1
|
Olkowicz M, Karas A, Berkowicz P, Kaczara P, Jasztal A, Kurylowicz Z, Fedak F, Rosales-Solano H, Roy KS, Kij A, Buczek E, Pawliszyn J, Chlopicki S. Upregulation of ALOX12-12-HETE pathway impairs AMPK-dependent modulation of vascular metabolism in ApoE/LDLR -/- mice. Pharmacol Res 2024; 210:107478. [PMID: 39448044 DOI: 10.1016/j.phrs.2024.107478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
Mitochondrial dysfunction and 12-lipoxygenase (ALOX12)-derived 12(S)-HETE production have been associated with vascular inflammation and the pathogenesis of atherosclerosis. However, the role of ALOX12 in regulating vascular energy metabolism in vascular inflammation has not been studied to date. Using mitochondrial and glycolysis functional profiling with the Seahorse extracellular flux analyzer, metabolipidomics, and proteomic analysis (LC-MS/MS), we characterized alterations in vascular energy metabolism in 2- and 6-month-old ApoE/LDLR-/- vs. control C57BL/6 mice. We identified that aorta of 6-month-old ApoE/LDLR-/- mice displayed compromised mitochondrial metabolism manifested by the reduced expression of mitochondrial enzymes, impaired mitochondrial respiration, and consequently diminished respiratory reserve capacity. An increased flux through the glycolysis/lactate shuttle, the hexosamine biosynthetic pathway (HBP), and the pentose phosphate pathway (PPP) was also recognized. Interestingly, ALOX12-12-HETE was the most upregulated axis in eicosanoid metabolism and histological examinations indicated that ApoE/LDLR-/- mice showed increased aortic expression of ALOX12, particularly in early atherosclerotic plaque areas. Remarkably, the joint blocking of ALOX12 and activation of AMPK, but not AMPK activation alone, resulted in the reprogramming of vascular metabolism, with improved mitochondrial respiration and suppressed auxiliary pathways (HBP, PPP, itaconate shunt). In conclusion, excessive activation of the ALOX12-12-HETE pathway in vascular inflammation in early atherosclerosis inhibits AMPK-dependent regulation of vascular metabolism. Consequently, ALOX12 may represent a novel target to boost impaired vascular mitochondrial function in pro-atherosclerotic vascular inflammation.
Collapse
Affiliation(s)
- Mariola Olkowicz
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, Krakow 30-348, Poland.
| | - Agnieszka Karas
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, Krakow 30-348, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, Lojasiewicza 11, Krakow 30-348, Poland
| | - Piotr Berkowicz
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, Krakow 30-348, Poland
| | - Patrycja Kaczara
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, Krakow 30-348, Poland
| | - Agnieszka Jasztal
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, Krakow 30-348, Poland
| | - Zuzanna Kurylowicz
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, Krakow 30-348, Poland
| | - Filip Fedak
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, Krakow 30-348, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, Lojasiewicza 11, Krakow 30-348, Poland
| | - Hernando Rosales-Solano
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Kanchan Sinha Roy
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Agnieszka Kij
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, Krakow 30-348, Poland
| | - Elzbieta Buczek
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, Krakow 30-348, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, Lojasiewicza 11, Krakow 30-348, Poland
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, Krakow 30-348, Poland; Department of Pharmacology, Jagiellonian University Medical College, Grzegorzecka 16, Krakow 31-531, Poland
| |
Collapse
|
2
|
Zhou Y, Wang H, Bi T, Liang P, Liu X, Shen H, Sun Q, Luo G, Liu P, Yang S, Ren W. Zhilong Huoxue Tongyu capsule protects against atherosclerosis by suppressing EndMT via modulating Hippo/YAP signaling pathway. J Tradit Complement Med 2024; 14:656-665. [PMID: 39850597 PMCID: PMC11752113 DOI: 10.1016/j.jtcme.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/17/2024] [Accepted: 03/26/2024] [Indexed: 01/25/2025] Open
Abstract
Background and aim Zhilong Huoxue Tongyu Capsule (ZL capsule) has been demonstrated to be an effective and widely-used traditional Chinese medicine (TCM) formula for the treatment of various diseases, especially for atherosclerosis (AS) related cardiovascular and cerebrovascular diseases. Reversal of endothelial-mesenchymal transition (EndMT) plays a crucial role in the cure of AS. But the curative impact of ZL capsule on EndMT remains obscure during the development of AS. The purpose of this study is to explore the effect of ZL capsule on AS and to study the regulation mechanism on EndMT in AS by ZL capsule in vivo and in vitro. Experimental procedure An in vivo model of AS was induced in ApoE-/- mice by administrating them with an 8-week period of high-fat diet (HFD). After oral gavage of different doses of ZL capsule and Atorvastatin calcium tablets (ATO) for 4 weeks, the lipid levels, plaque area, lipid deposition, and EndMT were evaluated using standard assays. In order to simulate EndMT in vitro, human umbilical vein endothelial cells (HUVECs) were subjected to oxidized low-density lipoprotein (ox-LDL). Western blotting (WB) and immunofluorescence techniques were used to evaluate the intervention effect of ZL capsule on EndMT and Hippo/YAP pathways. Results and conclusion ZL capsule demonstrated therapeutic effects on dyslipidemia and EndMT among atherosclerotic mice. To be specific, ZL capusle diminished the total cholesterol (TC), total triglyceride (TG) and low-density lipoprotein (LDL-C) levels, whereas increased that of high-density lipoproteins (HDL-C). Meanwhile, ZL capusle upregulated the expression of endothelial markers (CD31 and VE-cadherin) and reduced that of mesenchymal markers (ɑ-SMA and FSP1), indicating that ZL capusle could inhibit EndMT during the development of AS. Furthermore, molecular docking results indicated that active ingredients including formononetin, calycosin, astragaloside III, astragaloside A in ZL capsule have strong affinity with YAP proteins, and ZL capsule can significantly repress the initiation of Hippo/YAP pathway during AS. In conclusion, ZL capsule effectively attenuated AS progression by exerting inhibitory effects on EndMT through modulation of the Hippo/YAP signaling pathway.
Collapse
Affiliation(s)
- Yanan Zhou
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Hong Wang
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Tao Bi
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Pan Liang
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Xinyue Liu
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Hongping Shen
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Qin Sun
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Gang Luo
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan, China
- Department of Cardiovascular Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Ping Liu
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan, China
- Department of Cardiovascular Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Sijin Yang
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan, China
- Department of Cardiovascular Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Wei Ren
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
3
|
Mu M, Liu G, Ding X, Xue L, Li D, Zhu Y, Zhang N, Wu J, Wang J. miR-520e and its promoter region DNA methylation as potential biomarkers in atherosclerosis. Biochem Cell Biol 2024; 102:385-393. [PMID: 38917487 DOI: 10.1139/bcb-2023-0326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024] Open
Abstract
In atherosclerosis, DNA methylation plays a key regulatory role in the expression of related genes. However, the molecular mechanisms of these processes in human umbilical vein endothelial cells (HUVECs) are unclear. Here, using high-throughput sequencing from the Infinium HumanMethylation450 assay, we manifested that the cg19564375 methylation of miR-520e promoter region in the peripheral blood of acute coronary syndrome (ACS) patients was higher than that of healthy controls. As shown by RQ-MSP, the upstream DNA methylation level of the miR-520e promoter region was considerably increased in ACS patients. miR-520e was markedly downregulated in ACS patients compared with healthy controls. In the oxidized low-density lipoprotein (ox-LDL)-induced HUVECs injury model, DNA methylation of the upstream region of miR-520e was significantly increased. With increasing concentrations of the methylase inhibitor 5-Aza, miR-520e expression was upregulated. The silence of methyltransferase DNMT1, rather than DNMT3a or DNMT3b, abolished the influence of miR-520e expression by ox-LDL treatment in HUVECs. A dual luciferase reporter assay revealed that miR-520e regulated the TGFBR2 3'-untranslated region region. After silencing TGFBR2, the promoting effect of miR-520e inhibitor on cell proliferation and migration may be attenuated. In conclusion, the expression of miR-520e is modified by its promoter region DNA methylation, and miR-520e and its promoter region DNA methylation may be potential biomarkers in atherosclerosis.
Collapse
Affiliation(s)
- Mimi Mu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Clinical Laboratory, Jinling Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China
| | - Gao Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Clinical Laboratory, Jinling Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China
| | - Xiaoyu Ding
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Clinical Laboratory, Jinling Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China
| | - Lijun Xue
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Clinical Laboratory, Jinling Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China
| | - Dandan Li
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Clinical Laboratory, Jinling Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China
| | - Yunhua Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Clinical Laboratory, Jinling Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China
| | - Nan Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Clinical Laboratory, Jinling Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China
| | - Jia Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Clinical Laboratory, Jinling Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China
| | - Junjun Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Clinical Laboratory, Jinling Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China
| |
Collapse
|
4
|
Shore CJ, Villicaña S, El-Sayed Moustafa JS, Roberts AL, Gunn DA, Bataille V, Deloukas P, Spector TD, Small KS, Bell JT. Genetic effects on the skin methylome in healthy older twins. Am J Hum Genet 2024; 111:1932-1952. [PMID: 39137780 PMCID: PMC11393713 DOI: 10.1016/j.ajhg.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/22/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024] Open
Abstract
Whole-skin DNA methylation variation has been implicated in several diseases, including melanoma, but its genetic basis has not yet been fully characterized. Using bulk skin tissue samples from 414 healthy female UK twins, we performed twin-based heritability and methylation quantitative trait loci (meQTL) analyses for >400,000 DNA methylation sites. We find that the human skin DNA methylome is on average less heritable than previously estimated in blood and other tissues (mean heritability: 10.02%). meQTL analysis identified local genetic effects influencing DNA methylation at 18.8% (76,442) of tested CpG sites, as well as 1,775 CpG sites associated with at least one distal genetic variant. As a functional follow-up, we performed skin expression QTL (eQTL) analyses in a partially overlapping sample of 604 female twins. Colocalization analysis identified over 3,500 shared genetic effects affecting thousands of CpG sites (10,067) and genes (4,475). Mediation analysis of putative colocalized gene-CpG pairs identified 114 genes with evidence for eQTL effects being mediated by DNA methylation in skin, including in genes implicating skin disease such as ALOX12 and CSPG4. We further explored the relevance of skin meQTLs to skin disease and found that skin meQTLs and CpGs under genetic influence were enriched for multiple skin-related genome-wide and epigenome-wide association signals, including for melanoma and psoriasis. Our findings give insights into the regulatory landscape of epigenomic variation in skin.
Collapse
Affiliation(s)
- Christopher J Shore
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK.
| | - Sergio Villicaña
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | | | - Amy L Roberts
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | | | - Veronique Bataille
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Panos Deloukas
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Tim D Spector
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Kerrin S Small
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Jordana T Bell
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK.
| |
Collapse
|
5
|
Ma J, Wang X, Jia Y, Tan F, Yuan X, Du J. The roles of B cells in cardiovascular diseases. Mol Immunol 2024; 171:36-46. [PMID: 38763105 DOI: 10.1016/j.molimm.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/30/2024] [Accepted: 05/04/2024] [Indexed: 05/21/2024]
Abstract
Damage to the heart can start the repair process and cause cardiac remodeling. B cells play an important role in this process. B cells are recruited to the injured place and activate cardiac remodeling through secreting antibodies and cytokines. Different types of B cells showed specific functions in the heart. Among all types of B cells, heart-associated B cells play a vital role in the heart by secreting TGFβ1. B cells participate in the activation of fibroblasts and promote cardiac fibrosis. Four subtypes of B cells in the heart revealed the relationship between the B cells' heterogeneity and cardiac remodeling. Many cardiovascular diseases like atherosclerosis, heart failure (HF), hypertension, myocardial infarction (MI), and dilated cardiomyopathy (DCM) are related to B cells. The primary mechanisms of these B cell-related activities will be discussed in this review, which may also suggest potential novel therapeutic targets.
Collapse
Affiliation(s)
- Jian Ma
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaotong Wang
- Department of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yuewang Jia
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fangyan Tan
- Department of Nephrology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xin Yuan
- Department of Nephrology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Jianlin Du
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
6
|
Kim J, Shin BS, Kim DH, Shin DI, Ahn SH, Kim JG, Ryu SH, Moon HR, Kang HG, Jeong H, Yum KS, Chae HY, Kim DH, Kang K, Kim J. Molecular genomic and epigenomic characteristics related to aspirin and clopidogrel resistance. BMC Med Genomics 2024; 17:166. [PMID: 38902747 PMCID: PMC11188263 DOI: 10.1186/s12920-024-01936-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/14/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND Mediators, genomic and epigenomic characteristics involving in metabolism of arachidonic acid by cyclooxygenase (COX) and lipoxygenase (ALOX) and hepatic activation of clopidogrel have been individually suggested as factors associated with resistance against aspirin and clopidogrel. The present multi-center prospective cohort study evaluated whether the mediators, genomic and epigenomic characteristics participating in arachidonic acid metabolism and clopidogrel activation could be factors that improve the prediction of the aspirin and clopidogrel resistance in addition to cardiovascular risks. METHODS We enrolled 988 patients with transient ischemic attack and ischemic stroke who were evaluated for a recurrence of ischemic stroke to confirm clinical resistance, and measured aspirin (ARU) and P2Y12 reaction units (PRU) using VerifyNow to assess laboratory resistance 12 weeks after aspirin and clopidogrel administration. We investigated whether mediators, genotypes, and promoter methylation of genes involved in COX and ALOX metabolisms and clopidogrel activation could synergistically improve the prediction of ischemic stroke recurrence and the ARU and PRU levels by integrating to the established cardiovascular risk factors. RESULTS The logistic model to predict the recurrence used thromboxane A synthase 1 (TXAS1, rs41708) A/A genotype and ALOX12 promoter methylation as independent variables, and, improved sensitivity of recurrence prediction from 3.4% before to 13.8% after adding the mediators, genomic and epigenomic variables to the cardiovascular risks. The linear model we used to predict the ARU level included leukotriene B4, COX2 (rs20417) C/G and thromboxane A2 receptor (rs1131882) A/A genotypes with the addition of COX1 and ALOX15 promoter methylations as variables. The linear PRU prediction model included G/A and prostaglandin I receptor (rs4987262) G/A genotypes, COX2 and TXAS1 promoter methylation, as well as cytochrome P450 2C19*2 (rs4244285) A/A, G/A, and *3 (rs4986893) A/A genotypes as variables. The linear models for predicting ARU (r = 0.291, R2 = 0.033, p < 0.01) and PRU (r = 0.503, R2 = 0.210, p < 0.001) levels had improved prediction performance after adding the genomic and epigenomic variables to the cardiovascular risks. CONCLUSIONS This study demonstrates that different mediators, genomic and epigenomic characteristics of arachidonic acid metabolism and clopidogrel activation synergistically improved the prediction of the aspirin and clopidogrel resistance together with the cardiovascular risk factors. TRIAL REGISTRATION URL: https://www. CLINICALTRIALS gov ; Unique identifier: NCT03823274.
Collapse
Grants
- YMC037 Yuhan Corporation, South Korea
- YMC037 Yuhan Corporation, South Korea
- YMC037 Yuhan Corporation, South Korea
- YMC037 Yuhan Corporation, South Korea
- YMC037 Yuhan Corporation, South Korea
- YMC037 Yuhan Corporation, South Korea
- YMC037 Yuhan Corporation, South Korea
- YMC037 Yuhan Corporation, South Korea
- YMC037 Yuhan Corporation, South Korea
- YMC037 Yuhan Corporation, South Korea
- YMC037 Yuhan Corporation, South Korea
Collapse
Affiliation(s)
- Jei Kim
- Department of Neurology, College of Medicine and Hospital, Daejeon-Chungnam Regional Cardiocerebrovascular Disease Center, Chungnam National University, Daejeon, South Korea.
- Department of Anatomy, College of Medicine, Chungnam National University, 266 Moonhwaro, Joongku, Daejeon, 35015, South Korea.
| | - Byoung-Soo Shin
- Department of Neurology, Research Institute of Clinical Medicine and Biomedical Research Institute, Medical School and Hospital, Jeonbuk National University, Jeonju, South Korea
| | - Dae-Hyun Kim
- Department of Neurology, Busan Regional Cardiocerebrovascular Disease Center, Dong-A University Hospital, Busan, South Korea
| | - Dong-Ick Shin
- Department of Neurology, Chungbuk Regional Cardiocerebrovascular Disease Center, Chungbuk National University Hospital, Cheongju, South Korea
| | - Seong Hwan Ahn
- Department of Neurology, Chosun University Hospital, Gwangju, South Korea
| | - Jae Guk Kim
- Department of Neurology, Eulji University Hospital, Daejeon, South Korea
| | - Su Hyun Ryu
- Department of Neurology, College of Medicine and Hospital, Daejeon-Chungnam Regional Cardiocerebrovascular Disease Center, Chungnam National University, Daejeon, South Korea
| | - Hye Rin Moon
- Department of Neurology, College of Medicine and Hospital, Daejeon-Chungnam Regional Cardiocerebrovascular Disease Center, Chungnam National University, Daejeon, South Korea
| | - Hyun Goo Kang
- Department of Neurology, Research Institute of Clinical Medicine and Biomedical Research Institute, Medical School and Hospital, Jeonbuk National University, Jeonju, South Korea
| | - Hyeseon Jeong
- Department of Neurology, College of Medicine and Hospital, Daejeon-Chungnam Regional Cardiocerebrovascular Disease Center, Chungnam National University, Daejeon, South Korea
| | - Kyu Sun Yum
- Department of Neurology, Chungbuk Regional Cardiocerebrovascular Disease Center, Chungbuk National University Hospital, Cheongju, South Korea
| | - Hee-Yun Chae
- Department of Neurology, Chungbuk Regional Cardiocerebrovascular Disease Center, Chungbuk National University Hospital, Cheongju, South Korea
| | - Do-Hyung Kim
- Department of Neurology, Eulji University Hospital, Daejeon, South Korea
| | - Keunsoo Kang
- Department of Microbiology, College of Science & Technology, Dankook University, Cheonan, South Korea
| | - Jeeyeon Kim
- Department of Neurology, College of Medicine and Hospital, Daejeon-Chungnam Regional Cardiocerebrovascular Disease Center, Chungnam National University, Daejeon, South Korea
| |
Collapse
|
7
|
Jiménez-Balado J, Fernández-Pérez I, Gallego-Fábrega C, Lazcano U, Soriano-Tárraga C, Vallverdú-Prats M, Mola-Caminal M, Rey-Álvarez L, Macias-Gómez A, Suárez-Pérez A, Giralt-Steinhauer E, Rodríguez-Campello A, Cuadrado-Godia E, Ois Á, Esteller M, Roquer J, Fernández-Cadenas I, Jiménez-Conde J. DNA methylation and stroke prognosis: an epigenome-wide association study. Clin Epigenetics 2024; 16:75. [PMID: 38845005 PMCID: PMC11155152 DOI: 10.1186/s13148-024-01690-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/29/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND AND AIMS Stroke is the leading cause of adult-onset disability. Although clinical factors influence stroke outcome, there is a significant variability among individuals that may be attributed to genetics and epigenetics, including DNA methylation (DNAm). We aimed to study the association between DNAm and stroke prognosis. METHODS AND RESULTS To that aim, we conducted a two-phase study (discovery-replication and meta-analysis) in Caucasian patients with ischemic stroke from two independent centers (BasicMar [discovery, N = 316] and St. Pau [replication, N = 92]). Functional outcome was assessed using the modified Rankin Scale (mRS) at three months after stroke, being poor outcome defined as mRS > 2. DNAm was determined using the 450K and EPIC BeadChips in whole-blood samples collected within the first 24 h. We searched for differentially methylated positions (DMPs) in 370,344 CpGs, and candidates below p-value < 10-5 were subsequently tested in the replication cohort. We then meta-analyzed DMP results from both cohorts and used them to identify differentially methylated regions (DMRs). After doing the epigenome-wide association study, we found 29 DMPs at p-value < 10-5 and one of them was replicated: cg24391982, annotated to thrombospondin-2 (THBS2) gene (p-valuediscovery = 1.54·10-6; p-valuereplication = 9.17·10-4; p-valuemeta-analysis = 6.39·10-9). Besides, four DMRs were identified in patients with poor outcome annotated to zinc finger protein 57 homolog (ZFP57), Arachidonate 12-Lipoxygenase 12S Type (ALOX12), ABI Family Member 3 (ABI3) and Allantoicase (ALLC) genes (p-value < 1·10-9 in all cases). DISCUSSION Patients with poor outcome showed a DMP at THBS2 and four DMRs annotated to ZFP57, ALOX12, ABI3 and ALLC genes. This suggests an association between stroke outcome and DNAm, which may help identify new stroke recovery mechanisms.
Collapse
Affiliation(s)
- Joan Jiménez-Balado
- Neurovascular Research Group, Department of Neurology, Hospital del Mar Research Institute, C/ del Dr. Aiguader, 88, 08003, Barcelona, Spain.
| | - Isabel Fernández-Pérez
- Neurovascular Research Group, Department of Neurology, Hospital del Mar Research Institute, C/ del Dr. Aiguader, 88, 08003, Barcelona, Spain
- Medicine Department, Autonomous University of Barcelona, Barcelona, Spain
| | | | - Uxue Lazcano
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Biscaia, Spain
| | - Carolina Soriano-Tárraga
- Department of Psychiatry, NeuroGenomics and Informatics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Marta Vallverdú-Prats
- Neurovascular Research Group, Department of Neurology, Hospital del Mar Research Institute, C/ del Dr. Aiguader, 88, 08003, Barcelona, Spain
| | - Marina Mola-Caminal
- Unit of Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Lucía Rey-Álvarez
- Neurovascular Research Group, Department of Neurology, Hospital del Mar Research Institute, C/ del Dr. Aiguader, 88, 08003, Barcelona, Spain
| | - Adrià Macias-Gómez
- Neurovascular Research Group, Department of Neurology, Hospital del Mar Research Institute, C/ del Dr. Aiguader, 88, 08003, Barcelona, Spain
| | - Antoni Suárez-Pérez
- Neurovascular Research Group, Department of Neurology, Hospital del Mar Research Institute, C/ del Dr. Aiguader, 88, 08003, Barcelona, Spain
| | - Eva Giralt-Steinhauer
- Neurovascular Research Group, Department of Neurology, Hospital del Mar Research Institute, C/ del Dr. Aiguader, 88, 08003, Barcelona, Spain
| | - Ana Rodríguez-Campello
- Neurovascular Research Group, Department of Neurology, Hospital del Mar Research Institute, C/ del Dr. Aiguader, 88, 08003, Barcelona, Spain
- Medicine Department, DCEXS-Universitat Pompeu Fabra (UPF), 08002, Barcelona, Spain
| | - Elisa Cuadrado-Godia
- Neurovascular Research Group, Department of Neurology, Hospital del Mar Research Institute, C/ del Dr. Aiguader, 88, 08003, Barcelona, Spain
- Medicine Department, DCEXS-Universitat Pompeu Fabra (UPF), 08002, Barcelona, Spain
| | - Ángel Ois
- Neurovascular Research Group, Department of Neurology, Hospital del Mar Research Institute, C/ del Dr. Aiguader, 88, 08003, Barcelona, Spain
- Medicine Department, DCEXS-Universitat Pompeu Fabra (UPF), 08002, Barcelona, Spain
| | - Manel Esteller
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain
- Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain
- Institucio Catalana de Recerca I Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Catalonia, Spain
| | - Jaume Roquer
- Neurovascular Research Group, Department of Neurology, Hospital del Mar Research Institute, C/ del Dr. Aiguader, 88, 08003, Barcelona, Spain
| | | | - Jordi Jiménez-Conde
- Neurovascular Research Group, Department of Neurology, Hospital del Mar Research Institute, C/ del Dr. Aiguader, 88, 08003, Barcelona, Spain.
- Medicine Department, DCEXS-Universitat Pompeu Fabra (UPF), 08002, Barcelona, Spain.
| |
Collapse
|
8
|
Kim JY, Jelinek J, Lee YH, Kim DH, Kang K, Ryu SH, Moon HR, Cho K, Rha SH, Cha JK, Issa JPJ, Kim J. Hypomethylation in MTNR1B: a novel epigenetic marker for atherosclerosis profiling using stenosis radiophenotype and blood inflammatory cells. Clin Epigenetics 2023; 15:11. [PMID: 36658621 PMCID: PMC9854223 DOI: 10.1186/s13148-023-01423-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/06/2023] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Changes in gene-specific promoter methylation may result from aging and environmental influences. Atherosclerosis is associated with aging and environmental effects. Thus, promoter methylation profiling may be used as an epigenetic tool to evaluate the impact of aging and the environment on atherosclerosis development. However, gene-specific methylation changes are currently inadequate epigenetic markers for predicting atherosclerosis and cardiovascular disease pathogenesis. RESULTS We profiled and validated changes in gene-specific promoter methylation associated with atherosclerosis using stenosis radiophenotypes of cranial vessels and blood inflammatory cells rather than direct sampling of atherosclerotic plaques. First, we profiled gene-specific promoter methylation changes using digital restriction enzyme analysis of methylation (DREAM) sequencing in peripheral blood mononuclear cells from eight samples each of cranial vessels with and without severe-stenosis radiophenotypes. Using DREAM sequencing profiling, 11 tags were detected in the promoter regions of the ACVR1C, ADCK5, EFNA2, ENOSF1, GLS2, KNDC1, MTNR1B, PACSIN3, PAX8-AS1, TLDC1, and ZNF7 genes. Using methylation evaluation, we found that EFNA2, ENOSF1, GLS2, KNDC1, MTNR1B, PAX8-AS1, and TLDC1 showed > 5% promoter methylation in non-plaque intima, atherosclerotic vascular tissues, and buffy coats. Using logistic regression analysis, we identified hypomethylation of MTNR1B as an independent variable for the stenosis radiophenotype prediction model by combining it with traditional atherosclerosis risk factors including age, hypertension history, and increases in creatinine, lipoprotein (a), and homocysteine. We performed fivefold cross-validation of the prediction model using 384 patients with ischemic stroke (50 [13%] no-stenosis and 334 [87%] > 1 stenosis radiophenotype). For the cross-validation, the training dataset included 70% of the dataset. The prediction model showed an accuracy of 0.887, specificity to predict stenosis radiophenotype of 0.940, sensitivity to predict no-stenosis radiophenotype of 0.533, and area under receiver operating characteristic curve of 0.877 to predict stenosis radiophenotype from the test dataset including 30% of the dataset. CONCLUSIONS We identified and validated MTNR1B hypomethylation as an epigenetic marker to predict cranial vessel atherosclerosis using stenosis radiophenotypes and blood inflammatory cells rather than direct atherosclerotic plaque sampling.
Collapse
Affiliation(s)
- Jee Yeon Kim
- grid.254230.20000 0001 0722 6377Department of Neurology and Neuroepigenetics Laboratory, College of Medicine and Hospital, Chungnam National University, 282 Moonhwaro, Joongku, Daejeon, 35015 South Korea
| | - Jaroslav Jelinek
- grid.282012.b0000 0004 0627 5048Coriell Institute for Medical Research, Camden, NJ USA
| | - Young Ho Lee
- grid.254230.20000 0001 0722 6377Department of Anatomy, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Dae Hyun Kim
- grid.412048.b0000 0004 0647 1081Department of Neurology, Dong-A University Hospital, Busan, South Korea
| | - Keunsoo Kang
- grid.411982.70000 0001 0705 4288Department of Microbiology, College of Science and Technology, Dankook University, Cheonan, South Korea
| | - Su Hyun Ryu
- grid.254230.20000 0001 0722 6377Department of Neurology and Neuroepigenetics Laboratory, College of Medicine and Hospital, Chungnam National University, 282 Moonhwaro, Joongku, Daejeon, 35015 South Korea
| | - Hye Rin Moon
- grid.254230.20000 0001 0722 6377Department of Neurology and Neuroepigenetics Laboratory, College of Medicine and Hospital, Chungnam National University, 282 Moonhwaro, Joongku, Daejeon, 35015 South Korea
| | - Kwangjo Cho
- grid.412048.b0000 0004 0647 1081Department of Thoracic and Cardiovascular Surgery, Dong-A University Hospital, Busan, South Korea
| | - Seo Hee Rha
- grid.412048.b0000 0004 0647 1081Department of Pathology, Dong-A University Hospital, Busan, South Korea
| | - Jae Kwan Cha
- grid.254230.20000 0001 0722 6377Department of Anatomy, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Jean-Pierre J. Issa
- grid.282012.b0000 0004 0627 5048Coriell Institute for Medical Research, Camden, NJ USA
| | - Jei Kim
- grid.254230.20000 0001 0722 6377Department of Neurology and Neuroepigenetics Laboratory, College of Medicine and Hospital, Chungnam National University, 282 Moonhwaro, Joongku, Daejeon, 35015 South Korea ,grid.411665.10000 0004 0647 2279Daejeon-Chungnam Regional Cerebrovascular Center, Chungnam National University Hospital, Daejeon, South Korea
| |
Collapse
|
9
|
Zhong X, Chen R. Detection of Ferroptosis by Immunohistochemistry and Immunofluorescence. Methods Mol Biol 2023; 2712:211-222. [PMID: 37578709 DOI: 10.1007/978-1-0716-3433-2_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Ferroptosis is a type of regulated cell death driven by oxidative damage, characterized by iron overload and lipid peroxidation, and regulated by a network of distinct molecules and organelles. Impaired ferroptotic response is implicated in multiple physiological and pathological processes, including tumorigenesis, neurodegeneration, and ischemia-reperfusion damage. Classical techniques of immunohistochemistry (IHC) and immunofluorescence (IF) can be employed to exhibit antigen expression and location in tissues observed with microscopy, making them powerful tools in studying the ferroptosis process. In this chapter, we introduce commonly used protocols and summarize typical markers used in IHC and IF to monitor ferroptosis.
Collapse
Affiliation(s)
- Xiao Zhong
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ruochan Chen
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
10
|
Chiorescu RM, Mocan M, Inceu AI, Buda AP, Blendea D, Vlaicu SI. Vulnerable Atherosclerotic Plaque: Is There a Molecular Signature? Int J Mol Sci 2022; 23:13638. [PMID: 36362423 PMCID: PMC9656166 DOI: 10.3390/ijms232113638] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 08/18/2023] Open
Abstract
Atherosclerosis and its clinical manifestations, coronary and cerebral artery diseases, are the most common cause of death worldwide. The main pathophysiological mechanism for these complications is the rupture of vulnerable atherosclerotic plaques and subsequent thrombosis. Pathological studies of the vulnerable lesions showed that more frequently, plaques rich in lipids and with a high level of inflammation, responsible for mild or moderate stenosis, are more prone to rupture, leading to acute events. Identifying the vulnerable plaques helps to stratify patients at risk of developing acute vascular events. Traditional imaging methods based on plaque appearance and size are not reliable in prediction the risk of rupture. Intravascular imaging is a novel technique able to identify vulnerable lesions, but it is invasive and an operator-dependent technique. This review aims to summarize the current data from literature regarding the main biomarkers involved in the attempt to diagnose vulnerable atherosclerotic lesions. These biomarkers could be the base for risk stratification and development of the new therapeutic drugs in the treatment of patients with vulnerable atherosclerotic plaques.
Collapse
Affiliation(s)
- Roxana Mihaela Chiorescu
- Internal Medicine Department, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Department of Internal Medicine, Emergency Clinical County Hospital, 400006 Cluj-Napoca, Romania
| | - Mihaela Mocan
- Internal Medicine Department, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Department of Internal Medicine, Emergency Clinical County Hospital, 400006 Cluj-Napoca, Romania
| | - Andreea Ioana Inceu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine, 400349 Cluj-Napoca, Romania
- Department of Cardiology, Nicolae Stăncioiu Heart Institute, 400001 Cluj-Napoca, Romania
| | - Andreea Paula Buda
- Department of Cardiology, Nicolae Stăncioiu Heart Institute, 400001 Cluj-Napoca, Romania
| | - Dan Blendea
- Department of Cardiology, Nicolae Stăncioiu Heart Institute, 400001 Cluj-Napoca, Romania
- Department of Cardiology, Iuliu Hațieganu University of Medicine and Pharmacy, 400437 Cluj-Napoca, Romania
| | - Sonia Irina Vlaicu
- Internal Medicine Department, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Department of Internal Medicine, Emergency Clinical County Hospital, 400006 Cluj-Napoca, Romania
| |
Collapse
|
11
|
Starling AP, Wood C, Liu C, Kechris K, Yang IV, Friedman C, Thomas DSK, Peel JL, Adgate JL, Magzamen S, Martenies SE, Allshouse WB, Dabelea D. Ambient air pollution during pregnancy and DNA methylation in umbilical cord blood, with potential mediation of associations with infant adiposity: The Healthy Start study. ENVIRONMENTAL RESEARCH 2022; 214:113881. [PMID: 35835166 PMCID: PMC10402394 DOI: 10.1016/j.envres.2022.113881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 06/11/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Prenatal exposure to ambient air pollution has been associated with adverse offspring health outcomes. Childhood health effects of prenatal exposures may be mediated through changes to DNA methylation detectable at birth. METHODS Among 429 non-smoking women in a cohort study of mother-infant pairs in Colorado, USA, we estimated associations between prenatal exposure to ambient fine particulate matter (PM2.5) and ozone (O3), and epigenome-wide DNA methylation of umbilical cord blood cells at delivery (2010-2014). We calculated average PM2.5 and O3 in each trimester of pregnancy and the full pregnancy using inverse-distance-weighted interpolation. We fit linear regression models adjusted for potential confounders and cell proportions to estimate associations between air pollutants and methylation at each of 432,943 CpGs. Differentially methylated regions (DMRs) were identified using comb-p. Previously in this cohort, we reported positive associations between 3rd trimester O3 exposure and infant adiposity at 5 months of age. Here, we quantified the potential for mediation of that association by changes in DNA methylation in cord blood. RESULTS We identified several DMRs for each pollutant and period of pregnancy. The greatest number of significant DMRs were associated with third trimester PM2.5 (21 DMRs). No single CpGs were associated with air pollutants at a false discovery rate <0.05. We found that up to 8% of the effect of 3rd trimester O3 on 5-month adiposity may be mediated by locus-specific methylation changes, but mediation estimates were not statistically significant. CONCLUSIONS Differentially methylated regions in cord blood were identified in association with maternal exposure to PM2.5 and O3. Genes annotated to the significant sites played roles in cardiometabolic disease, immune function and inflammation, and neurologic disorders. We found limited evidence of mediation by DNA methylation of associations between third trimester O3 exposure and 5-month infant adiposity.
Collapse
Affiliation(s)
- Anne P Starling
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Cheyret Wood
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Cuining Liu
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Katerina Kechris
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ivana V Yang
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA; Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA
| | - Chloe Friedman
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Deborah S K Thomas
- Department of Geography and Earth Sciences, University of North Carolina Charlotte, NC, USA
| | - Jennifer L Peel
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - John L Adgate
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Sheryl Magzamen
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA; Department of Epidemiology, Colorado School of Public Health, Colorado State University, Fort Collins, CO, USA
| | - Sheena E Martenies
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA; Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - William B Allshouse
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Dana Dabelea
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
12
|
Gkaliagkousi E, Lazaridis A, Dogan S, Fraenkel E, Tuna BG, Mozos I, Vukicevic M, Yalcin O, Gopcevic K. Theories and Molecular Basis of Vascular Aging: A Review of the Literature from VascAgeNet Group on Pathophysiological Mechanisms of Vascular Aging. Int J Mol Sci 2022; 23:ijms23158672. [PMID: 35955804 PMCID: PMC9368987 DOI: 10.3390/ijms23158672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/25/2022] [Accepted: 07/29/2022] [Indexed: 11/29/2022] Open
Abstract
Vascular aging, characterized by structural and functional alterations of the vascular wall, is a hallmark of aging and is tightly related to the development of cardiovascular mortality and age-associated vascular pathologies. Over the last years, extensive and ongoing research has highlighted several sophisticated molecular mechanisms that are involved in the pathophysiology of vascular aging. A more thorough understanding of these mechanisms could help to provide a new insight into the complex biology of this non-reversible vascular process and direct future interventions to improve longevity. In this review, we discuss the role of the most important molecular pathways involved in vascular ageing including oxidative stress, vascular inflammation, extracellular matrix metalloproteinases activity, epigenetic regulation, telomere shortening, senescence and autophagy.
Collapse
Affiliation(s)
- Eugenia Gkaliagkousi
- 3rd Department of Internal Medicine, Papageorgiou Hospital, Faculty of Medicine, Aristotle University of Thessaloniki, 56429 Thessaloniki, Greece
- Correspondence: (E.G.); (K.G.)
| | - Antonios Lazaridis
- 3rd Department of Internal Medicine, Papageorgiou Hospital, Faculty of Medicine, Aristotle University of Thessaloniki, 56429 Thessaloniki, Greece
| | - Soner Dogan
- Department of Medical Biology, School of Medicine, Yeditepe University, 34755 Istanbul, Turkey
| | - Emil Fraenkel
- 1st Department of Internal Medicine, University Hospital, Pavol Jozef Šafárik University of Košice, Trieda SNP 1, 04066 Košice, Slovakia
| | - Bilge Guvenc Tuna
- Department of Biophysics, School of Medicine, Yeditepe University, 34755 Istanbul, Turkey
| | - Ioana Mozos
- Department of Functional Sciences-Pathophysiology, Center for Translational Research and Systems Medicine, “Victor Babes” University of Medicine and Pharmacy, 300173 Timisoara, Romania
| | - Milica Vukicevic
- Cardiac Surgery Clinic, Clinical Center of Serbia, 11000 Belgrade, Serbia
| | - Ozlem Yalcin
- Department of Physiology, School of Medicine, Koc University, 34450 Istanbul, Turkey
| | - Kristina Gopcevic
- Laboratory for Analytics of Biomolecules, Department of Chemistry in Medicine, Faculty of Medicine, 11000 Belgrade, Serbia
- Correspondence: (E.G.); (K.G.)
| |
Collapse
|
13
|
Carballo-Perich L, Puigoriol-Illamola D, Bashir S, Terceño M, Silva Y, Gubern-Mérida C, Serena J. Clinical Parameters and Epigenetic Biomarkers of Plaque Vulnerability in Patients with Carotid Stenosis. Int J Mol Sci 2022; 23:5149. [PMID: 35563540 PMCID: PMC9101730 DOI: 10.3390/ijms23095149] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 12/24/2022] Open
Abstract
Atheromatous disease is the first cause of death and dependency in developed countries and carotid artery atherosclerosis is one of the main causes of severe ischaemic strokes. Current management strategies are mainly based on the degree of stenosis and patient selection has limited accuracy. This information could be complemented by the identification of biomarkers of plaque vulnerability, which would permit patients at greater and lesser risk of stroke to be distinguished, thus enabling a better selection of patients for surgical or intensive medical treatment. Although several circulating protein-based biomarkers with significance for both the diagnosis of carotid artery disease and its prognosis have been identified, at present, none have been clinically implemented. This review focuses especially on the most relevant clinical parameters to take into account in routine clinical practice and summarises the most up-to-date data on epigenetic biomarkers of carotid atherosclerosis and plaque vulnerability.
Collapse
Affiliation(s)
- Laia Carballo-Perich
- Cerebrovascular Pathology Research Group, Girona Biomedical Research Institute (IDIBGI), RICORS-ICTUS, Parc Hospitalari Martí I Julià, Edifici M2, 17190 Salt, Spain; (L.C.-P.); (D.P.-I.)
| | - Dolors Puigoriol-Illamola
- Cerebrovascular Pathology Research Group, Girona Biomedical Research Institute (IDIBGI), RICORS-ICTUS, Parc Hospitalari Martí I Julià, Edifici M2, 17190 Salt, Spain; (L.C.-P.); (D.P.-I.)
| | - Saima Bashir
- Cerebrovascular Pathology Research Group, Stroke Unit, Department of Neurology, Girona Biomedical Research Institute (IDIBGI), Dr. Josep Trueta University Hospital, RICORS-ICTUS, Av. França s/n (7a Planta), 17007 Girona, Spain; (S.B.); (M.T.); (J.S.)
| | - Mikel Terceño
- Cerebrovascular Pathology Research Group, Stroke Unit, Department of Neurology, Girona Biomedical Research Institute (IDIBGI), Dr. Josep Trueta University Hospital, RICORS-ICTUS, Av. França s/n (7a Planta), 17007 Girona, Spain; (S.B.); (M.T.); (J.S.)
| | - Yolanda Silva
- Cerebrovascular Pathology Research Group, Stroke Unit, Department of Neurology, Girona Biomedical Research Institute (IDIBGI), Dr. Josep Trueta University Hospital, RICORS-ICTUS, Av. França s/n (7a Planta), 17007 Girona, Spain; (S.B.); (M.T.); (J.S.)
| | - Carme Gubern-Mérida
- Cerebrovascular Pathology Research Group, Girona Biomedical Research Institute (IDIBGI), RICORS-ICTUS, Parc Hospitalari Martí I Julià, Edifici M2, 17190 Salt, Spain; (L.C.-P.); (D.P.-I.)
| | - Joaquín Serena
- Cerebrovascular Pathology Research Group, Stroke Unit, Department of Neurology, Girona Biomedical Research Institute (IDIBGI), Dr. Josep Trueta University Hospital, RICORS-ICTUS, Av. França s/n (7a Planta), 17007 Girona, Spain; (S.B.); (M.T.); (J.S.)
| |
Collapse
|
14
|
Seale K, Horvath S, Teschendorff A, Eynon N, Voisin S. Making sense of the ageing methylome. Nat Rev Genet 2022; 23:585-605. [PMID: 35501397 DOI: 10.1038/s41576-022-00477-6] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2022] [Indexed: 12/22/2022]
Abstract
Over time, the human DNA methylation landscape accrues substantial damage, which has been associated with a broad range of age-related diseases, including cardiovascular disease and cancer. Various age-related DNA methylation changes have been described, including at the level of individual CpGs, such as differential and variable methylation, and at the level of the whole methylome, including entropy and correlation networks. Here, we review these changes in the ageing methylome as well as the statistical tools that can be used to quantify them. We detail the evidence linking DNA methylation to ageing phenotypes and the longevity strategies aimed at altering both DNA methylation patterns and machinery to extend healthspan and lifespan. Lastly, we discuss theories on the mechanistic causes of epigenetic ageing.
Collapse
Affiliation(s)
- Kirsten Seale
- Institute for Health and Sport (iHeS), Victoria University, Footscray, Melbourne, Victoria, Australia
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.,Altos Labs, San Diego, CA, USA
| | - Andrew Teschendorff
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China.,UCL Cancer Institute, University College London, London, UK
| | - Nir Eynon
- Institute for Health and Sport (iHeS), Victoria University, Footscray, Melbourne, Victoria, Australia.
| | - Sarah Voisin
- Institute for Health and Sport (iHeS), Victoria University, Footscray, Melbourne, Victoria, Australia.
| |
Collapse
|
15
|
A Signature for Smoking Status of Coronary Heart Disease Patients through Weighted Gene Coexpression Network Analysis. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:5777946. [PMID: 35096131 PMCID: PMC8791244 DOI: 10.1155/2022/5777946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/10/2021] [Accepted: 12/15/2021] [Indexed: 11/18/2022]
Abstract
Background. Smoking is one of the risk factors of coronary heart disease (CHD), while its underlying mechanism is less well defined. Purpose. To identify and testify 6 key genes of CHD related to smoking through weighted gene coexpression network analysis (WGCNA), protein-protein interaction (PPI) network analysis, and pathway analysis. Methods. CHD patients’ samples were first downloaded from Gene Expression Omnibus (GEO). Then, genes of interest were obtained after analysis of variance (ANOVA). Thereafter, 23 coexpressed modules that were determined after genes with similar expression were incorporated via WGCNA. The biological functions of genes in the modules were researched by enrichment analysis. Pearson correlation analysis and PPI network analysis were used to screen core genes related to smoking in CHD. Results. The violet module was the most significantly associated with smoking (
,
). Genes in this module mainly participated in biological functions related to the heart. Altogether, 6 smoking-related core genes were identified through bioinformatics analyses. Their expressions in animal models were detected through the animal experiment. Conclusion. This study identified 6 core genes to serve as underlying biomarkers for monitoring and predicting smoker’s CHD risk.
Collapse
|
16
|
Li J, Zhang X, Yang M, Yang H, Xu N, Fan X, Liu G, Jiang X, Fan J, Zhang L, Zhang H, Zhou Y, Li R, Gao S, Jin J, Jin Z, Zheng J, Tu Q, Ren J. DNA methylome profiling reveals epigenetic regulation of lipoprotein-associated phospholipase A 2 in human vulnerable atherosclerotic plaque. Clin Epigenetics 2021; 13:161. [PMID: 34419168 PMCID: PMC8379831 DOI: 10.1186/s13148-021-01152-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/12/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Atherosclerotic plaque vulnerability is a key feature of atheroprogression and precipitating acute cardiovascular events. Although the pivotal role of epigenetic regulation in atherosclerotic plaque destabilization is being recognized, the DNA methylation profile and its potential role in driving the progression and destabilization of atherosclerotic cardiovascular disease remains largely unknown. We conducted a genome-wide analysis to identify differentially methylated genes in vulnerable and non-vulnerable atherosclerotic lesions to understand more about pathogenesis. RESULTS We compared genome-wide DNA methylation profiling between carotid artery plaques of patients with clinically symptomatic (recent stroke or transient ischemic attack) and asymptomatic disease (no recent stroke) using Infinium Methylation BeadChip arrays, which revealed 90,368 differentially methylated sites (FDR < 0.05, |delta beta|> 0.03) corresponding to 14,657 annotated genes. Among these genomic sites, 30% were located at the promoter regions and 14% in the CpG islands, according to genomic loci and genomic proximity to the CpG islands, respectively. Moreover, 67% displayed hypomethylation in symptomatic plaques, and the differentially hypomethylated genes were found to be involved in various aspects of inflammation. Subsequently, we focus on CpG islands and revealed 14,596 differentially methylated sites (|delta beta|> 0.1) located at the promoter regions of 7048 genes. Integrated analysis of methylation and gene expression profiles identified that 107 genes were hypomethylated in symptomatic plaques and showed elevated expression levels in both advanced plaques and ruptured plaques. The imprinted gene PLA2G7, which encodes lipoprotein-associated phospholipase A2 (Lp-PLA2), was one of the top hypomethylated genes with an increased expression upon inflammation. Further, the hypomethylated CpG site at the promoter region of PLA2G7 was identified as cg11874627, demethylation of which led to increased binding of Sp3 and expression of Lp-PLA2 through bisulfate sequencing, chromatin immunoprecipitation assay and enzyme-linked immunosorbent assay. These effects were further enhanced by deacetylase. CONCLUSION Extensive DNA methylation modifications serve as a new and critical layer of biological regulation that contributes to atheroprogression and destabilization via inflammatory processes. Revelation of this hitherto unknown epigenetic regulatory mechanism could rejuvenate the prospects of Lp-PLA2 as a therapeutic target to stabilize the atherosclerotic plaque and reduce clinical sequelae.
Collapse
Affiliation(s)
- Jingjin Li
- Department of Cardiology, Beijing Tiantan Hospital of Capital Medical University, Beijing, China
| | - Xiaoping Zhang
- Beijing Anzhen Hospital of Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Mengxi Yang
- Department of Cardiology, China-Japan Friendship Hospital, Beijing, China
| | - Hang Yang
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ning Xu
- Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Xueqiang Fan
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Gang Liu
- Department of Cardiovascular Surgery, Peking University People's Hospital, Beijing, China
| | - Xintong Jiang
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China
| | - Jiasai Fan
- Department of Cardiology, China-Japan Friendship Hospital, Beijing, China
| | - Lifang Zhang
- Department of Cardiology, China-Japan Friendship Hospital, Beijing, China
| | - Hu Zhang
- Department of Cardiology, China-Japan Friendship Hospital, Beijing, China
| | - Ying Zhou
- Department of Cardiology, China-Japan Friendship Hospital, Beijing, China
| | - Rui Li
- Department of Cardiology, China-Japan Friendship Hospital, Beijing, China
| | - Si Gao
- Department of Cardiology, China-Japan Friendship Hospital, Beijing, China
| | - Jiangli Jin
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
| | - Zening Jin
- Department of Cardiology, Beijing Tiantan Hospital of Capital Medical University, Beijing, China
| | - Jingang Zheng
- Department of Cardiology, China-Japan Friendship Hospital, Beijing, China
| | - Qiang Tu
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jingyi Ren
- Department of Cardiology, China-Japan Friendship Hospital, Beijing, China. .,Vascular Health Research Center of Peking University Health Science Center, Beijing, China.
| |
Collapse
|
17
|
Ferroptosis: the potential value target in atherosclerosis. Cell Death Dis 2021; 12:782. [PMID: 34376636 PMCID: PMC8355346 DOI: 10.1038/s41419-021-04054-3] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/08/2021] [Accepted: 06/16/2021] [Indexed: 12/14/2022]
Abstract
In advanced atherosclerosis (AS), defective function-induced cell death leads to the formation of the characteristic necrotic core and vulnerable plaque. The forms and mechanisms of cell death in AS have recently been elucidated. Among them, ferroptosis, an iron-dependent form of necrosis that is characterized by oxidative damage to phospholipids, promotes AS by accelerating endothelial dysfunction in lipid peroxidation. Moreover, disordered intracellular iron causes damage to macrophages, vascular smooth muscle cells (VSMCs), vascular endothelial cells (VECs), and affects many risk factors or pathologic processes of AS such as disturbances in lipid peroxidation, oxidative stress, inflammation, and dyslipidemia. However, the mechanisms through which ferroptosis initiates the development and progression of AS have not been established. This review explains the possible correlations between AS and ferroptosis, and provides a reliable theoretical basis for future studies on its mechanism.
Collapse
|
18
|
Lin D, Zhang X, Zhang C, Jin Q, Jiang L. LncRNA-TCONS_00034812 is upregulated in atherosclerosis and upregulates miR-21 through methylation in vascular smooth muscle cells. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1005. [PMID: 34277805 PMCID: PMC8267259 DOI: 10.21037/atm-21-2632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/16/2021] [Indexed: 12/14/2022]
Abstract
Background LncRNA-TCONS_00034812 is a critical player in the proliferation of aortic smooth muscle cells. It is known that artery injury plays an important role in atherosclerosis. However, the potential implication of LncRNA-TCONS_00034812 in atherosclerosis remains unclear. In this study, we collected artery specimens from patients with atherosclerosis and healthy controls to investigate the involvement of LncRNA-TCONS_00034812 in atherosclerosis. Methods Sixty patients with atherosclerosis and 60 controls, admitted at The First Hospital of Changsha (Changsha, China), between March 2017 and March 2019, were included. An artery biopsy was performed on all participants to obtain the artery specimens. Real-time quantitative PCR were performed to quantify the relative expression level of LncRNA-TCONS_00034812. Its role in atherosclerotic lesion was evaluated in (high fat diet) HFD-induced ApoE−/− mice. Moreover, human aortic smooth muscle cells (HAOSMCs) was employed to study functional role of LncRNA-TCONS_00034812 overexpression and knockdown by methylation-specific PCR and cell proliferation assay. Results Overexpression of TCONS_00034812 resulted in miR-21 upregulation and a decrease of miR-21 gene methylation. In contrast, silencing of TCONS_00034812 caused miR-21 downregulation and an increase of miR-21 gene methylation. Cell proliferation analysis indicated that the overexpression of TCONS_00034812 and miR-21 promoted cell proliferation, while silencing of TCONS_00034812 played an opposite role. Moreover, miR-21 overexpression weakened the effects of silencing TCONS_00034812 on cell proliferation. Conclusions In summary, LncRNA-TCONS_00034812 is upregulated in atherosclerotic samples, and its overexpression upregulates miR-21 through methylation in human aortic smooth muscle cells (HAOSMCs). Our study indicates that LncRNA-TCONS_00034812 could serve as a potential biomarker for diagnosis of atherosclerosis.
Collapse
Affiliation(s)
- Dongsheng Lin
- Department of Cardiovascular Medicine, The First Hospital of Changsha, Changsha, China
| | - Xian Zhang
- Department of Cardiovascular Medicine, The People's Hospital of Zhangjiajie, Zhangjiajie, China
| | - Chiyuan Zhang
- Department of Cardiovascular Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Qiao Jin
- Department of Cardiovascular Medicine, University of South China Affiliated Changsha Central Hospital, Changsha, China
| | - Luping Jiang
- Department of Cardiovascular Medicine, University of South China Affiliated Changsha Central Hospital, Changsha, China
| |
Collapse
|