1
|
Deng F, Lei J, Qiu J, Zhao C, Wang X, Li M, Sun M, Zhang M, Gao Q. DNA methylation landscape in pregnancy-induced hypertension: progress and challenges. Reprod Biol Endocrinol 2024; 22:77. [PMID: 38978060 PMCID: PMC11229300 DOI: 10.1186/s12958-024-01248-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 06/24/2024] [Indexed: 07/10/2024] Open
Abstract
Gestational hypertension (PIH), especially pre-eclampsia (PE), is a common complication of pregnancy. This condition poses significant risks to the health of both the mother and the fetus. Emerging evidence suggests that epigenetic modifications, particularly DNA methylation, may play a role in initiating the earliest pathophysiology of PIH. This article describes the relationship between DNA methylation and placental trophoblast function, genes associated with the placental microenvironment, the placental vascular system, and maternal blood and vascular function, abnormalities of umbilical cord blood and vascular function in the onset and progression of PIH, as well as changes in DNA methylation in the progeny of PIH, in terms of maternal, fetal, and offspring. We also explore the latest research on DNA methylation-based early detection, diagnosis and potential therapeutic strategies for PIH. This will enable the field of DNA methylation research to continue to enhance our understanding of the epigenetic regulation of PIH genes and identify potential therapeutic targets.
Collapse
Affiliation(s)
- Fengying Deng
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, P. R. China
| | - Jiahui Lei
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, P. R. China
| | - Junlan Qiu
- Department of Oncology and Hematology, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, Jiangsu, 215153, P.R. China
| | - Chenxuan Zhao
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, P. R. China
| | - Xietong Wang
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China
| | - Min Li
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, P. R. China
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, P. R. China
| | - Miao Sun
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China.
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, P. R. China.
| | - Meihua Zhang
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China.
| | - Qinqin Gao
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China.
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, P. R. China.
| |
Collapse
|
2
|
Kicic-Starcevich E, Hancock DG, Iosifidis T, Agudelo-Romero P, Caparros-Martin JA, Karpievitch YV, Silva D, Turkovic L, Le Souef PN, Bosco A, Martino DJ, Kicic A, Prescott SL, Stick SM. Airway epithelium respiratory illnesses and allergy (AERIAL) birth cohort: study protocol. FRONTIERS IN ALLERGY 2024; 5:1349741. [PMID: 38666051 PMCID: PMC11043573 DOI: 10.3389/falgy.2024.1349741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
Introduction Recurrent wheezing disorders including asthma are complex and heterogeneous diseases that affect up to 30% of all children, contributing to a major burden on children, their families, and global healthcare systems. It is now recognized that a dysfunctional airway epithelium plays a central role in the pathogenesis of recurrent wheeze, although the underlying mechanisms are still not fully understood. This prospective birth cohort aims to bridge this knowledge gap by investigating the influence of intrinsic epithelial dysfunction on the risk for developing respiratory disorders and the modulation of this risk by maternal morbidities, in utero exposures, and respiratory exposures in the first year of life. Methods The Airway Epithelium Respiratory Illnesses and Allergy (AERIAL) study is nested within the ORIGINS Project and will monitor 400 infants from birth to 5 years. The primary outcome of the AERIAL study will be the identification of epithelial endotypes and exposure variables that influence the development of recurrent wheezing, asthma, and allergic sensitisation. Nasal respiratory epithelium at birth to 6 weeks, 1, 3, and 5 years will be analysed by bulk RNA-seq and DNA methylation sequencing. Maternal morbidities and in utero exposures will be identified on maternal history and their effects measured through transcriptomic and epigenetic analyses of the amnion and newborn epithelium. Exposures within the first year of life will be identified based on infant medical history as well as on background and symptomatic nasal sampling for viral PCR and microbiome analysis. Daily temperatures and symptoms recorded in a study-specific Smartphone App will be used to identify symptomatic respiratory illnesses. Discussion The AERIAL study will provide a comprehensive longitudinal assessment of factors influencing the association between epithelial dysfunction and respiratory morbidity in early life, and hopefully identify novel targets for diagnosis and early intervention.
Collapse
Affiliation(s)
| | - David G. Hancock
- Wal-yan RespiratoryResearch Centre, Telethon Kids Institute, Perth, WA, Australia
- Department of Respiratory and Sleep Medicine, Perth Children’s Hospital, Nedlands, WA, Australia
- School of Medicine, The University of Western Australia, Nedlands, WA, Australia
| | - Thomas Iosifidis
- Wal-yan RespiratoryResearch Centre, Telethon Kids Institute, Perth, WA, Australia
- School of Population Health, Curtin University, Bentley, WA, Australia
- Centre for Cell Therapy and Regenerative Medicine, School of Medicine, The University of Western Australia, Nedlands, WA, Australia
| | - Patricia Agudelo-Romero
- Wal-yan RespiratoryResearch Centre, Telethon Kids Institute, Perth, WA, Australia
- European Virus Bioinformatics Centre, Jena, Germany
| | | | | | - Desiree Silva
- School of Medicine, The University of Western Australia, Nedlands, WA, Australia
- Telethon Kids Institute, Perth, WA, Australia
- Department of Paediatrics and Neonatology, Joondalup Health Campus, Joondalup, WA, Australia
- School of Medicine and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | | | - Peter N. Le Souef
- Wal-yan RespiratoryResearch Centre, Telethon Kids Institute, Perth, WA, Australia
- Department of Respiratory and Sleep Medicine, Perth Children’s Hospital, Nedlands, WA, Australia
| | - Anthony Bosco
- School of Population Health, Curtin University, Bentley, WA, Australia
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, AZ, United States
- Department of Immunobiology, The University of Arizona College of Medicine, Tucson, AZ, United States
| | - David J. Martino
- Wal-yan RespiratoryResearch Centre, Telethon Kids Institute, Perth, WA, Australia
| | - Anthony Kicic
- Wal-yan RespiratoryResearch Centre, Telethon Kids Institute, Perth, WA, Australia
- School of Population Health, Curtin University, Bentley, WA, Australia
- Centre for Cell Therapy and Regenerative Medicine, School of Medicine, The University of Western Australia, Nedlands, WA, Australia
| | - Susan L. Prescott
- School of Medicine, The University of Western Australia, Nedlands, WA, Australia
- European Virus Bioinformatics Centre, Jena, Germany
| | - Stephen M. Stick
- Wal-yan RespiratoryResearch Centre, Telethon Kids Institute, Perth, WA, Australia
- Department of Respiratory and Sleep Medicine, Perth Children’s Hospital, Nedlands, WA, Australia
- Centre for Cell Therapy and Regenerative Medicine, School of Medicine, The University of Western Australia, Nedlands, WA, Australia
| |
Collapse
|
3
|
Gómez-Vilarrubla A, Mas-Parés B, Carreras-Badosa G, Jové M, Berdún R, Bonmatí-Santané A, de Zegher F, Ibañez L, López-Bermejo A, Bassols J. Placental AA/EPA Ratio Is Associated with Obesity Risk Parameters in the Offspring at 6 Years of Age. Int J Mol Sci 2023; 24:10087. [PMID: 37373236 DOI: 10.3390/ijms241210087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/08/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
During pregnancy, maternal polyunsaturated fatty acids (PUFA) are transferred to the fetus through the placenta by specific FA transporters (FATP). A higher perinatal exposure to n-6 over n-3 PUFA could be linked to excess fat mass and obesity development later in life. In this context, we aimed to assess the associations between long chain PUFAs (LC-PUFAs) (n-6, n-3, and n-6/n-3 ratios) measured in the placenta at term birth with obesity-related parameters in the offspring at 6 years of age and assess whether these associations are dependent on the placental relative expression of fatty acid transporters. As results, the PUFAn-6/PUFAn-3 ratio was 4/1, which scaled up to 15/1 when considering only the arachidonic acid/eicosapentaenoic acid ratio (AA/EPA ratio). Positive associations between the AA/EPA ratio and offspring's obesity risk parameters were found with weight-SDS, BMI-SDS, percent fat mass-SDS, visceral fat, and HOMA-IR (r from 0.204 to 0.375; all p < 0.05). These associations were more noticeable in those subjects with higher expression of fatty acid transporters. Therefore, in conclusion, a higher placental AA/EPA ratio is positively associated with offspring's visceral adiposity and obesity risk parameters, which become more apparent in subjects with higher expressions of placental FATPs. Our results support the potential role of n-6 and n-3 LC-PUFA in the fetal programming of obesity risk in childhood. For the present study, 113 healthy pregnant women were recruited during the first trimester of pregnancy and their offspring were followed up at 6 years of age. The fatty acid profiles and the expression of fatty acid transporters (FATP1 and FATP4) were analyzed from placental samples at birth. Associations between LC-PUFA (n-6, n-3, and n-6/n-3 ratios) and obesity risk parameters (weight, body mass index (BMI), percent fat mass, visceral fat, and homeostatic model assessment of insulin resistance (HOMA-IR)) in the offspring at 6 years of age were examined.
Collapse
Affiliation(s)
- Ariadna Gómez-Vilarrubla
- Maternal-Fetal Metabolic Research Group, Girona Institute for Biomedical Research (IDIBGI), 17190 Salt, Spain
| | - Berta Mas-Parés
- Pediatric Endocrinology Research Group, Girona Institute for Biomedical Research (IDIBGI), 17190 Salt, Spain
| | - Gemma Carreras-Badosa
- Pediatric Endocrinology Research Group, Girona Institute for Biomedical Research (IDIBGI), 17190 Salt, Spain
| | - Mariona Jové
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida (UdL-IRBLleida), 25008 Lleida, Spain
| | - Rebeca Berdún
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida (UdL-IRBLleida), 25008 Lleida, Spain
| | | | - Francis de Zegher
- Department of Development & Regeneration, University of Leuven, 3000 Leuven, Belgium
| | - Lourdes Ibañez
- Endocrinology, Pediatric Research Institute, Sant Joan de Déu Children's Hospital, 08950 Esplugues de Llobregat, Spain
- CIBERDEM (Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders), ISCIII, 28029 Madrid, Spain
| | - Abel López-Bermejo
- Pediatric Endocrinology Research Group, Girona Institute for Biomedical Research (IDIBGI), 17190 Salt, Spain
- Department of Pediatrics, Dr. Josep Trueta Hospital, 17007 Girona, Spain
- Department of Medical Sciences, University of Girona, 17003 Girona, Spain
| | - Judit Bassols
- Maternal-Fetal Metabolic Research Group, Girona Institute for Biomedical Research (IDIBGI), 17190 Salt, Spain
| |
Collapse
|
4
|
Kicic-Starcevich E, Hancock DG, Iosifidis T, Agudelo-Romero P, Caparros-Martin JA, Silva D, Turkovic L, Le Souef PN, Bosco A, Martino DJ, Kicic A, Prescott SL, Stick SM. Airway Epithelium Respiratory Illnesses and Allergy (AERIAL) birth cohort: study protocol. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.04.29.23289314. [PMID: 37205501 PMCID: PMC10187351 DOI: 10.1101/2023.04.29.23289314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Introduction Recurrent wheezing disorders including asthma are complex and heterogeneous diseases that affect up to 30% of all children, contributing to a major burden on children, their families, and global healthcare systems. It is now recognized that a dysfunctional airway epithelium plays a central role in the pathogenesis of recurrent wheeze, although the underlying mechanisms are still not fully understood. This prospective birth cohort aims to bridge this knowledge gap by investigating the influence of intrinsic epithelial dysfunction on the risk for developing respiratory disorders and the modulation of this risk by maternal morbidities, in utero exposures, and respiratory exposures in the first year of life. Methods and Analysis The Airway Epithelium Respiratory Illnesses and Allergy (AERIAL) study is nested within the ORIGINS Project and will monitor 400 infants from birth to five years. The primary outcome of the AERIAL study will be the identification of epithelial endotypes and exposure variables that influence the development of recurrent wheezing, asthma, and allergic sensitisation. Nasal respiratory epithelium at birth to six weeks, one, three, and five years will be analysed by bulk RNA-seq and DNA methylation sequencing. Maternal morbidities and in utero exposures will be identified on maternal history and their effects measured through transcriptomic and epigenetic analyses of the amnion and newborn epithelium. Exposures within the first year of life will be identified based on infant medical history as well as on background and symptomatic nasal sampling for viral PCR and microbiome analysis. Daily temperatures and symptoms recorded in a study-specific Smartphone App will be used to identify symptomatic respiratory illnesses. Ethics and Dissemination Ethical approval has been obtained from Ramsey Health Care HREC WA-SA (#1908). Results will be disseminated through open-access peer-reviewed manuscripts, conference presentations, and through different media channels to consumers, ORIGINS families, and the wider community.
Collapse
|
5
|
Seetharam AS, Vu HTH, Choi S, Khan T, Sheridan MA, Ezashi T, Roberts RM, Tuteja G. The product of BMP-directed differentiation protocols for human primed pluripotent stem cells is placental trophoblast and not amnion. Stem Cell Reports 2022; 17:1289-1302. [PMID: 35594861 PMCID: PMC9214062 DOI: 10.1016/j.stemcr.2022.04.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 03/24/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
The observation that trophoblast (TB) can be generated from primed pluripotent stem cells (PSCs) by exposure to bone morphogenetic protein-4 (BMP4) when FGF2 and ACTIVIN signaling is minimized has recently been challenged with the suggestion that the procedure instead produces amnion. Here, by analyzing transcriptome data from multiple sources, including bulk and single-cell data, we show that the BMP4 procedure generates bona fide TB with similarities to both placental villous TB and TB generated from TB stem cells. The analyses also suggest that the transcriptomic signatures between embryonic amnion and different forms of TB have commonalities. Our data provide justification for the continued use of TB derived from PSCs as a model for investigating placental development. Cells differentiated by using BAP protocols resemble TB more than embryonic amnion Deviation from the standard BAP protocol results in less differentiated TB Single-cell/nucleus RNA-seq analysis identifies two syncytiotrophoblast populations
Collapse
Affiliation(s)
- Arun S Seetharam
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, USA; Genetics Development and Cell Biology, Iowa State University, Ames, IA, USA
| | - Ha T H Vu
- Genetics Development and Cell Biology, Iowa State University, Ames, IA, USA; Bioinformatics and Computational Biology, Iowa State University, Ames, IA, USA
| | - Sehee Choi
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO, USA; Department of Obstetrics and Gynecology, University of Missouri School of Medicine, Columbia, MO, USA
| | - Teka Khan
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO, USA; Division of Animal Sciences, Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Megan A Sheridan
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO, USA; Department of Obstetrics and Gynecology, University of Missouri School of Medicine, Columbia, MO, USA
| | - Toshihiko Ezashi
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO, USA; Division of Animal Sciences, Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - R Michael Roberts
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO, USA; Division of Animal Sciences, Bond Life Sciences Center, University of Missouri, Columbia, MO, USA; Department of Biochemistry, University of Missouri, Columbia, MO, USA.
| | - Geetu Tuteja
- Genetics Development and Cell Biology, Iowa State University, Ames, IA, USA; Bioinformatics and Computational Biology, Iowa State University, Ames, IA, USA.
| |
Collapse
|
6
|
Abstract
The characteristics of fetal membrane cells and their phenotypic adaptations to support pregnancy or promote parturition are defined by global patterns of gene expression controlled by chromatin structure. Heritable epigenetic chromatin modifications that include DNA methylation and covalent histone modifications establish chromatin regions permissive or exclusive of regulatory interactions defining the cell-specific scope and potential of gene activity. Non-coding RNAs acting at the transcriptional and post-transcriptional levels complement the system by robustly stabilizing gene expression patterns and contributing to ordered phenotype transitions. Here we review currently available information about epigenetic gene regulation in the amnion and the chorion laeve. In addition, we provide an overview of epigenetic phenomena in the decidua, which is the maternal tissue fused to the chorion membrane forming the anatomical and functional unit called choriodecidua. The relationship of gene expression with DNA (CpG) methylation, histone acetylation and methylation, micro RNAs, long non-coding RNAs and chromatin accessibility is discussed in the context of normal pregnancy, parturition and pregnancy complications. Data generated using clinical samples and cell culture models strongly suggests that epigenetic events are associated with the phenotypic transitions of fetal membrane cells during the establishment, maintenance and termination of pregnancy potentially driving and consolidating the changes as pregnancy progresses. Disease conditions and environmental factors may produce epigenetic footprints that indicate exposures and mediate adverse pregnancy outcomes. Although knowledge is expanding rapidly, fetal membrane epigenetics is still in an early stage of development necessitating further research to realize its remarkable basic and translational potential.
Collapse
Affiliation(s)
- Tamas Zakar
- Department of Maternity & Gynaecology, John Hunter Hospital, New Lambton Heights, NSW, Australia
- School of Medicine and Public Health, Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW, Australia
- Priority Research Centre for Reproductive Science, The University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Jonathan W. Paul
- School of Medicine and Public Health, Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW, Australia
- Priority Research Centre for Reproductive Science, The University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|
7
|
Cirkovic A, Garovic V, Milin Lazovic J, Milicevic O, Savic M, Rajovic N, Aleksic N, Weissgerber T, Stefanovic A, Stanisavljevic D, Milic N. Systematic review supports the role of DNA methylation in the pathophysiology of preeclampsia: a call for analytical and methodological standardization. Biol Sex Differ 2020; 11:36. [PMID: 32631423 PMCID: PMC7336649 DOI: 10.1186/s13293-020-00313-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 06/18/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Studies have recently examined the role of epigenetic mechanisms in preeclampsia pathophysiology. One commonly examined epigenetic process is DNA methylation. This heritable epigenetic marker is involved in many important cellular functions. The aim of this study was to establish the association between DNA methylation and preeclampsia and to critically appraise the roles of major study characteristics that can significantly impact the association between DNA methylation and preeclampsia. MAIN BODY A systematic review was performed by searching PubMed, Web of Science, and EMBASE for original research articles published over time, until May 31, 2019 in English. Eligible studies compared DNA methylation levels in pregnant women with vs. without preeclampsia. Ninety articles were included. Epigenome-wide studies identified hundreds of differentially methylated places/regions in preeclamptic patients. Hypomethylation was the predominant finding in studies analyzing placental tissue (14/19), while hypermethylation was detected in three studies that analyzed maternal white blood cells (3/3). In candidate gene studies, methylation alterations for a number of genes were found to be associated with preeclampsia. A greater number of differentially methylated genes was found when analyzing more severe preeclampsia (70/82), compared to studies analyzing less severe preeclampsia vs. controls (13/27). A high degree of heterogeneity existed among the studies in terms of methodological study characteristics including design (study design, definition of preeclampsia, control group, sample size, confounders), implementation (biological sample, DNA methylation method, purification of DNA extraction, and validation of methylation), analysis (analytical method, batch effect, genotyping, and gene expression), and data presentation (methylation quantification measure, measure of variability, reporting). Based on the results of this review, we provide recommendations for study design and analytical approach for further studies. CONCLUSIONS The findings from this review support the role of DNA methylation in the pathophysiology of preeclampsia. Establishing field-wide methodological and analytical standards may increase value and reduce waste, allowing researchers to gain additional insights into the role of DNA methylation in the pathophysiology of preeclampsia.
Collapse
Affiliation(s)
- A Cirkovic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - V Garovic
- Department of Internal Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - J Milin Lazovic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - O Milicevic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - M Savic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - N Rajovic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - N Aleksic
- Center for Molecular Biology, University of Vienna, Vienna, Austria
| | - T Weissgerber
- Department of Internal Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA.,Charité - Universitätsmedizin Berlin, Berlin Institute of Health, QUEST Center, Berlin, Germany
| | - A Stefanovic
- Clinic for Gynecology and Obstetrics, Clinical Centre of Serbia, Belgrade, Serbia
| | - D Stanisavljevic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - N Milic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia. .,Department of Internal Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
8
|
Smith SP, Phillips JB, Johnson ML, Abbot P, Capra JA, Rokas A. Genome-wide association analysis uncovers variants for reproductive variation across dog breeds and links to domestication. Evol Med Public Health 2019; 2019:93-103. [PMID: 31263560 PMCID: PMC6592264 DOI: 10.1093/emph/eoz015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 05/09/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND OBJECTIVES The diversity of eutherian reproductive strategies has led to variation in many traits, such as number of offspring, age of reproductive maturity and gestation length. While reproductive trait variation has been extensively investigated and is well established in mammals, the genetic loci contributing to this variation remain largely unknown. The domestic dog, Canis lupus familiaris is a powerful model for studies of the genetics of inherited disease due to its unique history of domestication. To gain insight into the genetic basis of reproductive traits across domestic dog breeds, we collected phenotypic data for four traits, cesarean section rate, litter size, stillbirth rate and gestation length, from primary literature and breeders' handbooks. METHODOLOGY By matching our phenotypic data to genomic data from the Cornell Veterinary Biobank, we performed genome-wide association analyses for these four reproductive traits, using body mass and kinship among breeds as covariates. RESULTS We identified 12 genome-wide significant associations between these traits and genetic loci, including variants near CACNA2D3 with gestation length, MSRB3 and MSANTD1 with litter size, SMOC2 with cesarean section rate and UFM1 with stillbirth rate. A few of these loci, such as CACNA2D3 and MSRB3, have been previously implicated in human reproductive pathologies, whereas others have been associated with domestication-related traits, including brachycephaly (SMOC2) and coat curl (KRT71). CONCLUSIONS AND IMPLICATIONS We hypothesize that the artificial selection that gave rise to dog breeds also influenced the observed variation in their reproductive traits. Overall, our work establishes the domestic dog as a system for studying the genetics of reproductive biology and disease. LAY SUMMARY The genetic contributors to variation in mammalian reproductive traits remain largely unknown. We took advantage of the domestic dog, a powerful model system, to test for associations between genome-wide variants and four reproductive traits (cesarean section rate, litter size, stillbirth rate and gestation length) that vary extensively across breeds. We identified associations at a dozen loci, including ones previously associated with domestication-related traits, suggesting that selection on dog breeds also influenced their reproductive traits.
Collapse
Affiliation(s)
- Samuel P Smith
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37203, USA
- Center for Computational Molecular Biology, Brown University, Providence, RI 02912, USA
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA
| | - Julie B Phillips
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37203, USA
- Department of Biological Sciences, Cumberland University, Lebanon, TN 37087, USA
| | - Maddison L Johnson
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37203, USA
| | - Patrick Abbot
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37203, USA
| | - John A Capra
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37203, USA
- Department of Biomedical Informatics, Vanderbilt University, Nashville, TN 37203, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37203, USA
- Department of Biomedical Informatics, Vanderbilt University, Nashville, TN 37203, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
9
|
Ma B, Allard C, Bouchard L, Perron P, Mittleman MA, Hivert MF, Liang L. Locus-specific DNA methylation prediction in cord blood and placenta. Epigenetics 2019; 14:405-420. [PMID: 30885044 DOI: 10.1080/15592294.2019.1588685] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
DNA methylation is known to be responsive to prenatal exposures, which may be a part of the mechanism linking early developmental exposures to future chronic diseases. Many studies use blood to measure DNA methylation, yet we know that DNA methylation is tissue specific. Placenta is central to fetal growth and development, but it is rarely feasible to collect this tissue in large epidemiological studies; on the other hand, cord blood samples are more accessible. In this study, based on paired samples of both placenta and cord blood tissues from 169 individuals, we investigated the methylation concordance between placenta and cord blood. We then employed a machine-learning-based model to predict locus-specific DNA methylation levels in placenta using DNA methylation levels in cord blood. We found that methylation correlation between placenta and cord blood is lower than other tissue pairs, consistent with existing observations that placenta methylation has a distinct pattern. Nonetheless, there are still a number of CpG sites showing robust association between the two tissues. We built prediction models for placenta methylation based on cord blood data and documented a subset of 1,012 CpG sites with high correlation between measured and predicted placenta methylation levels. The resulting list of CpG sites and prediction models could help to reveal the loci where internal or external influences may affect DNA methylation in both placenta and cord blood, and provide a reference data to predict the effects on placenta in future study even when the tissue is not available in an epidemiological study.
Collapse
Affiliation(s)
- Baoshan Ma
- a College of Information Science and Technology , Dalian Maritime University , Dalian , Liaoning Province , China
| | - Catherine Allard
- b Centre de Recherche du Center Hospitalier Universitaire de Sherbrooke , Sherbrooke , Quebec , Canada
| | - Luigi Bouchard
- b Centre de Recherche du Center Hospitalier Universitaire de Sherbrooke , Sherbrooke , Quebec , Canada.,c Department of Biochemistry, Faculty of Medicine and Health Sciences , Université de Sherbrooke , Sherbrooke , Quebec , Canada.,d ECOGENE-21 Biocluster , CSSS de Chicoutimi , Chicoutimi , Quebec , Canada
| | - Patrice Perron
- b Centre de Recherche du Center Hospitalier Universitaire de Sherbrooke , Sherbrooke , Quebec , Canada.,e Department of Medicine, Faculty of Medicine and Life Sciences , Université de Sherbrooke , Sherbrooke , Quebec , Canada
| | - Murray A Mittleman
- f Department of Epidemiology , Harvard T.H. Chan School of Public Health , Boston , MA , USA.,g Cardiovascular Epidemiology Research Unit , Beth Israel Deaconess Medical Center , Boston , MA , USA
| | - Marie-France Hivert
- b Centre de Recherche du Center Hospitalier Universitaire de Sherbrooke , Sherbrooke , Quebec , Canada.,e Department of Medicine, Faculty of Medicine and Life Sciences , Université de Sherbrooke , Sherbrooke , Quebec , Canada.,h Department of Population Medicine , Harvard Pilgrim Health Care Institute, Harvard Medical School , Boston , MA , USA.,i Diabetes Unit , Massachusetts General Hospital , Boston , MA , USA
| | - Liming Liang
- f Department of Epidemiology , Harvard T.H. Chan School of Public Health , Boston , MA , USA.,j Department of Biostatistics , Harvard T.H. Chan School of Public Health , Boston , MA , USA
| |
Collapse
|
10
|
Wang W, Liu R, Liang X, Zhao Q, Qu P, Yao K, Jiang M, Luo Y, Zhang W, Qing S. Expression of IFNAR1 and IFNAR2 in cattle placenta during early pregnancy. Reprod Domest Anim 2017; 53:385-392. [PMID: 29194800 DOI: 10.1111/rda.13118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 09/25/2017] [Indexed: 01/20/2023]
Abstract
Interferon-tau (IFNT), a type I interferon, is an antiluteolytic factor secreted by trophoderm during pregnancy. IFNT transmitted signals or stimulated the expression of some factors to build maternal recognition and keep pregnancy by binding its receptors, IFNT receptor 1(IFNAR1) and IFNT receptor 2 (IFNAR2). Up to now, the expression model and roles of IFNAR1 and IFNAR2 in placenta have not been investigated in cattle. In this study, the localization and expression of IFNAR1 and IFNAR2 in the cattle placenta at days 18-50 of pregnancy were detected by histological examination, immunofluorescence staining and real-time qPCR. The results showed that IFNAR1 mainly distributed in chorioallantoic membrane, endometrial epithelium, cotyledon and caruncle during the early pregnancy of cattle with change in time- and position-dependent. IFNAR1 and IFNAR2 mRNA expression were mainly detected in chorioallantoic membrane and cotyledon, and markedly increased along with pregnancy process. Moreover, the mRNA expression level of IFNAR1 in chorioallantoic membrane and cotyledon was higher than that of IFNAR2. IFNAR mRNA was also expressed in caruncle tissues, which experienced a tendency of decrease from days 21 to 36, followed by increase after days 36. These results provide morphological basis and quantitative data for investigating the roles of IFNAR1 and IFNAR2 on development of cattle placenta and pregnancy maintenance.
Collapse
Affiliation(s)
- W Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - R Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - X Liang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Q Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - P Qu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - K Yao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - M Jiang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Y Luo
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - W Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - S Qing
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|