1
|
Plaza-Florido A, Pérez-Prieto I, Molina-Garcia P, Radom-Aizik S, Ortega FB, Altmäe S. Transcriptional and Epigenetic Response to Sedentary Behavior and Physical Activity in Children and Adolescents: A Systematic Review. Front Pediatr 2022; 10:917152. [PMID: 35813370 PMCID: PMC9263076 DOI: 10.3389/fped.2022.917152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/02/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The links of sedentary behavior and physical activity with health outcomes in children and adolescents is well known. However, the molecular mechanisms involved are poorly understood. We aimed to synthesize the current knowledge of the association of sedentary behavior and physical activity (acute and chronic effects) with gene expression and epigenetic modifications in children and adolescents. METHODS PubMed, Web of Science, and Scopus databases were systematically searched until April 2022. A total of 15 articles were eligible for this review. The risk of bias assessment was performed using the Joanna Briggs Institute Critical Appraisal Tool for Systematic Reviews and/or a modified version of the Downs and Black checklist. RESULTS Thirteen studies used candidate gene approach, while only 2 studies performed high-throughput analyses. The candidate genes significantly linked to sedentary behavior or physical activity were: FOXP3, HSD11B2, IL-10, TNF-α, ADRB2, VEGF, HSP70, SOX, and GPX. Non-coding Ribonucleic acids (RNAs) regulated by sedentary behavior or physical activity were: miRNA-222, miRNA-146a, miRNA-16, miRNA-126, miR-320a, and long non-coding RNA MALAT1. These molecules are involved in inflammation, immune function, angiogenic process, and cardiovascular disease. Transcriptomics analyses detected thousands of genes that were altered following an acute bout of physical activity and are linked to gene pathways related to immune function, apoptosis, and metabolic diseases. CONCLUSION The evidence found to date is rather limited. Multidisciplinary studies are essential to characterize the molecular mechanisms in response to sedentary behavior and physical activity in the pediatric population. Larger cohorts and randomized controlled trials, in combination with multi-omics analyses, may provide the necessary data to bring the field forward. SYSTEMATIC REVIEW REGISTRATION [www.ClinicalTrials.gov], identifier [CRD42021235431].
Collapse
Affiliation(s)
- Abel Plaza-Florido
- Department of Physical and Sports Education, Faculty of Sport Sciences, PROFITH "PROmoting FITness and Health Through Physical Activity" Research Group, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
| | - Inmaculada Pérez-Prieto
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria (ibs.GRANADA), Granada, Spain
| | - Pablo Molina-Garcia
- Department of Physical and Sports Education, Faculty of Sport Sciences, PROFITH "PROmoting FITness and Health Through Physical Activity" Research Group, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria (ibs.Granada), Physical Medicine and Rehabilitation Service, Virgen de las Nieves University Hospital, Granada, Spain
| | - Shlomit Radom-Aizik
- Pediatric Exercise and Genomics Research Center, UC Irvine School of Medicine, Irvine, CA, United States
| | - Francisco B Ortega
- Department of Physical and Sports Education, Faculty of Sport Sciences, PROFITH "PROmoting FITness and Health Through Physical Activity" Research Group, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain.,Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland.,Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Signe Altmäe
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria (ibs.GRANADA), Granada, Spain.,Division of Obstetrics and Gynecology, CLINTEC, Karolinska Institutet, Stockholm, Sweden.,Competence Centre on Health Technologies, Tartu, Estonia
| |
Collapse
|