1
|
Watanabe K, Yamada A, Masuda H, Kashiwazaki E, Nakayama S, Kadokura T, Sakai K, Tashiro Y. Sample collecting methods for bacterial community structure analysis of scalp hair: non-invasive swabbing versus intrusive hair shaft cutting. Sci Rep 2024; 14:22461. [PMID: 39341874 PMCID: PMC11439011 DOI: 10.1038/s41598-024-72936-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/11/2024] [Indexed: 10/01/2024] Open
Abstract
Human skin samples for microbiome analysis are traditionally collected using a non-invasive swabbing method. Here, we compared the differences in bacterial community structures on scalp hair and scalps with samples collected using non-invasive swabbing and cutting/removal of scalp hair in 12 individuals. Hair-related samples, such as hair shafts and hair swabs, had significantly higher alpha diversity than scalp swab samples, whereas there were no significant differences between hair shafts and hair swabs. The relative abundances of the three major phyla and five major operational taxonomic units were not significantly different between the hair shaft and hair swab samples. The principal coordinate analysis plots based on weighted UniFrac distances were grouped into two clusters: samples from hair-related areas and scalp swabs, and there were significant differences only between samples from hair-related areas and scalp swabs. In addition, a weighted UniFrac analysis revealed that the sampling site-based category was a statistical category but not a hair sampling method-based category. These results suggest that scalp hair bacteria collected using non-invasive swab sampling were comparable to those collected cutting/removal of scalp hair.
Collapse
Affiliation(s)
- Kota Watanabe
- Laboratory of Fermentation Microbiology, Department of Fermentation Science and Technology, Faculty of Applied Biosciences, Tokyo University of Agriculture, Sakuragaoka 1-1-1, Setagaya-ku, Tokyo, 156-8502, Japan.
| | - Azusa Yamada
- Laboratory of Soil and Environmental Microbiology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Hao Masuda
- Laboratory of Fermentation Microbiology, Department of Fermentation Science and Technology, Faculty of Applied Biosciences, Tokyo University of Agriculture, Sakuragaoka 1-1-1, Setagaya-ku, Tokyo, 156-8502, Japan
| | - Eri Kashiwazaki
- Laboratory of Fermentation Microbiology, Department of Fermentation Science and Technology, Faculty of Applied Biosciences, Tokyo University of Agriculture, Sakuragaoka 1-1-1, Setagaya-ku, Tokyo, 156-8502, Japan
| | - Shunichi Nakayama
- Laboratory of Fermentation Microbiology, Department of Fermentation Science and Technology, Faculty of Applied Biosciences, Tokyo University of Agriculture, Sakuragaoka 1-1-1, Setagaya-ku, Tokyo, 156-8502, Japan
| | - Toshimori Kadokura
- Laboratory of Fermentation Microbiology, Department of Fermentation Science and Technology, Faculty of Applied Biosciences, Tokyo University of Agriculture, Sakuragaoka 1-1-1, Setagaya-ku, Tokyo, 156-8502, Japan
| | - Kenji Sakai
- Laboratory of Soil and Environmental Microbiology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
- Laboratory of Microbial Environmental Protection, Tropical Microbiology Unit, Center for International Education and Research of Agriculture, Faculty of Agriculture, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Yukihiro Tashiro
- Laboratory of Soil and Environmental Microbiology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
- Laboratory of Microbial Environmental Protection, Tropical Microbiology Unit, Center for International Education and Research of Agriculture, Faculty of Agriculture, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| |
Collapse
|
2
|
Bae WY, Jung WH, Shin SL, Kim TR, Sohn M, Suk J, Jung I, Lee YI, Lee JH. Heat-treated Limosilactobacillus fermentum LM1020 with menthol, salicylic acid, and panthenol promotes hair growth and regulates hair scalp microbiome balance in androgenetic alopecia: A double-blind, randomized and placebo-controlled clinical trial. J Cosmet Dermatol 2024; 23:2943-2955. [PMID: 38807549 DOI: 10.1111/jocd.16357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/23/2024] [Accepted: 04/23/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND Androgenetic alopecia (AGA) is a common and chronic problem characterized by hair follicle miniaturization. AIMS In this study, heat-treated Limosilactobacillus fermentum LM1020 (HT-LM1020) was investigated in human follicle dermal papilla cell (HFDPC), scalp tissue, and clinical trials for patients with AGA. PATIENTS/METHODS Cell proliferation and the expression of cyclins and cyclin-dependent kinases (CDKs) were measured in HFDPC. The relative gene expression of 5α-reductase and growth factors were investigated in hair scalp. This double-blind, randomized, placebo-controlled clinical trial was conducted over 24 weeks. Primary efficacy was evaluated by measuring hair density, and secondary efficacy was assessed by experts and self-assessment. Changes in the microbiota of the hair scalps were analyzed using 16S metagenome amplicon sequencing. RESULTS HT-LM1020 promoted cell growth (p < 0.001) and cyclin B1 expression, and it reduced 5α-reductase and induced fibroblast growth factor 7 (FGF7), FGF10, and epithelial growth factor7 (EGF7) (p < 0.001). In the clinical trial, the experimental group demonstrated an increase in hair density from 133.70 to 148.87 n/cm2 at Week 24 (p < 0.001), while also expressing satisfaction with their hair density, reduced hair loss, and hairline. At Week 24, the total ratio of lactic acid bacteria operational taxonomic unit (OTU) in the scalp increased from 6.65% to 26.19%. At the same period, placebo-controlled group decreased Staphylococcus caprae OTU from 77.95% to 14.57% while experimental group decreased from 65.80% to 41.02%. CONCLUSIONS These present results showed that HT-LM1020 was a co-effector of ingredients for anti-hair loss contributing to cell proliferation and the expression of CDKs.
Collapse
Affiliation(s)
- Won-Young Bae
- Microbiome R&D Center, Lactomason, Seoul, Republic of Korea
| | - Woo-Hyun Jung
- Microbiome R&D Center, Lactomason, Seoul, Republic of Korea
| | - So Lim Shin
- Microbiome R&D Center, Lactomason, Seoul, Republic of Korea
| | - Tae-Rahk Kim
- Microbiome R&D Center, Lactomason, Seoul, Republic of Korea
| | - Minn Sohn
- Microbiome R&D Center, Lactomason, Seoul, Republic of Korea
| | - Jangmi Suk
- Global Medical Research Center, Seoul, Republic of Korea
| | - Inhee Jung
- Global Medical Research Center, Seoul, Republic of Korea
| | - Young In Lee
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
- Scar Laser and Plastic Surgery Center, Yonsei Cancer Hospital, Seoul, Republic of Korea
| | - Ju Hee Lee
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
- Scar Laser and Plastic Surgery Center, Yonsei Cancer Hospital, Seoul, Republic of Korea
| |
Collapse
|
3
|
Lousada MB, Edelkamp J, Lachnit T, Fehrholz M, Pastar I, Jimenez F, Erdmann H, Bosch TCG, Paus R. Spatial Distribution and Functional Impact of Human Scalp Hair Follicle Microbiota. J Invest Dermatol 2024; 144:1353-1367.e15. [PMID: 38070726 DOI: 10.1016/j.jid.2023.11.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 10/17/2023] [Accepted: 11/01/2023] [Indexed: 02/26/2024]
Abstract
Human hair follicles (HFs) constitute a unique microbiota habitat that differs substantially from the skin surface. Traditional HF sampling methods fail to eliminate skin microbiota contaminants or assess the HF microbiota incompletely, and microbiota functions in human HF physiology remain ill explored. Therefore, we used laser-capture microdissection, metagenomic shotgun sequencing, and FISH to characterize the human scalp HF microbiota in defined anatomical compartments. This revealed significant compartment-, tissue lineage-, and donor age-dependent variations in microbiota composition. Greatest abundance variations between HF compartments were observed for viruses, archaea, Staphylococcus epidermidis, Cutibacterium acnes, and Malassezia restricta, with the latter 2 being the most abundant viable HF colonizers (as tested by propidium monoazide assay) and, surprisingly, most abundant in the HF mesenchyme. Transfection of organ-cultured human scalp HFs with S. epidermidis-specific lytic bacteriophages ex vivo downregulated transcription of genes known to regulate HF growth and development, metabolism, and melanogenesis, suggesting that selected microbial products may modulate HF functions. Indeed, HF treatment with butyrate, a metabolite of S. epidermidis and other HF microbiota, delayed catagen and promoted autophagy, mitochondrial activity, and gp100 and dermcidin expression ex vivo. Thus, human HF microbiota show spatial variations in abundance and modulate the physiology of their host, which invites therapeutic targeting.
Collapse
Affiliation(s)
- Marta B Lousada
- Monasterium Laboratory, Münster, Germany; Zoological Institute, Christian Albrechts University in Kiel, Kiel, Germany
| | | | - Tim Lachnit
- Zoological Institute, Christian Albrechts University in Kiel, Kiel, Germany
| | | | - Irena Pastar
- Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Francisco Jimenez
- Mediteknia Skin & Hair Lab, Las Palmas de Gran Canaria, Spain; Ciencias de la Salud, Universidad Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| | | | - Thomas C G Bosch
- Zoological Institute, Christian Albrechts University in Kiel, Kiel, Germany
| | - Ralf Paus
- Monasterium Laboratory, Münster, Germany; Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA; CUTANEON, Hamburg, Germany.
| |
Collapse
|
4
|
Bertolini M, Gherardini J, Chéret J, Alam M, Sulk M, Botchkareva NV, Biro T, Funk W, Grieshaber F, Paus R. Mechanical epilation exerts complex biological effects on human hair follicles and perifollicular skin: An ex vivo study approach. Int J Cosmet Sci 2024; 46:175-198. [PMID: 37923568 DOI: 10.1111/ics.12923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/04/2023] [Accepted: 10/12/2023] [Indexed: 11/07/2023]
Abstract
OBJECTIVE Electrical epilation of unwanted hair is a widely used hair removal method, but it is largely unknown how this affects the biology of human hair follicles (HF) and perifollicular skin. Here, we have begun to explore how mechanical epilation changes selected key biological read-out parameters ex vivo within and around the pilosebaceous unit. METHODS Human full-thickness scalp skin samples were epilated ex vivo using an electro-mechanical device, organ-cultured for up to 6 days in serum-free, supplemented medium, and assessed at different time points by quantitative (immuno-)histomorphometry for selected relevant read-out parameters in epilated and sham-epilated control samples. RESULTS Epilation removed most of the hair shafts, often together with fragments of the outer and inner root sheath and hair matrix. This was associated with persistent focal thinning of the HF basal membrane, decreased melanin content of the residual HF epithelium, and increased HF keratinocyte apoptosis, including in the bulge, yet without affecting the number of cytokeratin 15+ HF epithelial stem cells. Sebocyte apoptosis in the peripheral zone was increased, albeit without visibly altering sebum production. Epilation transiently perturbed HF immune privilege, and increased the expression of ICAM-1 in the bulge and bulb mesenchyme, and the number of perifollicular MHC class II+ cells as well as mast cells around the distal epithelium and promoted mast cell degranulation around the suprabulbar and bulbar area. Moreover, compared to controls, several key players of neurogenic skin inflammation, itch, and/or thermosensation (TRPV1, TRPA1, NGF, and NKR1) were differentially expressed in post-epilation skin. CONCLUSION These data generated in denervated, organ-cultured human scalp skin demonstrate that epilation-induced mechanical HF trauma elicits surprisingly complex biological responses. These may contribute to the delayed re-growth of thinner and lighter hair shafts post-epilation and temporary post-epilation discomfort. Our findings also provide pointers regarding the development of topically applicable agents that minimize undesirable sequelae of epilation.
Collapse
Affiliation(s)
- Marta Bertolini
- Monasterium Laboratory Skin and Hair Research Solutions GmbH, Münster, Germany
| | - Jennifer Gherardini
- Monasterium Laboratory Skin and Hair Research Solutions GmbH, Münster, Germany
- Dr Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Jérémy Chéret
- Monasterium Laboratory Skin and Hair Research Solutions GmbH, Münster, Germany
- Dr Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Majid Alam
- Department of Dermatology and Venereology, Qatar Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Mathias Sulk
- Department of Dermatology, University of Münster, Münster, Germany
| | - Natalia V Botchkareva
- Department of Dermatology, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Tamas Biro
- Monasterium Laboratory Skin and Hair Research Solutions GmbH, Münster, Germany
| | - Wolfgang Funk
- Clinic for Plastic, Aesthetic and Reconstructive Surgery, Dr. Dr. med. Funk, Munich, Germany
| | | | - Ralf Paus
- Monasterium Laboratory Skin and Hair Research Solutions GmbH, Münster, Germany
- Dr Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
- CUTANEON - Skin & Hair Innovations, Hamburg, Germany
| |
Collapse
|