticles: Synthesis, Structure, Properties and Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1425. [PMID: 39269087 PMCID: PMC11397261 DOI: 10.3390/nano14171425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024]
Abstract
Silver nanoparticles (Ag NPs) have accumulated significant interest due to their exceptional physicochemical properties and remarkable applications in biomedicine, electronics, and catalysis sensing. This comprehensive review provides an in-depth study of synthetic approaches such as biological synthesis, chemical synthesis, and physical synthesis with a detailed overview of their sub-methodologies, highlighting advantages and disadvantages. Additionally, structural properties affected by synthesis methods are discussed in detail by examining the dimensions and surface morphology. The review explores the distinctive properties of Ag NPs, including optical, electrical, catalytic, and antimicrobial properties, which render them beneficial for a range of applications. Furthermore, this review describes the diverse applications in several fields, such as medicine, environmental science, electronics, and optoelectronics. However, with numerous applications, several kinds of issues still exist. Future attempts need to address difficulties regarding synthetic techniques, environmental friendliness, and affordability. In order to ensure the secure utilization of Ag NPs, it is necessary to establish sustainability in synthetic techniques and eco-friendly production methods. This review aims to give a comprehensive overview of the synthesis, structural analysis, properties, and multifaceted applications of Ag NPs.
Collapse
Affiliation(s)
- Rimsha Abbas
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Jingjing Luo
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Xue Qi
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Adeela Naz
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Imtiaz Ahmad Khan
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Haipeng Liu
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Suzhu Yu
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Jun Wei
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| |
Collapse
|
2
|
Alvarez-Cirerol FJ, Galván-Moroyoqui JM, Rodríguez-León E, Candía-Plata C, Rodríguez-Beas C, López-Soto LF, Rodríguez-Vázquez BE, Bustos-Arriaga J, Soto-Guzmán A, Larios-Rodríguez E, Martínez-Soto JM, Martinez-Higuera A, Iñiguez-Palomares RA. Monocyte (THP-1) Response to Silver Nanoparticles Synthesized with Rumex hymenosepalus Root Extract. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:106. [PMID: 38202561 PMCID: PMC10780692 DOI: 10.3390/nano14010106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/20/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024]
Abstract
The study, synthesis, and application of nanomaterials in medicine have grown exponentially in recent years. An example of this is the understanding of how nanomaterials activate or regulate the immune system, particularly macrophages. In this work, nanoparticles were synthesized using Rumex hymenosepalus as a reducing agent (AgRhNPs). According to thermogravimetric analysis, the metal content of nanoparticles is 55.5% by weight. The size of the particles ranges from 5-26 nm, with an average of 11 nm, and they possess an fcc crystalline structure. The presence of extract molecules on the nanomaterial was confirmed by UV-Vis and FTIR. It was found by UPLC-qTOF that the most abundant compounds in Rh extract are flavonols, flavones, isoflavones, chalcones, and anthocyanidins. The viability and apoptosis of the THP-1 cell line were evaluated for AgRhNPs, commercial nanoparticles (AgCNPs), and Rh extract. The results indicate a minimal cytotoxic and apoptotic effect at a concentration of 12.5 μg/mL for both nanoparticles and 25 μg/mL for Rh extract. The interaction of the THP-1 cell line and treatments was used to evaluate the polarization of monocyte subsets in conjunction with an evaluation of CCR2, Tie-2, and Arg-1 expression. The AgRhNPs nanoparticles and Rh extract neither exhibited cytotoxicity in the THP-1 monocyte cell line. Additionally, the treatments mentioned above exhibited anti-inflammatory effects by maintaining the classical monocyte phenotype CD14++CD16, reducing pro-inflammatory interleukin IL-6 production, and increasing IL-4 production.
Collapse
Affiliation(s)
| | - José Manuel Galván-Moroyoqui
- Departamento de Medicina y Ciencias de la Salud, Universidad de Sonora, Hermosillo 83000, Mexico; (C.C.-P.); (L.F.L.-S.); (A.S.-G.); (J.M.M.-S.)
| | - Ericka Rodríguez-León
- Departamento de Física, Universidad de Sonora, Hermosillo 83000, Mexico; (E.R.-L.); (C.R.-B.); (B.E.R.-V.)
| | - Carmen Candía-Plata
- Departamento de Medicina y Ciencias de la Salud, Universidad de Sonora, Hermosillo 83000, Mexico; (C.C.-P.); (L.F.L.-S.); (A.S.-G.); (J.M.M.-S.)
| | - César Rodríguez-Beas
- Departamento de Física, Universidad de Sonora, Hermosillo 83000, Mexico; (E.R.-L.); (C.R.-B.); (B.E.R.-V.)
| | - Luis Fernando López-Soto
- Departamento de Medicina y Ciencias de la Salud, Universidad de Sonora, Hermosillo 83000, Mexico; (C.C.-P.); (L.F.L.-S.); (A.S.-G.); (J.M.M.-S.)
| | | | - José Bustos-Arriaga
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Adriana Soto-Guzmán
- Departamento de Medicina y Ciencias de la Salud, Universidad de Sonora, Hermosillo 83000, Mexico; (C.C.-P.); (L.F.L.-S.); (A.S.-G.); (J.M.M.-S.)
| | - Eduardo Larios-Rodríguez
- Departamento de Ingeniería Química y Metalurgia, Universidad de Sonora, Hermosillo 83000, Mexico;
| | - Juan M. Martínez-Soto
- Departamento de Medicina y Ciencias de la Salud, Universidad de Sonora, Hermosillo 83000, Mexico; (C.C.-P.); (L.F.L.-S.); (A.S.-G.); (J.M.M.-S.)
| | | | - Ramón A. Iñiguez-Palomares
- Departamento de Física, Universidad de Sonora, Hermosillo 83000, Mexico; (E.R.-L.); (C.R.-B.); (B.E.R.-V.)
| |
Collapse
|
3
|
Davodabadi F, Sajjadi SF, Sarhadi M, Mirghasemi S, Nadali Hezaveh M, Khosravi S, Kamali Andani M, Cordani M, Basiri M, Ghavami S. Cancer chemotherapy resistance: Mechanisms and recent breakthrough in targeted drug delivery. Eur J Pharmacol 2023; 958:176013. [PMID: 37633322 DOI: 10.1016/j.ejphar.2023.176013] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 08/28/2023]
Abstract
Conventional chemotherapy, one of the most widely used cancer treatment methods, has serious side effects, and usually results in cancer treatment failure. Drug resistance is one of the primary reasons for this failure. The most significant drawbacks of systemic chemotherapy are rapid clearance from the circulation, the drug's low concentration in the tumor site, and considerable adverse effects outside the tumor. Several ways have been developed to boost neoplasm treatment efficacy and overcome medication resistance. In recent years, targeted drug delivery has become an essential therapeutic application. As more mechanisms of tumor treatment resistance are discovered, nanoparticles (NPs) are designed to target these pathways. Therefore, understanding the limitations and challenges of this technology is critical for nanocarrier evaluation. Nano-drugs have been increasingly employed in medicine, incorporating therapeutic applications for more precise and effective tumor diagnosis, therapy, and targeting. Many benefits of NP-based drug delivery systems in cancer treatment have been proven, including good pharmacokinetics, tumor cell-specific targeting, decreased side effects, and lessened drug resistance. As more mechanisms of tumor treatment resistance are discovered, NPs are designed to target these pathways. At the moment, this innovative technology has the potential to bring fresh insights into cancer therapy. Therefore, understanding the limitations and challenges of this technology is critical for nanocarrier evaluation.
Collapse
Affiliation(s)
- Fatemeh Davodabadi
- Department of Biology, Faculty of Basic Science, Payame Noor University, Tehran, Iran.
| | - Seyedeh Fatemeh Sajjadi
- School of Biological Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.
| | - Mohammad Sarhadi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Shaghayegh Mirghasemi
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Mahdieh Nadali Hezaveh
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Samin Khosravi
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran.
| | - Mahdieh Kamali Andani
- Department of Biology, Faculty of Basic Science, Payame Noor University, Tehran, Iran.
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, Complutense University of Madrid, Madrid, Spain; Instituto de Investigaciones Sanitarias San Carlos (IdISSC), Madrid, Spain.
| | - Mohsen Basiri
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Saeid Ghavami
- Academy of Silesia, Faculty of Medicine, Rolna 43, 40-555. Katowice, Poland; Research Institute of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, MB R3E 3P5, Canada; Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P5, Canada; Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 3P5, Canada.
| |
Collapse
|
4
|
Chicea D, Nicolae-Maranciuc A, Doroshkevich AS, Chicea LM, Ozkendir OM. Comparative Synthesis of Silver Nanoparticles: Evaluation of Chemical Reduction Procedures, AFM and DLS Size Analysis. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5244. [PMID: 37569948 PMCID: PMC10419401 DOI: 10.3390/ma16155244] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023]
Abstract
The size of silver nanoparticles plays a crucial role in their ultimate application in the medical and industrial fields, as their efficacy is enhanced by decreasing dimensions. This study presents two chemical synthesis procedures for obtaining silver particles and compares the results to a commercially available Ag-based product. The first procedure involves laboratory-based chemical reduction using D-glucose (C6H12O6) and NaOH as reducing agents, while the second approach utilizes trisodium citrate dehydrate (C6H5Na3O7·2H2O, TSC). The Ag nanoparticle suspensions were examined using FT-IR and UV-VIS spectroscopy, which indicated the formation of Ag particles. The dimensional properties were investigated using Atomic Force Microscopy (AFM) and confirmed by Dynamic Light Scattering (DLS). The results showed particle size from microparticles to nanoparticles, with a particle size of approximately 60 nm observed for the laboratory-based TSC synthesis approach.
Collapse
Affiliation(s)
- Dan Chicea
- Research Center for Complex Physical Systems, Faculty of Sciences, Lucian Blaga University of Sibiu, 550012 Sibiu, Romania
| | - Alexandra Nicolae-Maranciuc
- Research Center for Complex Physical Systems, Faculty of Sciences, Lucian Blaga University of Sibiu, 550012 Sibiu, Romania
- Institute for Interdisciplinary Studies and Research (ISCI), Lucian Blaga University of Sibiu, 550024 Sibiu, Romania
| | - Aleksandr S. Doroshkevich
- Donetsk Institute for Physics and Engineering Named after O.O. Galkin, NAS of Ukraine, 46, Prospect Nauky, 03028 Kyiv, Ukraine;
| | - Liana Maria Chicea
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania;
| | - Osman Murat Ozkendir
- Faculty of Engineering, Department of Natural and Mathematical Sciences, Tarsus University, Tarsus 33400, Turkey;
| |
Collapse
|
5
|
Miranda A, Akpobolokemi T, Chung E, Ren G, Raimi-Abraham BT. pH Alteration in Plant-Mediated Green Synthesis and Its Resultant Impact on Antimicrobial Properties of Silver Nanoparticles (AgNPs). Antibiotics (Basel) 2022; 11:1592. [PMID: 36358247 PMCID: PMC9686503 DOI: 10.3390/antibiotics11111592] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/04/2022] [Accepted: 11/09/2022] [Indexed: 10/12/2023] Open
Abstract
Plant-mediated green synthesis is a cost-effective and eco-friendly process used to synthesize metallic nanoparticles. Experimental pH is of interest due to its ability to influence nanoparticle size and shape; however, little has been explored in comparison to the influence of this parameter on the therapeutic potential of resultant metallic nanoparticles. Our work investigated the influence of pH alternation on antimicrobial properties of plant-mediated green synthesized (using Spinacia oleracea leaf extract) silver nanoparticles. We further investigated if the antimicrobial activity was sustained at 8 weeks (after initial green synthesis). Antimicrobial properties were evaluated against Escherichia coli, Staphylococcus aureus, and Candida albicans. Our work confirmed that experimental pH in plant-mediated green synthesis of silver nanoparticles influenced their resultant antimicrobial properties. Silver nanoparticles generated at experimental pH 4,5, and nine showed activity against E. coli which was sustained at various levels over 8 weeks. No antimicrobial activity was observed against S. aureus, and weak antimicrobial activity against C. albicans. These interesting findings highlight the importance of experimental pH. Further understanding of the role experimental pH plays on resultant metallic nanoparticle properties as it relates to biological and therapeutic impact is required, which will have an impact on wider applications beyond antimicrobial activity.
Collapse
Affiliation(s)
- Amalia Miranda
- Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, King’s College London, Waterloo Campus, Franklin Wilkins Building, Stamford Street, London SE1 9NH, UK
| | - Tamara Akpobolokemi
- Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, King’s College London, Waterloo Campus, Franklin Wilkins Building, Stamford Street, London SE1 9NH, UK
| | - Etelka Chung
- School of Physics, Engineering and Computer Science, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Guogang Ren
- School of Physics, Engineering and Computer Science, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Bahijja Tolulope Raimi-Abraham
- Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, King’s College London, Waterloo Campus, Franklin Wilkins Building, Stamford Street, London SE1 9NH, UK
| |
Collapse
|
6
|
Metabolomic Profiling of the Responses of Planktonic and Biofilm Vibrio cholerae to Silver Nanoparticles. Antibiotics (Basel) 2022; 11:antibiotics11111534. [DOI: 10.3390/antibiotics11111534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Vibrio cholerae causes cholera and can switch between planktonic and biofilm lifeforms, where biofilm formation enhances transmission, virulence, and antibiotic resistance. Due to antibiotic microbial resistance, new antimicrobials including silver nanoparticles (AgNPs) are being studied. Nevertheless, little is known about the metabolic changes exerted by AgNPs on both microbial lifeforms. Our objective was to evaluate the changes in the metabolomic profile of V. cholerae planktonic and biofilm cells in response to sublethal concentrations of AgNPs using MS2 untargeted metabolomics and chemoinformatics. A total of 690 metabolites were quantified among all groups. More metabolites were significantly modulated in planktonic cells (n = 71) compared to biofilm (n = 37) by the treatment. The chemical class profiles were distinct for both planktonic and biofilm, suggesting a phenotype-dependent metabolic response to the nanoparticles. Chemical enrichment analysis showed altered abundances of oxidized fatty acids (FA), saturated FA, phosphatidic acids, and saturated stearic acid in planktonic cells treated with AgNPs, which hints at a turnover of the membrane. In contrast, no chemical classes were enriched in the biofilm. In conclusion, this study suggests that the response of V. cholerae to silver nanoparticles is phenotype-dependent and that planktonic cells experience a lipid remodeling process, possibly related to an adaptive mechanism involving the cell membrane.
Collapse
|
7
|
Yaseen B, Gangwar C, Kumar I, Sarkar J, Naik RM. Detailed Kinetic and Mechanistic Study for the Preparation of Silver Nanoparticles by a Chemical Reduction Method in the Presence of a Neuroleptic Agent (Gabapentin) at an Alkaline pH and its Characterization. ACS OMEGA 2022; 7:5739-5750. [PMID: 35224334 PMCID: PMC8867805 DOI: 10.1021/acsomega.1c05499] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 01/27/2022] [Indexed: 05/05/2023]
Abstract
For the very first time, a detailed kinetic study for the preparation of silver nanoparticles (silver NPs) by neuroleptic agent gabapentin (GBP) in the absence of a stabilizer has been reported in this investigation. This paper is devoted to the preparation of silver nanoparticles by a chemical reduction method in which gabapentin acts as both a reductant and a stabilizer, and AgNO3 is used as a source of Ag+ ions and NaOH for maintaining the alkaline medium. A UV-visible spectrophotometer is used to monitor the progress of the reaction kinetics in an aqueous medium by changing the concentration of different variables such as AgNO3, NaOH, and gabapentin at 40 °C. It is found that the reaction rate follows a pseudo-first-order reaction. The thermodynamic activation parameters were also studied at five different temperatures (303, 308, 313, 318, and 323 K) and used in the support of the proposed mechanistic scheme for the formation of silver nanoparticles. The prepared silver nanoparticles were characterized using different techniques: UV-visible spectrophotometry, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, transmission electron microscopy, and powder X-ray diffraction. The average particle size was observed in the range of 5-45 nm.
Collapse
|
8
|
Silver Nanoparticles for Conductive Inks: From Synthesis and Ink Formulation to Their Use in Printing Technologies. METALS 2022. [DOI: 10.3390/met12020234] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Currently, silver nanoparticles have attracted large interest in the photonics, electrics, analytical, and antimicrobial/biocidal fields due to their excellent optical, electrical, biological, and antibacterial properties. The versatility in generating different sizes, shapes, and surface morphologies results in a wide range of applications of silver nanoparticles in various industrial and health-related areas. In industrial applications, silver nanoparticles are used to produce conductive inks, which allows the construction of electronic devices on low-cost and flexible substrates by using various printing techniques. In order to achieve successful printed patterns, the necessary formulation and synthesis need to be engineered to fulfil the printing technique requirements. Additional sintering processes are typically further required to remove the added polymers, which are used to produce the desired adherence, viscosity, and reliable performance. This contribution presents a review of the synthesis of silver nanoparticles via different methods (chemical, physical and biological methods) and the application of silver nanoparticles under the electrical field. Formulation of silver inks and formation of conductive patterns by using different printing techniques (inkjet printing, screen printing and aerosol jet printing) are presented. Post-printing treatments are also discussed. A summary concerning outlooks and perspectives is presented at the end of this review.
Collapse
|
9
|
POUYAMANESH M, AHARI H, ANVAR AA, KARIM G. Packaging based on Ag-Low Density Polyethylene for shelf-life extension of pasteurized and traditional butters at refrigerated temperature. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.67020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Shamsudin N, Shafie S, Ab Kadir MZA, Ahmad F, Sadrolhosseini AR, Sulaiman Y, Abdullah AH, Mohd Chachuli SA. Impact of polyvinylpyrrolidone and quantity of silver nitrate on silver nanoparticles sizing via solvothermal method for dye‐sensitized solar cells. SURF INTERFACE ANAL 2021. [DOI: 10.1002/sia.7026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- N.H. Shamsudin
- Department of Electrical and Electronic Engineering, Faculty of Engineering Universiti Putra Malaysia Seri Kembangan Malaysia
- Faculty of Electrical Engineering Universiti Teknikal Malaysia Melaka Melaka Malaysia
| | - Suhaidi Shafie
- Department of Electrical and Electronic Engineering, Faculty of Engineering Universiti Putra Malaysia Seri Kembangan Malaysia
- Institute of Advanced Technology Universiti Putra Malaysia Seri Kembangan Malaysia
| | - Mohd Zainal Abidin Ab Kadir
- Department of Electrical and Electronic Engineering, Faculty of Engineering Universiti Putra Malaysia Seri Kembangan Malaysia
- Centre for Electromagnetic and Lightning Protection (CELP) Universiti Putra Malaysia Seri Kembangan Selangor Malaysia
| | - Fauzan Ahmad
- Department of Electronic System Engineering, Malaysia‐Japan International Institute of Technology (MJIT) Universiti Teknologi Malaysia Kuala Lumpur Malaysia
| | | | - Yusran Sulaiman
- Institute of Advanced Technology Universiti Putra Malaysia Seri Kembangan Malaysia
- Department of Chemistry, Faculty of Science Universiti Putra Malaysia Seri Kembangan Malaysia
| | - Abdul Halim Abdullah
- Department of Chemistry, Faculty of Science Universiti Putra Malaysia Seri Kembangan Malaysia
| | - Siti Amaniah Mohd Chachuli
- Fakulti Kejuruteraan Elektronik & Kejuruteraan Komputer Universiti Teknikal Malaysia Melaka Melaka Malaysia
| |
Collapse
|
11
|
Gangwar C, Yaseen B, Kumar I, Singh NK, Naik RM. Growth Kinetic Study of Tannic Acid Mediated Monodispersed Silver Nanoparticles Synthesized by Chemical Reduction Method and Its Characterization. ACS OMEGA 2021; 6:22344-22356. [PMID: 34497923 PMCID: PMC8412910 DOI: 10.1021/acsomega.1c03100] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 08/09/2021] [Indexed: 05/22/2023]
Abstract
The complex process of nanoparticle formation in an aqueous solution is governed by kinetics and thermodynamic factors. This paper describes a room-temperature growth kinetic study and evaluation of thermodynamic activation parameters of monodispersed silver nanoparticles (AgNPs) synthesized in alkaline medium by chemical reduction method using AgNO3 as a source of Ag+ ions and tannic acid (TA) as a reductant (reducing agent) as well as a capping or stabilizing agent in the absence of any other external stabilizer. A simple and conveniently handled reaction process was monitored spectrophotometrically to study the growth kinetics in an aqueous solution as a function of the concentration of silver ion, hydroxide ion, and TA, respectively. The neutral nucleophilic group donates the electron density via a lone pair of electrons to Ag+ ions for the reduction process, i.e., for the nucleation of AgNPs colloid. Also, a few silver ions form a silver oxide, which also facilitates the nucleation center to enhance the growth of AgNPs colloid. The decrease and increase in rate constant on varying the TA concentration showed its adsorption onto the surface of metallic AgNPs and stabilized by polygalloyl units of TA and were the main elements to control the growth kinetics. Consequently, stabilized TA-mediated AgNPs are formed using the electron donated by quinone form of TA followed by a pseudo-first-order reaction. Apart from this, nanoparticles formed were characterized using UV-visible spectrophotometry, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, transmission electron microscopy, and powder X-ray diffraction techniques to confirm its formation during the present kinetic study.
Collapse
|
12
|
Retout M, Jabin I, Bruylants G. Synthesis of Ultrastable and Bioconjugable Ag, Au, and Bimetallic Ag_Au Nanoparticles Coated with Calix[4]arenes. ACS OMEGA 2021; 6:19675-19684. [PMID: 34368555 PMCID: PMC8340414 DOI: 10.1021/acsomega.1c02327] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/02/2021] [Indexed: 05/02/2023]
Abstract
Compared to gold nanoparticles, silver nanoparticles are largely underexploited for the development of plasmonic nanosensors. This is mainly due to their easy chemical degradation through oxidation, poor colloidal stability, and usually broad size distribution after synthesis, which leads to broad localized surface plasmon resonance bands. Coatings based on polymers such as poly(ethylene glycol) (PEG) or poly(vinylpyrrolidone) (PVP) and plant extracts have been used for the stabilization of AgNPs; however, these thick coatings are not suitable for sensing applications as they isolate the metallic core. The examples of stable AgNPs coated with a thin organic layer remain scarce in comparison to their gold counterparts. In this work, we present a convenient one-step synthesis strategy that allows to obtain unique gold, silver, and bimetallic NPs that combine all of the properties required for biosensing applications. The NPs are stabilized by a tunable calix[4]arene-based monolayer obtained through the reduction of calix[4]arene-tetradiazonium salts. These multidentate ligands are of particular interest as (i) they provide excellent colloidal and chemical stabilities to the particles thanks to their anchoring to the surface via multiple chemical bonds, (ii) they allow the subsequent (bio)conjugation of (bio)molecules under mild conditions, and (iii) they allow a control over the composition of mixed coating layers. Ag and Ag_Au nanoparticles of a high stability are obtained, opening perspectives for development of numerous biosensing applications.
Collapse
Affiliation(s)
- Maurice Retout
- Engineering
of Molecular NanoSystems, Ecole Polytechnique de Bruxelles, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50, CP165/64, B-1050 Brussels, Belgium
| | - Ivan Jabin
- Laboratoire
de Chimie Organique, Université libre
de Bruxelles (ULB), Avenue
F. D. Roosevelt 50, CP160/06, B-1050 Brussels, Belgium
| | - Gilles Bruylants
- Engineering
of Molecular NanoSystems, Ecole Polytechnique de Bruxelles, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50, CP165/64, B-1050 Brussels, Belgium
| |
Collapse
|
13
|
Lee SJ, Begildayeva T, Yeon S, Naik SS, Ryu H, Kim TH, Choi MY. Eco-friendly synthesis of lignin mediated silver nanoparticles as a selective sensor and their catalytic removal of aromatic toxic nitro compounds. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 269:116174. [PMID: 33280906 DOI: 10.1016/j.envpol.2020.116174] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/07/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
The development of an eco-friendly and reliable process for the production of nanomaterials is essential to overcome the toxicity and exorbitant cost of conventional methods. As such, a facile and green synthesis method is introduced for the preparation of lignin mediated silver nanoparticles (L-Ag NPs). This is produced by reducing Ag precursors using lignin biopolymers which are formulated by pulsed laser irradiation and an ultrasonication process. Lignin operates as both a reducing and stabilizing agent. The various analytical techniques of ultraviolet-visible spectroscopy, transmission electron microscope and X-ray diffractometer studies were employed to verify the formation of non-aggregated spherical L-Ag NPs with an average size as small as 7-8 nm. The selective sensing capability of the synthesized L-Ag NPs was examined for the detection of hydrogen peroxide and mercury ions in an aqueous environment. Furthermore, the superior catalytic performance of L-Ag NPs was demonstrated by the rapid conversion of toxic 4-nitrophenol and nitrobenzene as targeted pollutants to the corresponding amino compounds. A plausible catalytic reduction mechanism for the removal of toxic nitro-organic pollutants over L-Ag NPs is proposed. This research coincides with existing studies and affirms that L-Ag NPs are an effective sensor that be applied as a catalytic material within environmental remediation and also alternative biomedical applications.
Collapse
Affiliation(s)
- Seung Jun Lee
- Department of Chemistry (BK21 FOUR) and Research Institute of Natural Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Talshyn Begildayeva
- Department of Chemistry (BK21 FOUR) and Research Institute of Natural Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Sanghun Yeon
- Department of Chemistry (BK21 FOUR) and Research Institute of Natural Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Shreyanka Shankar Naik
- Department of Chemistry (BK21 FOUR) and Research Institute of Natural Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Hakseung Ryu
- Department of Chemistry (BK21 FOUR) and Research Institute of Natural Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Tae Ho Kim
- Department of Chemistry (BK21 FOUR) and Research Institute of Natural Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Myong Yong Choi
- Department of Chemistry (BK21 FOUR) and Research Institute of Natural Science, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| |
Collapse
|
14
|
Vazquez-Muñoz R, Bogdanchikova N, Huerta-Saquero A. Beyond the Nanomaterials Approach: Influence of Culture Conditions on the Stability and Antimicrobial Activity of Silver Nanoparticles. ACS OMEGA 2020; 5:28441-28451. [PMID: 33195894 PMCID: PMC7658933 DOI: 10.1021/acsomega.0c02007] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/17/2020] [Indexed: 05/08/2023]
Abstract
Silver nanoparticles (AgNPs) as antimicrobial agents have been extensively studied. It is generally assumed that their inhibitory activity heavily depends on their physicochemical features. Yet, other parameters may affect the AgNP traits and activity, such as culture medium composition, pH, and temperature, among others. In this work, we evaluated the effect of the culture medium physicochemical traits on both the stability and antibacterial activity of AgNPs. We found that culture media impact the physicochemical traits of AgNPs, such as hydrodynamic size, surface charge, aggregation, and the availability of ionic silver release rate. As a consequence, culture media play a major role in AgNP stability and antimicrobial potency. The AgNP minimal inhibitory concentration (MIC) values changed up to 2 orders of magnitude by the influence of culture media alone when single-stock AgNPs were tested on the same strain of Escherichia coli. Furthermore, a meta-analysis of the AgNP MIC values confirms that the "chemical complexity" of culture media influences the AgNP activity. Studies that address only the antimicrobial activities of nanoparticles on common bacterial models should be performed by standardized susceptibility assays, thus generating replicable, comparable reports regarding the antimicrobial potency of nanomaterials.
Collapse
Affiliation(s)
- Roberto Vazquez-Muñoz
- Department
of Biology and The South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249, Unites
States
- Centro
de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 Carretera Tijuana-Ensenada, CP 22860 Ensenada, Baja California, México
| | - Nina Bogdanchikova
- Centro
de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 Carretera Tijuana-Ensenada, CP 22860 Ensenada, Baja California, México
| | - Alejandro Huerta-Saquero
- Centro
de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 Carretera Tijuana-Ensenada, CP 22860 Ensenada, Baja California, México
| |
Collapse
|
15
|
Vazquez-Munoz R, Arellano-Jimenez MJ, Lopez-Ribot JL. Bismuth nanoparticles obtained by a facile synthesis method exhibit antimicrobial activity against Staphylococcus aureus and Candida albicans. BMC Biomed Eng 2020; 2:11. [PMID: 33073175 PMCID: PMC7558697 DOI: 10.1186/s42490-020-00044-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/08/2020] [Indexed: 01/08/2023] Open
Abstract
Background Bismuth compounds are known for their activity against multiple microorganisms; yet, the antibiotic properties of bismuth nanoparticles (BiNPs) remain poorly explored. The objective of this work is to further the research of BiNPs for nanomedicine-related applications. Stable Polyvinylpyrrolidone (PVP)-coated BiNPs were produced by a chemical reduction process, in less than 30 min. Results We produced stable, small, spheroid PVP-coated BiNPs with a crystalline organization. The PVP-BiNPs showed potent antibacterial activity against the pathogenic bacterium Staphylococcus aureus and antifungal activity against the opportunistic pathogenic yeast Candida albicans, both under planktonic and biofilm growing conditions. Conclusions Our results indicate that BiNPs represent promising antimicrobial nanomaterials, and this facile synthetic method may allow for further investigation of their activity against a variety of pathogenic microorganisms.
Collapse
|
16
|
Vazquez-Munoz R, Lopez FD, Lopez-Ribot JL. Bismuth Nanoantibiotics Display Anticandidal Activity and Disrupt the Biofilm and Cell Morphology of the Emergent Pathogenic Yeast Candida auris. Antibiotics (Basel) 2020; 9:E461. [PMID: 32751405 PMCID: PMC7460268 DOI: 10.3390/antibiotics9080461] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 01/08/2023] Open
Abstract
Candida auris is an emergent multidrug-resistant pathogenic yeast, which forms biofilms resistant to antifungals, sanitizing procedures, and harsh environmental conditions. Antimicrobial nanomaterials represent an alternative to reduce the spread of pathogens-including yeasts-regardless of their drug-resistant profile. Here we have assessed the antimicrobial activity of easy-to-synthesize bismuth nanoparticles (BiNPs) against the emergent multidrug-resistant yeast Candida auris, under both planktonic and biofilm growing conditions. Additionally, we have examined the effect of these BiNPs on cell morphology and biofilm structure. Under planktonic conditions, BiNPs MIC values ranged from 1 to 4 µg mL-1 against multiple C. auris strains tested, including representatives of all different clades. Regarding the inhibition of biofilm formation, the calculated BiNPs IC50 values ranged from 5.1 to 113.1 µg mL-1. Scanning electron microscopy (SEM) observations indicated that BiNPs disrupted the C. auris cell morphology and the structure of the biofilms. In conclusion, BiNPs displayed strong antifungal activity against all strains of C. auris under planktonic conditions, but moderate activity against biofilm growth. BiNPs may potentially contribute to reducing the spread of C. auris strains at healthcare facilities, as sanitizers and future potential treatments. More research on the antimicrobial activity of BiNPs is warranted.
Collapse
Affiliation(s)
- Roberto Vazquez-Munoz
- Department of Biology, and South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Fernando D. Lopez
- School of Engineering, The University of Texas at Austin, Austin, TX 78712, USA;
| | - Jose L. Lopez-Ribot
- Department of Biology, and South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| |
Collapse
|
17
|
Vazquez-Munoz R, Lopez FD, Lopez-Ribot JL. Silver Nanoantibiotics Display Strong Antifungal Activity Against the Emergent Multidrug-Resistant Yeast Candida auris Under Both Planktonic and Biofilm Growing Conditions. Front Microbiol 2020; 11:1673. [PMID: 32849347 PMCID: PMC7399222 DOI: 10.3389/fmicb.2020.01673] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/26/2020] [Indexed: 12/21/2022] Open
Abstract
Candida auris is an emergent multidrug-resistant pathogenic yeast with an unprecedented ability for a fungal organism to easily spread between patients in clinical settings, leading to major outbreaks in healthcare facilities. The formation of biofilms by C. auris contributes to infection and its environmental persistence. Most antifungals and sanitizing procedures are not effective against C. auris, but antimicrobial nanomaterials could represent a viable alternative to combat the infections caused by this emerging pathogen. We have previously described an easy and inexpensive method to synthesize silver nanoparticles (AgNPs) in non-specialized laboratories. Here, we have assessed the antimicrobial activity of the resulting AgNPs on C. auris planktonic and biofilm growth phases. AgNPs displayed a strong antimicrobial activity against all the stages of all C. auris strains tested, representative of four different clades. Under planktonic conditions, minimal inhibitory concentration (MIC) values of AgNPs against the different strains were <0.5 μg ml−1; whereas calculated IC50 values for inhibition of biofilms formation were <2 μg ml−1 for all, but one of the C. auris strains tested. AgNPs were also active against preformed biofilms formed by all different C. auris strains, with IC50 values ranging from 1.2 to 6.2 μg ml−1. Overall, our results indicate potent activity of AgNPs against strains of C. auris, both under planktonic and biofilm growing conditions, and indicate that AgNPs may contribute to the control of infections caused by this emerging nosocomial threat.
Collapse
Affiliation(s)
- Roberto Vazquez-Munoz
- South Texas Center for Emerging Infectious Diseases, Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Fernando D Lopez
- Cockrell School of Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Jose L Lopez-Ribot
- South Texas Center for Emerging Infectious Diseases, Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States
| |
Collapse
|
18
|
Vazquez-Munoz R, Arellano-Jimenez MJ, Lopez-Ribot JL. Fast, facile synthesis method for BAL-mediated PVP-bismuth nanoparticles. MethodsX 2020; 7:100894. [PMID: 32405464 PMCID: PMC7210455 DOI: 10.1016/j.mex.2020.100894] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 04/05/2020] [Indexed: 12/18/2022] Open
Abstract
Bismuth is a water-insoluble non-toxic metallic element used in a wide array of pharmaceutical products, cosmetics, and catalysts, among others. Yet, the research regarding the use of bismuth nanoparticles (BiNPs) for antimicrobial treatments is scarce. Most of the current protocols for synthesizing BiNPs suitable for medical uses cannot be easily replicated in non-specialized laboratories. The objective of this work is to provide a fast, facile and economical method for synthesizing BiNPs. Bismuth nanoparticles were synthesized by a chemical reduction process, in less than 1 h, in a heated alkaline glycine solution; by the chelation and reduction of the bismuth (III) ions using dimercaptopropanol (BAL) and sodium borohydride respectively, and then coated and stabilized by polyvinylpyrrolidone (PVP). The resulting PVP-BiNPs were characterized by UV-Vis spectrophotometry and transmission electron microscopy (TEM). • We describe a simple, rapid and inexpensive method for the synthesis of bismuth nanoparticles. • This method allows synthesizing small nanoparticles with an aspect ratio close to one. • Bismuth nanoparticles have antimicrobial properties, this easy-to-replicate protocol may further the research on bismuth nanoparticles for biomedical applications.
Collapse
Affiliation(s)
- Roberto Vazquez-Munoz
- Department of Biology and South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, USA
| | - M Josefina Arellano-Jimenez
- The University of Texas at San Antonio, San Antonio, TX, USA (former).,Department of Materials Science and Engineering, The University of Texas at Dallas, Dallas, TX, USA (current)
| | - Jose L Lopez-Ribot
- Department of Biology and South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, USA
| |
Collapse
|
19
|
Vazquez-Munoz R, Arellano-Jimenez MJ, Lopez-Ribot JL. Bismuth nanoparticles obtained by a facile synthesis method exhibit antimicrobial activity against Staphylococcus aureus and Candida albicans. BMC Biomed Eng 2020. [PMID: 33073175 DOI: 10.1101/2020.06.05.137109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Bismuth compounds are known for their activity against multiple microorganisms; yet, the antibiotic properties of bismuth nanoparticles (BiNPs) remain poorly explored. The objective of this work is to further the research of BiNPs for nanomedicine-related applications. Stable Polyvinylpyrrolidone (PVP)-coated BiNPs were produced by a chemical reduction process, in less than 30 min. RESULTS We produced stable, small, spheroid PVP-coated BiNPs with a crystalline organization. The PVP-BiNPs showed potent antibacterial activity against the pathogenic bacterium Staphylococcus aureus and antifungal activity against the opportunistic pathogenic yeast Candida albicans, both under planktonic and biofilm growing conditions. CONCLUSIONS Our results indicate that BiNPs represent promising antimicrobial nanomaterials, and this facile synthetic method may allow for further investigation of their activity against a variety of pathogenic microorganisms.
Collapse
|