1
|
Zhang Y, Li J, Tan L, Xue J, Shi YG. Understanding the role of ten-eleven translocation family proteins in kidney diseases. Biochem Soc Trans 2024; 52:2203-2214. [PMID: 39377353 DOI: 10.1042/bst20240291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/09/2024]
Abstract
Epigenetic mechanisms play a critical role in the pathogenesis of human diseases including kidney disorders. As the erasers of DNA methylation, Ten-eleven translocation (TET) family proteins can oxidize 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC), thus leading to passive or active DNA demethylation. Similarly, TET family proteins can also catalyze the same reaction on RNA. In addition, TET family proteins can also regulate chromatin structure and gene expression in a catalytic activity-independent manner through recruiting the SIN3A/HDAC co-repressor complex. In 2012, we reported for the first time that the genomic 5-hydroxymethylcytosine level and the mRNA levels of Tet1 and Tet2 were significantly downregulated in murine kidneys upon ischemia and reperfusion injury. Since then, accumulating evidences have eventually established an indispensable role of TET family proteins in not only acute kidney injury but also chronic kidney disease. In this review, we summarize the upstream regulatory mechanisms and the pathophysiological role of TET family proteins in major types of kidney diseases and discuss their potential values in clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Yuelin Zhang
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
- Institute of Longevity and Aging Research, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jiahui Li
- Institute of Longevity and Aging Research, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Li Tan
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
- Institute of Longevity and Aging Research, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jun Xue
- Department of Nephology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yujiang Geno Shi
- Institute of Longevity and Aging Research, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Wang J, Zhang Y, Gao J, Feng G, Liu C, Li X, Li P, Liu Z, Lu F, Wang L, Li W, Zhou Q, Liu Y. Alternative splicing of CARM1 regulated by LincGET-guided paraspeckles biases the first cell fate in mammalian early embryos. Nat Struct Mol Biol 2024; 31:1341-1354. [PMID: 38658621 PMCID: PMC11402786 DOI: 10.1038/s41594-024-01292-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 03/25/2024] [Indexed: 04/26/2024]
Abstract
The heterogeneity of CARM1 controls first cell fate bias during early mouse development. However, how this heterogeneity is established is unknown. Here, we show that Carm1 mRNA is of a variety of specific exon-skipping splicing (ESS) isoforms in mouse two-cell to four-cell embryos that contribute to CARM1 heterogeneity. Disruption of paraspeckles promotes the ESS of Carm1 precursor mRNAs (pre-mRNAs). LincGET, but not Neat1, is required for paraspeckle assembly and inhibits the ESS of Carm1 pre-mRNAs in mouse two-cell to four-cell embryos. We further find that LincGET recruits paraspeckles to the Carm1 gene locus through HNRNPU. Interestingly, PCBP1 binds the Carm1 pre-mRNAs and promotes its ESS in the absence of LincGET. Finally, we find that the ESS seen in mouse two-cell to four-cell embryos decreases CARM1 protein levels and leads to trophectoderm fate bias. Our findings demonstrate that alternative splicing of CARM1 has an important role in first cell fate determination.
Collapse
Affiliation(s)
- Jiaqiang Wang
- College of Life Science, Northeast Agricultural University, Harbin, China.
| | - Yiwei Zhang
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - Jiaze Gao
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - Guihai Feng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Chao Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xueke Li
- College of Life Science, Northeast Agricultural University, Harbin, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Pengcheng Li
- College of Life Science, Northeast Agricultural University, Harbin, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhonghua Liu
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - Falong Lu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Leyun Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
| | - Qi Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
| | - Yusheng Liu
- College of Life Science, Northeast Forestry University, Harbin, China.
| |
Collapse
|
3
|
Tang YW, Jiang MY, Cao JW, Wan F. Triptolide decreases podocytes permeability by regulating TET2-mediated hydroxymethylation of ZO-1. Exp Biol Med (Maywood) 2024; 249:10051. [PMID: 38881848 PMCID: PMC11176508 DOI: 10.3389/ebm.2024.10051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 05/07/2024] [Indexed: 06/18/2024] Open
Abstract
Podocyte injury or dysfunction can lead to proteinuria and glomerulosclerosis. Zonula occludens 1 (ZO-1) is a tight junction protein which connects slit diaphragm (SD) proteins to the actin cytoskeleton. Previous studies have shown that the expression of ZO-1 is decreased in chronic kidney disease (CKD). Thus, elucidation of the regulation mechanism of ZO-1 has considerable clinical importance. Triptolide (TP) has been reported to exert a strong antiproteinuric effect by inhibiting podocyte epithelial mesenchymal transition (EMT) and inflammatory response. However, the underlying mechanisms are still unclear. We found that TP upregulates ZO-1 expression and increases the fluorescence intensity of ZO-1 in a puromycin aminonucleoside (PAN)-induced podocyte injury model. Permeablity assay showed TP decreases podocyte permeability in PAN-treated podocyte. TP also upregulates the DNA demethylase TET2. Our results showed that treatment with the DNA methyltransferase inhibitors 5-azacytidine (5-AzaC) and RG108 significantly increased ZO-1 expression in PAN-treated podocytes. Methylated DNA immunoprecipitation (MeDIP) and hydroxymethylated DNA immunoprecipitation (hMeDIP) results showed that TP regulates the methylation status of the ZO-1 promoter. Knockdown of TET2 decreased ZO-1 expression and increased methylation of its promoter, resulting in the increase of podocyte permeability. Altogether, these results indicate that TP upregulates the expression of ZO-1 and decreases podocyte permeability through TET2-mediated 5 mC demethylation. These findings suggest that TP may alleviate podocyte permeability through TET2-mediated hydroxymethylation of ZO-1.
Collapse
Affiliation(s)
- Yue-Wen Tang
- Department of Nephrology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, China
| | - Meng-Ya Jiang
- Department of Nephrology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Jia-Wei Cao
- Department of Nephrology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Feng Wan
- Department of Nephrology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, China
| |
Collapse
|
4
|
Zhang H, Jia T, Che D, Peng B, Chu Z, Song X, Zeng W, Geng S. Decreased TET2/5-hmC reduces the integrity of the epidermal barrier via epigenetic dysregulation of filaggrin in psoriatic lesions. J Dermatol Sci 2024; 113:103-112. [PMID: 38331641 DOI: 10.1016/j.jdermsci.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/30/2023] [Accepted: 01/18/2024] [Indexed: 02/10/2024]
Abstract
BACKGROUND TET2 participates in tumor progression and intrinsic immune homeostasis via epigenetic regulation. TET2 has been reported to be involved in maintaining epithelial barrier homeostasis and inflammation. Abnormal epidermal barrier function and TET2 expression have been detected in psoriatic lesions. However, the mechanisms underlying the role of TET2 in psoriasis have not yet been elucidated. OBJECTIVE To define the role of TET2 in maintaining epithelial barrier homeostasis and the exact epigenetic mechanism in the dysfunction of the epidermal barrier in psoriasis. METHODS We analyzed human psoriatic skin lesions and datasets from the GEO database, and detected the expression of TET2/5-hmC together with barrier molecules by immunohistochemistry. We constructed epidermal-specific TET2 knockout mice to observe the effect of TET2 deficiency on epidermal barrier function via toluidine blue penetration assay. Further, we analyzed changes in the expression of epidermal barrier molecules by immunofluorescence in TET2-specific knockout mice and psoriatic model mice. RESULTS We found that decreased expression of TET2/5-hmC correlated with dysregulated barrier molecules in human psoriatic lesions. Epidermal-specific TET2 knockout mice showed elevated transdermal water loss associated with abnormal epidermal barrier molecules. Furthermore, we observed that TET2 knockdown in keratinocytes reduced filaggrin expression via filaggrin promoter methylation. CONCLUSION Aberrant epidermal TET2 affects the integrity of the epidermal barrier through the epigenetic dysregulation of epidermal barrier molecules, particularly filaggrin. Reduced TET2 expression is a critical factor contributing to an abnormal epidermal barrier in psoriasis.
Collapse
Affiliation(s)
- Huan Zhang
- Department of Dermatology, Northwest Hospital, The Second Hospital Affiliated to Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Tao Jia
- Department of Dermatology, Northwest Hospital, The Second Hospital Affiliated to Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Delu Che
- Department of Dermatology, Northwest Hospital, The Second Hospital Affiliated to Xi'an Jiaotong University, Xi'an, Shaanxi, China; Center for Dermatology Disease, Precision Medical Institute, Xi'an, China
| | - Bin Peng
- Department of Dermatology, Northwest Hospital, The Second Hospital Affiliated to Xi'an Jiaotong University, Xi'an, Shaanxi, China; Center for Dermatology Disease, Precision Medical Institute, Xi'an, China
| | - Zhaowei Chu
- Department of Dermatology, Northwest Hospital, The Second Hospital Affiliated to Xi'an Jiaotong University, Xi'an, Shaanxi, China; Center for Dermatology Disease, Precision Medical Institute, Xi'an, China
| | - Xiangjin Song
- Department of Dermatology, Northwest Hospital, The Second Hospital Affiliated to Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Weihui Zeng
- Department of Dermatology, Northwest Hospital, The Second Hospital Affiliated to Xi'an Jiaotong University, Xi'an, Shaanxi, China; Center for Dermatology Disease, Precision Medical Institute, Xi'an, China.
| | - Songmei Geng
- Department of Dermatology, Northwest Hospital, The Second Hospital Affiliated to Xi'an Jiaotong University, Xi'an, Shaanxi, China; Center for Dermatology Disease, Precision Medical Institute, Xi'an, China.
| |
Collapse
|
5
|
Liang X, Liu H, Hu H, Zhou J, Abedini A, Navarro AS, Klötzer KA, Susztak K. Genetic Studies Highlight the Role of TET2 and INO80 in DNA Damage Response and Kidney Disease Pathogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.02.578718. [PMID: 38370682 PMCID: PMC10871294 DOI: 10.1101/2024.02.02.578718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Genome-wide association studies (GWAS) have identified over 800 loci associated with kidney function, yet the specific genes, variants, and pathways involved remain elusive. By integrating kidney function GWAS, human kidney expression and methylation quantitative trait analyses, we identified Ten-Eleven Translocation (TET) DNA demethylase 2: TET2 as a novel kidney disease risk gene. Utilizing single-cell chromatin accessibility and CRISPR-based genome editing, we highlight GWAS variants that influence TET2 expression in kidney proximal tubule cells. Experiments using kidney-tubule-specific Tet2 knockout mice indicated its protective role in cisplatin-induced acute kidney injury, as well as chronic kidney disease and fibrosis, induced by unilateral ureteral obstruction or adenine diet. Single-cell gene profiling of kidneys from Tet2 knockout mice and TET2- knock-down tubule cells revealed the altered expression of DNA damage repair and chromosome segregation genes, notably including INO80 , another kidney function GWAS target gene itself. Remarkably both TET2- null and INO80- null cells exhibited an increased accumulation of micronuclei after injury, leading to the activation of cytosolic nucleotide sensor cGAS-STING. Genetic deletion of cGAS or STING in kidney tubules or pharmacological inhibition of STING protected TET2 null mice from disease development. In conclusion, our findings highlight TET2 and INO80 as key genes in the pathogenesis of kidney diseases, indicating the importance of DNA damage repair mechanisms.
Collapse
|
6
|
Wang H, Yan H, Chen W, Tang H, Pei Y, Shan Q, Cang J, Miao C, Tan L, Tan L. Association of clonal haematopoiesis with severe postoperative complications in patients undergoing radical oesophagectomy. Br J Anaesth 2024; 132:277-284. [PMID: 38044238 DOI: 10.1016/j.bja.2023.10.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 10/11/2023] [Accepted: 10/15/2023] [Indexed: 12/05/2023] Open
Abstract
BACKGROUND Clonal haematopoiesis (CH) is an age-associated clonal expansion of blood cells driven by leukaemia-associated somatic mutations. Although CH has been reported to be a risk factor for leukaemia and a number of non-haematopoietic diseases, its role in perioperative medicine remains unexplored. METHODS This was a single-centre, prospective, observational study. Patients undergoing radical oesophagectomy were enrolled, and peripheral blood samples were collected for DNA sequencing. Patients with haematopoietic somatic mutations (variant allele frequencies ≥1%) in the DNMT3A gene, TET2 gene, or both were defined as CH carriers. The primary outcome was the incidence of severe postoperative complications (Clavien-Dindo classification ≥3). The secondary outcomes included the major types of postoperative complications, mortality, and other common perioperative variables. RESULTS Clonal haematopoiesis was found in 21.2% (33/156) of the patients (mean age: 66 yr [range: 26-79 yr]; 83% males). Some 14/33 (42.4%) patients with CH had severe postoperative complications, compared with patients without CH carriers (28/123 [22.8%]; P=0.024). Multivariable logistic regression analysis showed that CH was associated with an increased risk of developing severe postoperative complications (odds ratio, 3.63; 95% confidence interval, 1.37-9.66; P=0.010). Among the major postoperative complications, the incidence of pulmonary complications was significantly higher in the patients with CH than in those without CH (15 in 33 [45.5%] vs 30 in 123 [24.4%], P=0.018). CONCLUSIONS Clonal haematopoiesis was associated with a higher incidence of severe postoperative complications in patients undergoing radical oesophagectomy, suggesting that clonal haematopoiesis can play an important role in perioperative medicine. CLINICAL TRIAL REGISTRATION ChiCTR2100044175 (Chinese Clinical Trial Registry, http://www.chictr.org.cn/showproj.aspx?proj=123193).
Collapse
Affiliation(s)
- Hao Wang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Huan Yan
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wannan Chen
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Han Tang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yanzi Pei
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Centre, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Qi Shan
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jing Cang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Changhong Miao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lijie Tan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Li Tan
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Centre, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
7
|
Fan Y, Yuan Y, Xiong M, Jin M, Zhang D, Yang D, Liu C, Petersen RB, Huang K, Peng A, Zheng L. Tet1 deficiency exacerbates oxidative stress in acute kidney injury by regulating superoxide dismutase. Theranostics 2023; 13:5348-5364. [PMID: 37908721 PMCID: PMC10614682 DOI: 10.7150/thno.87416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/14/2023] [Indexed: 11/02/2023] Open
Abstract
Rationale: Increased methylation of key genes has been observed in kidney diseases, suggesting that the ten-eleven translocation (Tet) methyl-cytosine dioxygenase family as well as 5mC oxidation may play important roles. As a member of the Tet family, the role of Tet1 in acute kidney injury (AKI) remains unclear. Methods: Tet1 knockout mice, with or without tempol treatment, a scavenger of reactive oxygen species (ROS), were challenged with ischemia and reperfusion (I/R) injury or unilateral ureteral obstruction (UUO) injury. RNA-sequencing, Western blotting, qRT-PCR, bisulfite sequencing, chromatin immunoprecipitation, immunohistochemical staining, and dot blot assays were performed. Results: Tet1 expression was rapidly upregulated following I/R or UUO injury. Moreover, Tet1 knockout mice showed increased renal injury and renal cell death, increased ROS accumulation, G2/M cell cycle arrest, inflammation, and fibrosis. Severe renal damage in injured Tet1 knockout mice was alleviated by tempol treatment. Mechanistically, Tet1 reduced the 5mC levels in an enzymatic activity-dependent manner on the promoters of Sod1 and Sod2 to promote their expression, thus lowering injury-induced excessive ROS and reducing I/R or UUO injury. Conclusions: Tet1 plays an important role in the development of AKI by promoting SOD expression through a DNA demethylase-dependent mechanism.
Collapse
Affiliation(s)
- Yu Fan
- Hubei Key Laboratory of Cell Homeostasis, Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan, China, 430072
| | - Yangmian Yuan
- Hubei Key Laboratory of Cell Homeostasis, Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan, China, 430072
| | - Mingrui Xiong
- School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China, 430030
| | - Muchuan Jin
- Hubei Key Laboratory of Cell Homeostasis, Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan, China, 430072
| | - Donge Zhang
- Department of Pharmacy, The Third Hospital of Wuhan and Tongren Hospital of Wuhan University, Wuhan, China, 430070
| | - Dong Yang
- School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China, 430030
| | - Chengyu Liu
- Department of Transfusion Medicine, Wuhan Hospital of Traditional Chinese and Western Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China, 430030
| | - Robert B. Petersen
- Foundational Sciences, Central Michigan University College of Medicine, Mount Pleasant, MI, USA, 48858
| | - Kun Huang
- School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China, 430030
| | - Anlin Peng
- Department of Pharmacy, The Third Hospital of Wuhan and Tongren Hospital of Wuhan University, Wuhan, China, 430070
| | - Ling Zheng
- Hubei Key Laboratory of Cell Homeostasis, Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan, China, 430072
| |
Collapse
|
8
|
Wei W, Li W, Yang L, Weeramantry S, Ma L, Fu P, Zhao Y. Tight junctions and acute kidney injury. J Cell Physiol 2023; 238:727-741. [PMID: 36815285 DOI: 10.1002/jcp.30976] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/27/2023] [Accepted: 02/04/2023] [Indexed: 02/24/2023]
Abstract
Acute kidney injury (AKI) is characterized by a rapid reduction in kidney function caused by various etiologies. Tubular epithelial cell dysregulation plays a pivotal role in the pathogenesis of AKI. Tight junction (TJ) is the major molecular structure that connects adjacent epithelial cells and is critical in maintaining barrier function and determining the permeability of epithelia. TJ proteins are dysregulated in various types of AKI, and some reno-protective drugs can reverse TJ changes caused by insult. An in-depth understanding of TJ regulation and its causality with AKI will provide more insight to the disease pathogenesis and will shed light on the potential role of TJs to serve as novel therapeutic targets in AKI.
Collapse
Affiliation(s)
- Wei Wei
- Division of Nephrology and Kidney Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Weiying Li
- Department of Internal Medicine, Florida Hospital/AdventHealth, Orlando, Florida, USA
| | - Letian Yang
- Division of Nephrology and Kidney Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Savidya Weeramantry
- Department of Internal Medicine, West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Liang Ma
- Division of Nephrology and Kidney Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ping Fu
- Division of Nephrology and Kidney Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuliang Zhao
- Division of Nephrology and Kidney Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
9
|
Zhang L, Li Z, Mao L, Wang H. Circular RNA in Acute Central Nervous System Injuries: A New Target for Therapeutic Intervention. Front Mol Neurosci 2022; 15:816182. [PMID: 35392276 PMCID: PMC8981151 DOI: 10.3389/fnmol.2022.816182] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/28/2022] [Indexed: 01/10/2023] Open
Abstract
Acute central nervous system (CNS) injuries, including ischemic stroke, traumatic brain injury (TBI), spinal cord injury (SCI) and subarachnoid hemorrhage (SAH), are the most common cause of death and disability around the world. As a kind of non-coding ribonucleic acids (RNAs) with endogenous and conserve, circular RNAs (circRNAs) have recently attracted great attentions due to their functions in diagnosis and treatment of many diseases. A large number of studies have suggested that circRNAs played an important role in brain development and involved in many neurological disorders, particularly in acute CNS injuries. It has been proposed that regulation of circRNAs could improve cognition function, promote angiogenesis, inhibit apoptosis, suppress inflammation, regulate autophagy and protect blood brain barrier (BBB) in acute CNS injuries via different molecules and pathways including microRNA (miRNA), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), ph1osphatidylinositol-4,5-bisphosphate 3-kinase/protein kinase B (PI3K/AKT), Notch1 and ten-eleven translocation (TET). Therefore, circRNAs showed great promise as potential targets in acute CNS injuries. In this article, we present a review highlighting the roles of circRNAs in acute CNS injuries. Hence, on the basis of these properties and effects, circRNAs may be developed as therapeutic agents for acute CNS injury patients.
Collapse
|
10
|
Ma X, Zhang M, Yan R, Wu H, Yang B, Miao Z. β2SP/TET2 complex regulates gene 5hmC modification after cerebral ischemia. J Cell Mol Med 2021; 25:11300-11309. [PMID: 34799994 PMCID: PMC8650033 DOI: 10.1111/jcmm.17060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 11/30/2022] Open
Abstract
βII spectrin (β2SP) is encoded by Sptbn1 and is involved in the regulation of various cell functions. β2SP contributes to the formation of the myelin sheath, which may be related to the mechanism of neuropathy caused by demyelination. As one of the main features of cerebral ischemia, demyelination plays a key role in the mechanism of cerebral ischemia injury. Here, we showed that β2SP levels were increased, and this molecule interacted with TET2 after ischemic injury. Furthermore, we found that the level of TET2 was decreased in the nucleus when β2SP was knocked out after oxygen and glucose deprivation (OGD), and the level of 5hmC was reduced in the OGD+β2SP KO group. In contrast, the expression of β2SP did not change in TET2 KO mice. In addition, the 5hmC sequencing results revealed that β2SP can affect the level of 5hmC, the differentially hydroxymethylated region (DhMR) mainly related with the Calcium signalling pathway, cGMP‐PKG signalling pathway, Wnt signalling pathway and Hippo signalling pathway. In summary, our results suggest that β2SP could regulate the gene 5hmC by interacted with TET2 and will become a potential therapeutic target for ischemic stroke.
Collapse
Affiliation(s)
- Xiaohua Ma
- Institute of Neuroscience, Soochow University, Suzhou City, China
| | - Meng Zhang
- Institute of Neuroscience, Soochow University, Suzhou City, China
| | - Rui Yan
- Institute of Neuroscience, Soochow University, Suzhou City, China
| | - Hainan Wu
- College of Forestry, Nanjing Forestry University, Nanjing City, China
| | - Bo Yang
- Department of Anesthesiology, The Second Affiliated Hospital of Soochow University, Suzhou City, China
| | - Zhigang Miao
- Institute of Neuroscience, Soochow University, Suzhou City, China
| |
Collapse
|
11
|
Involvement of Tricarboxylic Acid Cycle Metabolites in Kidney Diseases. Biomolecules 2021; 11:biom11091259. [PMID: 34572472 PMCID: PMC8465464 DOI: 10.3390/biom11091259] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/17/2021] [Accepted: 08/23/2021] [Indexed: 02/08/2023] Open
Abstract
Mitochondria are complex organelles that orchestrate several functions in the cell. The primary function recognized is energy production; however, other functions involve the communication with the rest of the cell through reactive oxygen species (ROS), calcium influx, mitochondrial DNA (mtDNA), adenosine triphosphate (ATP) levels, cytochrome c release, and also through tricarboxylic acid (TCA) metabolites. Kidney function highly depends on mitochondria; hence mitochondrial dysfunction is associated with kidney diseases. In addition to oxidative phosphorylation impairment, other mitochondrial abnormalities have been described in kidney diseases, such as induction of mitophagy, intrinsic pathway of apoptosis, and releasing molecules to communicate to the rest of the cell. The TCA cycle is a metabolic pathway whose primary function is to generate electrons to feed the electron transport system (ETS) to drives energy production. However, TCA cycle metabolites can also release from mitochondria or produced in the cytosol to exert different functions and modify cell behavior. Here we review the involvement of some of the functions of TCA metabolites in kidney diseases.
Collapse
|
12
|
TETology: Epigenetic Mastermind in Action. Appl Biochem Biotechnol 2021; 193:1701-1726. [PMID: 33694104 DOI: 10.1007/s12010-021-03537-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 02/26/2021] [Indexed: 02/07/2023]
Abstract
Cytosine methylation is a well-explored epigenetic modification mediated by DNA methyltransferases (DNMTs) which are considered "methylation writers"; cytosine methylation is a reversible process. The process of removal of methyl groups from DNA remained unelucidated until the discovery of ten-eleven translocation (TET) proteins which are now considered "methylation editors." TET proteins are a family of Fe(II) and alpha-ketoglutarate-dependent 5-methyl cytosine dioxygenases-they convert 5-methyl cytosine to 5-hydroxymethyl cytosine, and to further oxidized derivatives. In humans, there are three TET paralogs with tissue-specific expression, namely TET1, TET2, and TET3. Among the TETs, TET2 is highly expressed in hematopoietic stem cells where it plays a pleiotropic role. The paralogs also differ in their structure and DNA binding. TET2 lacks the CXXC domain which mediates DNA binding in the other paralogs; thus, TET2 requires interactions with other proteins containing DNA-binding domains for effectively binding to DNA to bring about the catalysis. In addition to its role as methylation editor of DNA, TET2 also serves as methylation editor of RNA. Thus, TET2 is involved in epigenetics as well as epitranscriptomics. TET2 mutations have been found in various malignant hematological disorders like acute myeloid leukemia, and non-malignant hematological disorders like myelodysplastic syndromes. Increasing evidence shows that TET2 plays an important role in the non-hematopoietic system as well. Hepatocellular carcinoma, gastric cancer, prostate cancer, and melanoma are some non-hematological malignancies in which a role of TET2 has been implicated. Loss of TET2 is also associated with atherosclerotic vascular lesions and endometriosis. The current review elaborates on the role of structure, catalysis, physiological functions, pathological alterations, and methods to study TET2, with specific emphasis on epigenomics and epitranscriptomics.
Collapse
|