1
|
Seal S, Neelon B, Angel PM, O’Quinn EC, Hill E, Vu T, Ghosh D, Mehta AS, Wallace K, Alekseyenko AV. SpaceANOVA: Spatial Co-occurrence Analysis of Cell Types in Multiplex Imaging Data Using Point Process and Functional ANOVA. J Proteome Res 2024; 23:1131-1143. [PMID: 38417823 PMCID: PMC11002919 DOI: 10.1021/acs.jproteome.3c00462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 01/04/2024] [Accepted: 01/26/2024] [Indexed: 03/01/2024]
Abstract
Multiplex imaging platforms have enabled the identification of the spatial organization of different types of cells in complex tissue or the tumor microenvironment. Exploring the potential variations in the spatial co-occurrence or colocalization of different cell types across distinct tissue or disease classes can provide significant pathological insights, paving the way for intervention strategies. However, the existing methods in this context either rely on stringent statistical assumptions or suffer from a lack of generalizability. We present a highly powerful method to study differential spatial co-occurrence of cell types across multiple tissue or disease groups, based on the theories of the Poisson point process and functional analysis of variance. Notably, the method accommodates multiple images per subject and addresses the problem of missing tissue regions, commonly encountered due to data-collection complexities. We demonstrate the superior statistical power and robustness of the method in comparison with existing approaches through realistic simulation studies. Furthermore, we apply the method to three real data sets on different diseases collected using different imaging platforms. In particular, one of these data sets reveals novel insights into the spatial characteristics of various types of colorectal adenoma.
Collapse
Affiliation(s)
- Souvik Seal
- Department
of Public Health Sciences, Medical University
of South Carolina Charleston, South Carolina 29425, United States
| | - Brian Neelon
- Department
of Public Health Sciences, Medical University
of South Carolina Charleston, South Carolina 29425, United States
| | - Peggi M. Angel
- Department
of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina Charleston, South Carolina 29425, United States
| | - Elizabeth C. O’Quinn
- Translational
Science Laboratory, Hollings Cancer Center, Medical University of South Carolina Charleston, South Carolina 29425, United States
| | - Elizabeth Hill
- Department
of Public Health Sciences, Medical University
of South Carolina Charleston, South Carolina 29425, United States
| | - Thao Vu
- Department
of Biostatistics and Informatics, University
of Colorado CU Anschutz Medical Campus Aurora, Colorado 80045, United States
| | - Debashis Ghosh
- Department
of Biostatistics and Informatics, University
of Colorado CU Anschutz Medical Campus Aurora, Colorado 80045, United States
| | - Anand S. Mehta
- Department
of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina Charleston, South Carolina 29425, United States
| | - Kristin Wallace
- Department
of Public Health Sciences, Medical University
of South Carolina Charleston, South Carolina 29425, United States
| | - Alexander V. Alekseyenko
- Department
of Public Health Sciences, Medical University
of South Carolina Charleston, South Carolina 29425, United States
| |
Collapse
|
2
|
Seal S, Bitler BG, Ghosh D. SMASH: Scalable Method for Analyzing Spatial Heterogeneity of genes in spatial transcriptomics data. PLoS Genet 2023; 19:e1010983. [PMID: 37862362 PMCID: PMC10619839 DOI: 10.1371/journal.pgen.1010983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 11/01/2023] [Accepted: 09/19/2023] [Indexed: 10/22/2023] Open
Abstract
In high-throughput spatial transcriptomics (ST) studies, it is of great interest to identify the genes whose level of expression in a tissue covaries with the spatial location of cells/spots. Such genes, also known as spatially variable genes (SVGs), can be crucial to the biological understanding of both structural and functional characteristics of complex tissues. Existing methods for detecting SVGs either suffer from huge computational demand or significantly lack statistical power. We propose a non-parametric method termed SMASH that achieves a balance between the above two problems. We compare SMASH with other existing methods in varying simulation scenarios demonstrating its superior statistical power and robustness. We apply the method to four ST datasets from different platforms uncovering interesting biological insights.
Collapse
Affiliation(s)
- Souvik Seal
- Department of Public Health Sciences, School of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Benjamin G. Bitler
- Department of Obstetrics and Gynecology, School of Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Debashis Ghosh
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado, United States of America
| |
Collapse
|
3
|
Xiong J, Kaur H, Heiser CN, McKinley ET, Roland JT, Coffey RJ, Shrubsole MJ, Wrobel J, Ma S, Lau KS, Vandekar S. GammaGateR: semi-automated marker gating for single-cell multiplexed imaging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.20.558645. [PMID: 37781604 PMCID: PMC10541135 DOI: 10.1101/2023.09.20.558645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Motivation Multiplexed immunofluorescence (mIF) is an emerging assay for multichannel protein imaging that can decipher cell-level spatial features in tissues. However, existing automated cell phenotyping methods, such as clustering, face challenges in achieving consistency across experiments and often require subjective evaluation. As a result, mIF analyses often revert to marker gating based on manual thresholding of raw imaging data. Results To address the need for an evaluable semi-automated algorithm, we developed GammaGateR, an R package for interactive marker gating designed specifically for segmented cell-level data from mIF images. Based on a novel closed-form gamma mixture model, GammaGateR provides estimates of marker-positive cell proportions and soft clustering of marker-positive cells. The model incorporates user-specified constraints that provide a consistent but slide-specific model fit. We compared GammaGateR against the newest unsupervised approach for annotating mIF data, employing two colon datasets and one ovarian cancer dataset for the evaluation. We showed that GammaGateR produces highly similar results to a silver standard established through manual annotation. Furthermore, we demonstrated its effectiveness in identifying biological signals, achieved by mapping known spatial interactions between CD68 and MUC5AC cells in the colon and by accurately predicting survival in ovarian cancer patients using the phenotype probabilities as input for machine learning methods. GammaGateR is a highly efficient tool that can improve the replicability of marker gating results, while reducing the time of manual segmentation. Availability and Implementation The R package is available at https://github.com/JiangmeiRubyXiong/GammaGateR.
Collapse
Affiliation(s)
| | - Harsimran Kaur
- Program of Chemical and Physical Biology, Vanderbilt University School of Medicine, USA
- Epithelial Biology Center, Vanderbilt University Medical Center, USA
| | - Cody N Heiser
- Program of Chemical and Physical Biology, Vanderbilt University School of Medicine, USA
- Epithelial Biology Center, Vanderbilt University Medical Center, USA
- Regeneron Pharmaceuticals, USA
| | - Eliot T McKinley
- Epithelial Biology Center, Vanderbilt University Medical Center, USA
- GlaxoSmithKline, USA
| | - Joseph T Roland
- Epithelial Biology Center, Vanderbilt University Medical Center, USA
- Department of Surgery, Vanderbilt University Medical Center, USA
| | - Robert J Coffey
- Epithelial Biology Center, Vanderbilt University Medical Center, USA
- Department of Medicine, Vanderbilt University Medical Center, USA
| | | | - Julia Wrobel
- Department of Biostatistics and Bioinformatics, Emory University, USA
| | - Siyuan Ma
- Department of Biostatistics, Vanderbilt University, USA
| | - Ken S Lau
- Program of Chemical and Physical Biology, Vanderbilt University School of Medicine, USA
- Epithelial Biology Center, Vanderbilt University Medical Center, USA
- Department of Surgery, Vanderbilt University Medical Center, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, USA
| | | |
Collapse
|
4
|
Seal S, Neelon B, Angel P, O’Quinn EC, Hill E, Vu T, Ghosh D, Mehta A, Wallace K, Alekseyenko AV. SpaceANOVA: Spatial co-occurrence analysis of cell types in multiplex imaging data using point process and functional ANOVA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.06.548034. [PMID: 37461579 PMCID: PMC10350074 DOI: 10.1101/2023.07.06.548034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/31/2023]
Abstract
Motivation Multiplex imaging platforms have enabled the identification of the spatial organization of different types of cells in complex tissue or tumor microenvironment (TME). Exploring the potential variations in the spatial co-occurrence or co-localization of different cell types across distinct tissue or disease classes can provide significant pathological insights, paving the way for intervention strategies. However, the existing methods in this context either rely on stringent statistical assumptions or suffer from a lack of generalizability. Results We present a highly powerful method to study differential spatial co-occurrence of cell types across multiple tissue or disease groups, based on the theories of the Poisson point process (PPP) and functional analysis of variance (FANOVA). Notably, the method accommodates multiple images per subject and addresses the problem of missing tissue regions, commonly encountered in such a context due to the complex nature of the data-collection procedure. We demonstrate the superior statistical power and robustness of the method in comparison to existing approaches through realistic simulation studies. Furthermore, we apply the method to three real datasets on different diseases collected using different imaging platforms. In particular, one of these datasets reveals novel insights into the spatial characteristics of various types of precursor lesions associated with colorectal cancer. Availability The associated R package can be found here, https://github.com/sealx017/SpaceANOVA.
Collapse
Affiliation(s)
- Souvik Seal
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Brian Neelon
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Peggi Angel
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina
| | - Elizabeth C. O’Quinn
- Translational Science Laboratory, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina
| | - Elizabeth Hill
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Thao Vu
- Department of Biostatistics and Informatics, University of Colorado CU Anschutz Medical Campus, Aurora, Colorado
| | - Debashis Ghosh
- Department of Biostatistics and Informatics, University of Colorado CU Anschutz Medical Campus, Aurora, Colorado
| | - Anand Mehta
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina
| | - Kristin Wallace
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Alexander V. Alekseyenko
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
5
|
Seal S, Bitler BG, Ghosh D. SMASH: Scalable Method for Analyzing Spatial Heterogeneity of genes in spatial transcriptomics data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.23.533980. [PMID: 36993287 PMCID: PMC10055313 DOI: 10.1101/2023.03.23.533980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
In high-throughput spatial transcriptomics (ST) studies, it is of great interest to identify the genes whose level of expression in a tissue covaries with the spatial location of cells/spots. Such genes, also known as spatially variable genes (SVGs), can be crucial to the biological understanding of both structural and functional characteristics of complex tissues. Existing methods for detecting SVGs either suffer from huge computational demand or significantly lack statistical power. We propose a non-parametric method termed SMASH that achieves a balance between the above two problems. We compare SMASH with other existing methods in varying simulation scenarios demonstrating its superior statistical power and robustness. We apply the method to four ST datasets from different platforms revealing interesting biological insights.
Collapse
Affiliation(s)
- Souvik Seal
- Department of Public Health Sciences, School of Medicine, Medical University of South Carolina, Charleston, USA
| | - Benjamin G. Bitler
- Department of Obstetrics and Gynecology, School of Medicine, University of Colorado Denver - Anschutz Medical Campus, Aurora, USA
| | - Debashis Ghosh
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Denver - Anschutz Medical Campus, Aurora, USA
| |
Collapse
|
6
|
Seal S, Ghosh D. MIAMI: mutual information-based analysis of multiplex imaging data. Bioinformatics 2022; 38:3818-3826. [PMID: 35748713 PMCID: PMC9344855 DOI: 10.1093/bioinformatics/btac414] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/09/2022] [Accepted: 06/21/2022] [Indexed: 02/01/2023] Open
Abstract
MOTIVATION Studying the interaction or co-expression of the proteins or markers in the tumor microenvironment of cancer subjects can be crucial in the assessment of risks, such as death or recurrence. In the conventional approach, the cells need to be declared positive or negative for a marker based on its intensity. For multiple markers, manual thresholds are required for all the markers, which can become cumbersome. The performance of the subsequent analysis relies heavily on this step and thus suffers from subjectivity and lacks robustness. RESULTS We present a new method where different marker intensities are viewed as dependent random variables, and the mutual information (MI) between them is considered to be a metric of co-expression. Estimation of the joint density, as required in the traditional form of MI, becomes increasingly challenging as the number of markers increases. We consider an alternative formulation of MI which is conceptually similar but has an efficient estimation technique for which we develop a new generalization. With the proposed method, we analyzed a lung cancer dataset finding the co-expression of the markers, HLA-DR and CK to be associated with survival. We also analyzed a triple negative breast cancer dataset finding the co-expression of the immuno-regulatory proteins, PD1, PD-L1, Lag3 and IDO, to be associated with disease recurrence. We demonstrated the robustness of our method through different simulation studies. AVAILABILITY AND IMPLEMENTATION The associated R package can be found here, https://github.com/sealx017/MIAMI. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Souvik Seal
- Department of Biostatistics and Informatics, University of Colorado CU Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Debashis Ghosh
- Department of Biostatistics and Informatics, University of Colorado CU Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|