White SL, Eackles MS, Wagner T, Schall M, Smith G, Avery J, Kazyak DC. Optimization of a suite of flathead catfish (Pylodictis olivaris) microsatellite markers for understanding the population genetics of introduced populations in the northeast United States.
BMC Res Notes 2021;
14:314. [PMID:
34399852 PMCID:
PMC8365922 DOI:
10.1186/s13104-021-05725-2]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 08/02/2021] [Indexed: 11/30/2022] Open
Abstract
Objective
Flathead catfish are rapidly expanding into nonnative waterways throughout the United States. Once established, flathead catfish may cause disruptions to the local ecosystem through consumption and competition with native fishes, including species of conservation concern. Flathead catfish often become a popular sport fish in their introduced range, and so management strategies must frequently balance the need to protect native and naturalized fauna while meeting the desire to maintain or enhance fisheries. However, there are currently few tools available to inform management of invasive flathead catfish (Pylodictis olivaris). We describe a suite of microsatellite loci that can be used to characterize population structure, predict invasion history, and assess potential mitigation strategies for flathead catfish.
Results
Our panel of 13 microsatellite loci were polymorphic and appear to be informative for population genetic studies of flathead catfish. We found moderate levels of diversity in four nonnative collections of flathead catfish in the Pennsylvania and Maryland sections of the Susquehanna River and the Schuylkill River, Pennsylvania. Analyses suggested patterns of genetic differentiation within- and among-rivers, highlighting the utility of this marker panel for understanding the structure and assessing the degree of connectivity among flathead catfish populations.
Collapse