1
|
Flaherty CN, Rattan J, Melson L, O'Neal PV. Incorporating Omics and Precision Health in a Nursing PhD Program: The Perspectives of Student Nurse Scientists. Nurs Educ Perspect 2025; 46:55-56. [PMID: 37823783 DOI: 10.1097/01.nep.0000000000001200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
ABSTRACT To engage in innovative and novel precision health and omics research, nurse scientists need to be knowledgeable about the genetic, behavioral, and environmental factors that impact health outcomes. This article illustrates the benefits of a nursing omics PhD curriculum at a state university. The purpose is to provide students' perspectives and research interests that were inspired by the omics and precision health curriculum. Exposing these early-career PhD nursing student scientists to omics and precision health engaged them to think broadly about the potential to generate original nurse-led research.
Collapse
Affiliation(s)
- Christine Noelle Flaherty
- About the Authors Christine Noelle Flaherty, MS, MBA, RN; Jesse Rattan, MPH, RN; and Lindsay Melson, MSN, APRN, ACNP-BC, are PhD students in a joint PhD Nursing Science Program at The University of Alabama Capstone College of Nursing in Tuscaloosa and The University of Alabama in Huntsville. Pamela V. O'Neal, PhD, RN, is a professor, The University of Alabama in Huntsville College of Nursing. Contact Christine Noelle Flaherty at
| | | | | | | |
Collapse
|
2
|
Klibaner-Schiff E, Simonin EM, Akdis CA, Cheong A, Johnson MM, Karagas MR, Kirsh S, Kline O, Mazumdar M, Oken E, Sampath V, Vogler N, Wang X, Nadeau KC. Environmental exposures influence multigenerational epigenetic transmission. Clin Epigenetics 2024; 16:145. [PMID: 39420431 PMCID: PMC11487774 DOI: 10.1186/s13148-024-01762-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/11/2024] [Indexed: 10/19/2024] Open
Abstract
Epigenetic modifications control gene expression and are essential for turning genes on and off to regulate and maintain differentiated cell types. Epigenetics are also modified by a multitude of environmental exposures, including diet and pollutants, allowing an individual's environment to influence gene expression and resultant phenotypes and clinical outcomes. These epigenetic modifications due to gene-environment interactions can also be transmitted across generations, raising the possibility that environmental influences that occurred in one generation may be transmitted beyond the second generation, exerting a long-lasting effect. In this review, we cover the known mechanisms of epigenetic modification acquisition, reprogramming and persistence, animal models and human studies used to understand multigenerational epigenetic transmission, and examples of environmentally induced epigenetic change and its transmission across generations. We highlight the importance of environmental health not only on the current population but also on future generations that will experience health outcomes transmitted through epigenetic inheritance.
Collapse
Affiliation(s)
- Eleanor Klibaner-Schiff
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Elisabeth M Simonin
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Ana Cheong
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Mary M Johnson
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Margaret R Karagas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH, 03756, USA
| | - Sarah Kirsh
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Olivia Kline
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Maitreyi Mazumdar
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Emily Oken
- Department of Population Medicine, Harvard Pilgrim Health Care Institute and Harvard Medical School, Boston, MA, USA
| | - Vanitha Sampath
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Nicholas Vogler
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Xiaobin Wang
- Department of Population, Family and Reproductive Health, Center On the Early Life Origins of Disease, Johns Hopkins Bloomberg School of Public Health, Baltimore, MA, USA
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Kari C Nadeau
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA, USA.
| |
Collapse
|
3
|
Yim G, Roberts A, Lyall K, Ascherio A, Weisskopf MG. Multigenerational association between smoking and autism spectrum disorder: findings from a nationwide prospective cohort study. Am J Epidemiol 2024; 193:1115-1126. [PMID: 38583942 PMCID: PMC11299032 DOI: 10.1093/aje/kwae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 02/05/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024] Open
Abstract
Animal studies have shown that exposure to cigarette smoke during pregnancy can induce neurobehavioral anomalies in multiple subsequent generations. However, little work has examined such effects in humans. We examined the risk of grandchild autism spectrum disorder (ASD) in association with grandmother's smoking during pregnancy, using data from 53 562 mothers and grandmothers and 120 267 grandchildren in Nurses' Health Study II. In 1999, Nurses' Health Study II participants with children reported on their mothers' smoking. Grandchildren's ASD diagnoses were reported by the mothers in 2005 and 2009. Among grandmothers, 13 383 (25.0%) smoked during pregnancy, and 509 (0.4%) grandchildren were diagnosed with ASD. The adjusted odds ratio for ASD for grandmother smoking during pregnancy was 1.52 (95% CI, 1.06-2.20). Results were similar with direct grandmother reporting in 2001 of her smoking during pregnancy from the Nurses' Mothers Cohort Study subgroup (n = 22 167 grandmothers, n = 49 917 grandchildren) and were stronger among grandmothers who smoked ≥15 cigarettes per day during pregnancy (adjusted odds ratio = 1.93 [95% CI, 1.10-3.40]; n = 1895 grandmothers, n = 4212 grandchildren). Results were similar when we adjusted for mother's smoking during pregnancy. There was no association with grandfather's smoking as reported by the grandmother. Our results suggest a potential persistent impact of gestational exposure to environmental insults across 3 generations.
Collapse
Affiliation(s)
- Gyeyoon Yim
- Environmental and Occupational Medicine and Epidemiology Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, United States
| | - Andrea Roberts
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, United States
| | - Kristen Lyall
- A.J. Drexel Autism Institute, Drexel University, Philadelphia, PA 19104, United States
| | - Alberto Ascherio
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, United States
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, United States
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, United States
| | - Marc G Weisskopf
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, United States
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, United States
| |
Collapse
|
4
|
Samir S. Human DNA Mutations and their Impact on Genetic Disorders. Recent Pat Biotechnol 2024; 18:288-315. [PMID: 37936448 DOI: 10.2174/0118722083255081231020055309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 07/25/2023] [Accepted: 09/18/2023] [Indexed: 11/09/2023]
Abstract
DNA is a remarkably precise medium for copying and storing biological information. It serves as a design for cellular machinery that permits cells, organs, and even whole organisms to work. The fidelity of DNA replication results from the action of hundreds of genes involved in proofreading and damage repair. All human cells can acquire genetic changes in their DNA all over life. Genetic mutations are changes to the DNA sequence that happen during cell division when the cells make copies of themselves. Mutations in the DNA can cause genetic illnesses such as cancer, or they could help humans better adapt to their environment over time. The endogenous reactive metabolites, therapeutic medicines, and an excess of environmental mutagens, such as UV rays all continuously damage DNA, compromising its integrity. One or more chromosomal alterations and point mutations at a single site (monogenic mutation) including deletions, duplications, and inversions illustrate such DNA mutations. Genetic conditions can occur when an altered gene is inherited from parents, which increases the risk of developing that particular condition, or some gene alterations can happen randomly. Moreover, symptoms of genetic conditions depend on which gene has a mutation. There are many different diseases and conditions caused by mutations. Some of the most common genetic conditions are Alzheimer's disease, some cancers, cystic fibrosis, Down syndrome, and sickle cell disease. Interestingly, scientists find that DNA mutations are more common than formerly thought. This review outlines the main DNA mutations that occur along the human genome and their influence on human health. The subject of patents pertaining to DNA mutations and genetic disorders has been brought up.
Collapse
Affiliation(s)
- Safia Samir
- Department of Biochemistry and Molecular Biology, Theodor Bilharz Research Institute, Giza, Egypt
| |
Collapse
|
5
|
Ow MC, Hall SE. Inheritance of Stress Responses via Small Non-Coding RNAs in Invertebrates and Mammals. EPIGENOMES 2023; 8:1. [PMID: 38534792 DOI: 10.3390/epigenomes8010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/06/2023] [Accepted: 12/12/2023] [Indexed: 03/28/2024] Open
Abstract
While reports on the generational inheritance of a parental response to stress have been widely reported in animals, the molecular mechanisms behind this phenomenon have only recently emerged. The booming interest in epigenetic inheritance has been facilitated in part by the discovery that small non-coding RNAs are one of its principal conduits. Discovered 30 years ago in the Caenorhabditis elegans nematode, these small molecules have since cemented their critical roles in regulating virtually all aspects of eukaryotic development. Here, we provide an overview on the current understanding of epigenetic inheritance in animals, including mice and C. elegans, as it pertains to stresses such as temperature, nutritional, and pathogenic encounters. We focus on C. elegans to address the mechanistic complexity of how small RNAs target their cohort mRNAs to effect gene expression and how they govern the propagation or termination of generational perdurance in epigenetic inheritance. Presently, while a great amount has been learned regarding the heritability of gene expression states, many more questions remain unanswered and warrant further investigation.
Collapse
Affiliation(s)
- Maria C Ow
- Department of Biology, Syracuse University, Syracuse, NY 13210, USA
| | - Sarah E Hall
- Department of Biology and Program in Neuroscience, Syracuse University, Syracuse, NY 13210, USA
| |
Collapse
|
6
|
Xiao J, Jain A, Bellia G, Nyhan K, Liew Z. A scoping review of multigenerational impacts of grandparental exposures on mental health in grandchildren. Curr Environ Health Rep 2023; 10:369-382. [PMID: 38008881 DOI: 10.1007/s40572-023-00413-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2023] [Indexed: 11/28/2023]
Abstract
PURPOSE OF REVIEW The multigenerational effects of grandparental exposures on their grandchildren's mental health and neurodevelopment are gaining research attention. We conducted a scoping review to summarize the current epidemiological studies investigating pregnancy-related and environmental factors that affected grandparental pregnancies and mental health outcomes in their grandchildren. We also identified methodological challenges that affect these multigenerational health studies and discuss opportunities for future research. RECENT FINDINGS We performed a literature search using PubMed and Embase and included 18 articles for this review. The most investigated grandparental pregnancy-related factors were the grandparental age of pregnancy (N = 6), smoking during pregnancy (N = 4), and medication intake (N = 3). The most frequently examined grandchild outcomes were autism spectrum disorder (N = 6) and attention-deficit/hyperactivity disorder (N = 4). Among these studies, grandparental smoking and the use of diethylstilbestrol were more consistently reported to be associated with neurodevelopmental disorders, while the findings for grandparental age vary across the maternal or paternal line. Grandmaternal weight, adverse delivery outcomes, and other spatial-temporal markers of physical and social environmental stressors require further scrutiny. The current body of literature has suggested that mental and neurodevelopmental disorders may be outcomes of unfavorable exposures originating from the grandparental generation during their pregnancies. To advance the field, we recommend research efforts into setting up multigenerational studies with prospectively collected data that span through at least three generations, incorporating spatial, environmental, and biological markers for exposure assessment, expanding the outcome phenotypes evaluated, and developing a causal analytical framework including mediation analyses specific for multigenerational research.
Collapse
Affiliation(s)
- Jingyuan Xiao
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, USA
- Yale Center for Perinatal, Pediatric, and Environmental Epidemiology, Yale School of Public Health, New Haven, USA
| | - Anushka Jain
- Department of Social Behavioral Sciences, Yale School of Public Health, New Haven, USA
| | - Giselle Bellia
- Yale Center for Perinatal, Pediatric, and Environmental Epidemiology, Yale School of Public Health, New Haven, USA
| | - Kate Nyhan
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, USA
| | - Zeyan Liew
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, USA.
- Yale Center for Perinatal, Pediatric, and Environmental Epidemiology, Yale School of Public Health, New Haven, USA.
| |
Collapse
|
7
|
Golding MC. Teratogenesis and the epigenetic programming of congenital defects: Why paternal exposures matter. Birth Defects Res 2023; 115:1825-1834. [PMID: 37424262 PMCID: PMC10774456 DOI: 10.1002/bdr2.2215] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 06/16/2023] [Accepted: 06/23/2023] [Indexed: 07/11/2023]
Abstract
Until recently, clinicians and researchers did not realize paternal exposures could impact child developmental outcomes. Indeed, although there is growing recognition that sperm carry a large amount of non-genomic information and that paternal stressors influence the health of the next generation, toxicologists are only now beginning to explore the role paternal exposures have in dysgenesis and the incidence of congenital malformations. In this commentary, I will briefly summarize the few studies describing congenital malformations resulting from preconception paternal stressors, argue for the theoretical expansion of teratogenic perspectives into the male preconception period, and discuss some of the challenges in this newly emerging branch of toxicology. I argue that we must consider gametes the same as any other malleable precursor cell type and recognize that environmentally-induced epigenetic changes acquired during the formation of the sperm and oocyte hold equal teratogenic potential as exposures during early development. Here, I propose the term epiteratogen to reference agents acting outside of pregnancy that, through epigenetic mechanisms, induce congenital malformations. Understanding the interactions between the environment, the essential epigenetic processes intrinsic to spermatogenesis, and their cumulative influences on embryo patterning is essential to addressing a significant blind spot in the field of developmental toxicology.
Collapse
Affiliation(s)
- Michael C. Golding
- Department of Veterinary Physiology & Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA, 77843
| |
Collapse
|
8
|
Kitaba NT, Knudsen GTM, Johannessen A, Rezwan FI, Malinovschi A, Oudin A, Benediktsdottir B, Martino D, González FJC, Gómez LP, Holm M, Jõgi NO, Dharmage SC, Skulstad SM, Watkins SH, Suderman M, Gómez-Real F, Schlünssen V, Svanes C, Holloway JW. Fathers' preconception smoking and offspring DNA methylation. Clin Epigenetics 2023; 15:131. [PMID: 37649101 PMCID: PMC10469907 DOI: 10.1186/s13148-023-01540-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/24/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Experimental studies suggest that exposures may impact respiratory health across generations via epigenetic changes transmitted specifically through male germ cells. Studies in humans are, however, limited. We aim to identify epigenetic marks in offspring associated with father's preconception smoking. METHODS We conducted epigenome-wide association studies (EWAS) in the RHINESSA cohort (7-50 years) on father's any preconception smoking (n = 875 offspring) and father's pubertal onset smoking < 15 years (n = 304), using Infinium MethylationEPIC Beadchip arrays, adjusting for offspring age, own smoking and maternal smoking. EWAS of maternal and offspring personal smoking were performed for comparison. Father's smoking-associated dmCpGs were checked in subpopulations of offspring who reported no personal smoking and no maternal smoking exposure. RESULTS Father's smoking commencing preconception was associated with methylation of blood DNA in offspring at two cytosine-phosphate-guanine sites (CpGs) (false discovery rate (FDR) < 0.05) in PRR5 and CENPP. Father's pubertal onset smoking was associated with 19 CpGs (FDR < 0.05) mapped to 14 genes (TLR9, DNTT, FAM53B, NCAPG2, PSTPIP2, MBIP, C2orf39, NTRK2, DNAJC14, CDO1, PRAP1, TPCN1, IRS1 and CSF1R). These differentially methylated sites were hypermethylated and associated with promoter regions capable of gene silencing. Some of these sites were associated with offspring outcomes in this cohort including ever-asthma (NTRK2), ever-wheezing (DNAJC14, TPCN1), weight (FAM53B, NTRK2) and BMI (FAM53B, NTRK2) (p < 0.05). Pathway analysis showed enrichment for gene ontology pathways including regulation of gene expression, inflammation and innate immune responses. Father's smoking-associated sites did not overlap with dmCpGs identified in EWAS of personal and maternal smoking (FDR < 0.05), and all sites remained significant (p < 0.05) in analyses of offspring with no personal smoking and no maternal smoking exposure. CONCLUSION Father's preconception smoking, particularly in puberty, is associated with offspring DNA methylation, providing evidence that epigenetic mechanisms may underlie epidemiological observations that pubertal paternal smoking increases risk of offspring asthma, low lung function and obesity.
Collapse
Affiliation(s)
- Negusse Tadesse Kitaba
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Gerd Toril Mørkve Knudsen
- Department of Clinical Sciences, University of Bergen, Bergen, Norway
- Department of Occupational Medicine, Haukeland University Hospital, Bergen, Norway
| | - Ane Johannessen
- Centre for International Health, Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - Faisal I Rezwan
- Department of Computer Science, Aberystwyth University, Aberystwyth, UK
| | - Andrei Malinovschi
- Department of Medical Sciences: Clinical Physiology, Uppsala University, Uppsala, Sweden
| | - Anna Oudin
- Section of Sustainable Health, Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Bryndis Benediktsdottir
- Department of Allergy, Respiratory Medicine and Sleep, Landspitali University Hospital, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - David Martino
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Perth, Australia
| | | | | | - Mathias Holm
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Nils Oskar Jõgi
- Department of Clinical Sciences, University of Bergen, Bergen, Norway
- Department of Occupational Medicine, Haukeland University Hospital, Bergen, Norway
| | - Shyamali C Dharmage
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia
| | - Svein Magne Skulstad
- Department of Occupational Medicine, Haukeland University Hospital, Bergen, Norway
| | - Sarah H Watkins
- University of Bristol, MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, Bristol, UK
| | - Matthew Suderman
- University of Bristol, MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, Bristol, UK
| | - Francisco Gómez-Real
- Department of Clinical Sciences, University of Bergen, Bergen, Norway
- Department of Gynaecology and Obstetrics, Haukeland University Hospital, Bergen, Norway
| | - Vivi Schlünssen
- Department of Public Health, Work, Environment and Health, Danish Ramazzini Centre, Aarhus University Denmark, Aarhus, Denmark
- National Research Center for the Working Environment, Copenhagen, Denmark
| | - Cecilie Svanes
- Department of Occupational Medicine, Haukeland University Hospital, Bergen, Norway
- Centre for International Health, Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - John W Holloway
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK.
- NIHR Southampton Biomedical Research Center, University Hospitals Southampton, Southampton, UK.
| |
Collapse
|
9
|
Abay-Nørgaard S, Tapia MC, Zeijdner M, Kim JH, Won KJ, Porse B, Salcini AE. Inter and transgenerational impact of H3K4 methylation in neuronal homeostasis. Life Sci Alliance 2023; 6:e202301970. [PMID: 37225426 PMCID: PMC10209521 DOI: 10.26508/lsa.202301970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/26/2023] Open
Abstract
Epigenetic marks and associated traits can be transmitted for one or more generations, phenomena known respectively as inter- or transgenerational epigenetic inheritance. It remains unknown if genetically and conditionally induced aberrant epigenetic states can influence the development of the nervous system across generations. Here, we show, using Caenorhabditis elegans as a model system, that alteration of H3K4me3 levels in the parental generation, caused by genetic manipulation or changes in parental conditions, has, respectively, trans- and intergenerational effects on H3K4 methylome, transcriptome, and nervous system development. Thus, our study reveals the relevance of H3K4me3 transmission and maintenance in preventing long-lasting deleterious effects in nervous system homeostasis.
Collapse
Affiliation(s)
- Steffen Abay-Nørgaard
- Biotech Research and Innovation Centre, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marta Cecylia Tapia
- Biotech Research and Innovation Centre, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- The Finsen Laboratory, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Mandoh Zeijdner
- Biotech Research and Innovation Centre, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jeonghwan Henry Kim
- Biotech Research and Innovation Centre, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kyoung Jae Won
- Biotech Research and Innovation Centre, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bo Porse
- Biotech Research and Innovation Centre, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- The Finsen Laboratory, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anna Elisabetta Salcini
- Biotech Research and Innovation Centre, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
10
|
Bhuvanadas S, Devi A. JARID2 and EZH2, The Eminent Epigenetic Drivers In Human Cancer. Gene 2023:147584. [PMID: 37353042 DOI: 10.1016/j.gene.2023.147584] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 06/09/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023]
Abstract
Cancer has become a prominent cause of death, accounting for approximately 10 million death worldwide as per the World Health Organization reports 2020. Epigenetics deal with the alterations of heritable phenotypes, except for DNA alterations. Currently, we are trying to comprehend the role of utmost significant epigenetic genes involved in the burgeoning of human cancer. A sundry of studies reported the Enhancer of Zeste Homologue2 (EZH2) as a prime catalytic subunit of Polycomb Repressive Complex2, which is involved in several pivotal activities, including embryogenesis. In addition, EZH2 has detrimental effects leading to the onset and metastasis of several cancers. Jumonji AT Rich Interacting Domain2 (JARID2), an undebated crucial nuclear factor, has strong coordination with the PRC2 family. In this review, we discuss various epigenetic entities, primarily focusing on the possible role and mechanism of EZH2 and the significant contribution of JARID2 in human cancers.
Collapse
Affiliation(s)
- Sreeshma Bhuvanadas
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamilnadu, India - 603203
| | - Arikketh Devi
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamilnadu, India - 603203.
| |
Collapse
|
11
|
Ju LS, Morey TE, Seubert CN, Martynyuk AE. Intergenerational Perioperative Neurocognitive Disorder. BIOLOGY 2023; 12:biology12040567. [PMID: 37106766 PMCID: PMC10135810 DOI: 10.3390/biology12040567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023]
Abstract
Accelerated neurocognitive decline after general anesthesia/surgery, also known as perioperative neurocognitive disorder (PND), is a widely recognized public health problem that may affect millions of patients each year. Advanced age, with its increasing prevalence of heightened stress, inflammation, and neurodegenerative alterations, is a consistent contributing factor to the development of PND. Although a strong homeostatic reserve in young adults makes them more resilient to PND, animal data suggest that young adults with pathophysiological conditions characterized by excessive stress and inflammation may be vulnerable to PND, and this altered phenotype may be passed to future offspring (intergenerational PND). The purpose of this narrative review of data in the literature and the authors' own experimental findings in rodents is to draw attention to the possibility of intergenerational PND, a new phenomenon which, if confirmed in humans, may unravel a big new population that may be affected by parental PND. In particular, we discuss the roles of stress, inflammation, and epigenetic alterations in the development of PND. We also discuss experimental findings that demonstrate the effects of surgery, traumatic brain injury, and the general anesthetic sevoflurane that interact to induce persistent dysregulation of the stress response system, inflammation markers, and behavior in young adult male rats and in their future offspring who have neither trauma nor anesthetic exposure (i.e., an animal model of intergenerational PND).
Collapse
Affiliation(s)
- Ling-Sha Ju
- Department of Anesthesiology, College of Medicine, University of Florida, P.O. Box 100254, JHMHC, 1600 SW Archer Road, Gainesville, FL 32610, USA
| | - Timothy E Morey
- Department of Anesthesiology, College of Medicine, University of Florida, P.O. Box 100254, JHMHC, 1600 SW Archer Road, Gainesville, FL 32610, USA
| | - Christoph N Seubert
- Department of Anesthesiology, College of Medicine, University of Florida, P.O. Box 100254, JHMHC, 1600 SW Archer Road, Gainesville, FL 32610, USA
| | - Anatoly E Martynyuk
- Department of Anesthesiology, College of Medicine, University of Florida, P.O. Box 100254, JHMHC, 1600 SW Archer Road, Gainesville, FL 32610, USA
- Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
12
|
Associations between maternal exposure to surgery or pregnancy exposure to fluorinated anesthetics and children's cognitive development and educational outcomes. J Dev Orig Health Dis 2023; 14:199-208. [PMID: 35968856 DOI: 10.1017/s2040174422000472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A transgenerational, epigenetic effect of anesthesia, particularly fluorinated agents, has been examined in rat models, but translation to humans is unclear. This study examined associations of maternal lifetime exposure to anesthesia and pregnancy exposure to fluorinated anesthetics with child cognitive and educational outcomes. Women in the US Collaborative Perinatal Project (1959-1963) reported lifetime history of surgeries, and the obstetric record captured pregnancy exposure to anesthetics. Children were followed to age 7 for global cognitive ability and educational outcomes (n=47,977). Logistic and linear regressions were adjusted for maternal and child birth years, race and ethnicity, smoking, education, parity, study site. Many outcomes were not associated with exposure to maternal surgery that occurred at various life stages. However, maternal surgery in early childhood was associated both with being in a special school or not in school (adj OR=1.42; 95% CI 1.02, 1.98) and with slightly better cognitive ability across childhood (e.g., WISC IQ (adj β=0.59; CI 0.13, 1.04) (especially among boys)). Maternal surgery in puberty was associated with slightly lower IQ (adj β = -0.42; CI -0.79, -0.05) and poorer spelling at age 7. Children's prenatal exposure to fluorinated anesthetics was associated with slightly better spelling ability (adj β = 1.20; CI 0.02, 2.38) but lower performance IQ at age 7 (only among boys, adj β = -1.97; CI -3.88, -0.06). This study shows inconsistent evidence of effects of maternal exposure to surgery or prenatal exposure to fluorinated agents on child developmental and educational outcomes Residual confounding by indication and socioeconomic status may explain observed associations.
Collapse
|
13
|
Greeson KW, Crow KMS, Edenfield RC, Easley CA. Inheritance of paternal lifestyles and exposures through sperm DNA methylation. Nat Rev Urol 2023:10.1038/s41585-022-00708-9. [PMID: 36653672 DOI: 10.1038/s41585-022-00708-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2022] [Indexed: 01/19/2023]
Abstract
Many different lifestyle factors and chemicals present in the environment are a threat to the reproductive tracts of humans. The potential for parental preconception exposure to alter gametes and for these alterations to be passed on to offspring and negatively affect embryo growth and development is of concern. The connection between maternal exposures and offspring health is a frequent focus in epidemiological studies, but paternal preconception exposures are much less frequently considered and are also very important determinants of offspring health. Several environmental and lifestyle factors in men have been found to alter sperm epigenetics, which can regulate gene expression during early embryonic development. Epigenetic information is thought to be a mechanism that evolved for organisms to pass on information about their lived experiences to offspring. DNA methylation is a well-studied epigenetic regulator that is sensitive to environmental exposures in somatic cells and sperm. The continuous production of sperm from spermatogonial stem cells throughout a man's adult life and the presence of spermatogonial stem cells outside of the blood-testis barrier makes them susceptible to environmental insults. Furthermore, altered sperm DNA methylation patterns can be maintained throughout development and ultimately result in impairments, which could predispose offspring to disease. Innovations in human stem cell-based spermatogenic models can be used to elucidate the paternal origins of health and disease.
Collapse
Affiliation(s)
- Katherine W Greeson
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, USA.,Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| | - Krista M S Crow
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, USA.,Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| | - R Clayton Edenfield
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, USA.,Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| | - Charles A Easley
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, USA. .,Regenerative Bioscience Center, University of Georgia, Athens, GA, USA.
| |
Collapse
|
14
|
Kloc M, Kubiak JZ, Zdanowski R, Ghobrial RM. Memory Macrophages. Int J Mol Sci 2022; 24:ijms24010038. [PMID: 36613481 PMCID: PMC9819859 DOI: 10.3390/ijms24010038] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/12/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Immunological memory is a crucial part of the immune defense that allows organisms to respond against previously encountered pathogens or other harmful factors. Immunological memory is based on the establishment of epigenetic modifications of the genome. The ability to memorize encounters with pathogens and other harmful factors and mount enhanced defense upon subsequent encounters is an evolutionarily ancient mechanism operating in all animals and plants. However, the term immunological memory is usually restricted to the organisms (invertebrates and vertebrates) possessing the immune system. The mammalian immune system, with innate and adaptive branches, is the most sophisticated among vertebrates. The concept of innate memory and memory macrophages is relatively new and thus understudied. We introduce the concept of immunological memory and describe types of memory in different species and their evolutionary status. We discuss why the traditional view of innate immune cells as the first-line defenders is too restrictive and how the innate immune cells can accumulate and retain immunologic memory. We describe how the initial priming leads to chromatin remodeling and epigenetic changes, which allow memory macrophage formation. We also summarize what is currently known about the mechanisms underlying development of memory macrophages; their molecular and metabolic signature and surface markers; and how they may contribute to immune defense, diseases, and organ transplantation.
Collapse
Affiliation(s)
- Malgorzata Kloc
- The Houston Methodist Research Institute, Transplant Immunology, Houston, TX 77030, USA
- Department of Surgery, The Houston Methodist Hospital, Houston, TX 77030, USA
- Department of Genetics, MD Anderson Cancer Center, The University of Texas, Houston, TX 77030, USA
- Correspondence:
| | - Jacek Z. Kubiak
- Dynamics and Mechanics of Epithelia Group, Faculty of Medicine, Institute of Genetics and Development of Rennes, University of Rennes, CNRS, UMR 6290, 35043 Rennes, France
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine National Research Institute, Szaserow 128, 04-141 Warsaw, Poland
| | - Robert Zdanowski
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine National Research Institute, Szaserow 128, 04-141 Warsaw, Poland
| | - Rafik M. Ghobrial
- The Houston Methodist Research Institute, Transplant Immunology, Houston, TX 77030, USA
- Department of Surgery, The Houston Methodist Hospital, Houston, TX 77030, USA
| |
Collapse
|
15
|
Verdikt R, Armstrong AA, Allard P. Transgenerational inheritance and its modulation by environmental cues. Curr Top Dev Biol 2022; 152:31-76. [PMID: 36707214 PMCID: PMC9940302 DOI: 10.1016/bs.ctdb.2022.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The epigenome plays an important role in shaping phenotypes. However, whether the environment can alter an organism's phenotype across several generations through epigenetic remodeling in the germline is still a highly debated topic. In this chapter, we briefly review the mechanisms of epigenetic inheritance and their connection with germline development before highlighting specific developmental windows of susceptibility to environmental cues. We further discuss the evidence of transgenerational inheritance to a range of different environmental cues, both epidemiological in humans and experimental in rodent models. Doing so, we pinpoint the current challenges in demonstrating transgenerational inheritance to environmental cues and offer insight in how recent technological advances may help deciphering the epigenetic mechanisms at play. Together, we draw a detailed picture of how our environment can influence our epigenomes, ultimately reshaping our phenotypes, in an extended theory of inheritance.
Collapse
Affiliation(s)
- Roxane Verdikt
- Institute for Society and Genetics, University of California, Los Angeles, Los Angeles, CA, United States.
| | - Abigail A Armstrong
- Department of Obstetrics/Gynecology and Division of Reproductive Endocrinology and Infertility, University of California, Los Angeles, CA, United States
| | - Patrick Allard
- Institute for Society and Genetics, University of California, Los Angeles, Los Angeles, CA, United States; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States.
| |
Collapse
|
16
|
Abstract
BACKGROUND Autoimmune hepatitis has an unknown cause and genetic associations that are not disease-specific or always present. Clarification of its missing causality and heritability could improve prevention and management strategies. AIMS Describe the key epigenetic and genetic mechanisms that could account for missing causality and heritability in autoimmune hepatitis; indicate the prospects of these mechanisms as pivotal factors; and encourage investigations of their pathogenic role and therapeutic potential. METHODS English abstracts were identified in PubMed using multiple key search phases. Several hundred abstracts and 210 full-length articles were reviewed. RESULTS Environmental induction of epigenetic changes is the prime candidate for explaining the missing causality of autoimmune hepatitis. Environmental factors (diet, toxic exposures) can alter chromatin structure and the production of micro-ribonucleic acids that affect gene expression. Epistatic interaction between unsuspected genes is the prime candidate for explaining the missing heritability. The non-additive, interactive effects of multiple genes could enhance their impact on the propensity and phenotype of autoimmune hepatitis. Transgenerational inheritance of acquired epigenetic marks constitutes another mechanism of transmitting parental adaptations that could affect susceptibility. Management strategies could range from lifestyle adjustments and nutritional supplements to precision editing of the epigenetic landscape. CONCLUSIONS Autoimmune hepatitis has a missing causality that might be explained by epigenetic changes induced by environmental factors and a missing heritability that might reflect epistatic gene interactions or transgenerational transmission of acquired epigenetic marks. These unassessed or under-evaluated areas warrant investigation.
Collapse
|
17
|
Li J, Xu J, Yang T, Chen J, Li F, Shen B, Fan C. Genome-wide methylation analyses of human sperm unravel novel differentially methylated regions in asthenozoospermia. Epigenomics 2022; 14:951-964. [PMID: 36004499 DOI: 10.2217/epi-2022-0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aims & objectives: To investigate DNA methylation patterns in asthenozoospermic and normozoospermic sperm and to explore the potential roles of differential methylations in the etiology of the disease. Materials & methods: The authors performed whole-genome bisulfite sequencing analysis between normozoospermic controls and asthenozoospermic individuals. Results: The authors identified 238 significant differentially methylated regions. These differentially methylated regions were annotated to 114 protein-coding genes, with many genes showing associations with spermatogenesis, sperm motility etc. Conclusion: There are plenty of genomic regions exhibiting altered DNA methylation in asthenozoospermia, a number of which are located within or adjacent to sperm-related genes, suggesting novel methylation markers of asthenozoospermia and potential epigenetic regulation mechanisms through DNA methylation in the disease.
Collapse
Affiliation(s)
- Jingjing Li
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610212, China
| | - Jinyan Xu
- Human Sperm Bank, Key Laboratory of Birth Defects & Related Diseases of Women & Children of Ministry of Education, West China Second University Hospital of Sichuan University, Chengdu, 610041, China
| | - Tingting Yang
- Human Sperm Bank, Key Laboratory of Birth Defects & Related Diseases of Women & Children of Ministry of Education, West China Second University Hospital of Sichuan University, Chengdu, 610041, China
| | - Jianhai Chen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610212, China
| | - Fuping Li
- Human Sperm Bank, Key Laboratory of Birth Defects & Related Diseases of Women & Children of Ministry of Education, West China Second University Hospital of Sichuan University, Chengdu, 610041, China
| | - Bairong Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610212, China
| | - Chuanzhu Fan
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| |
Collapse
|
18
|
Okada Y. Sperm chromatin condensation: epigenetic mechanisms to compact the genome and spatiotemporal regulation from inside and outside the nucleus. Gene 2022; 97:41-53. [PMID: 35491100 DOI: 10.1266/ggs.21-00065] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Sperm chromatin condensation is a critical step in mammalian spermatogenesis to protect the paternal DNA from external damaging factors and to acquire fertility. During chromatin condensation, various events proceed in a chronological order, independently or in sequence, interacting with each other both inside and outside the nucleus to support the dramatic chromatin changes. Among these events, histone-protamine replacement, which is concomitant with acrosome biogenesis and cytoskeletal alteration, is the most critical step associated with nuclear elongation. Failures of not only intranuclear events but also extra-nuclear events severely affect sperm shape and chromatin state and are subsequently linked to infertility. This review focuses on nuclear and non-nuclear factors that affect sperm chromatin condensation and its effects, and further discusses the possible utility of sperm chromatin for clinical applications.
Collapse
Affiliation(s)
- Yuki Okada
- Laboratory of Pathology and Development, Institute for Quantitative Biosciences, The University of Tokyo
| |
Collapse
|
19
|
Montjean D, Neyroud AS, Yefimova MG, Benkhalifa M, Cabry R, Ravel C. Impact of Endocrine Disruptors upon Non-Genetic Inheritance. Int J Mol Sci 2022; 23:3350. [PMID: 35328771 PMCID: PMC8950994 DOI: 10.3390/ijms23063350] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 02/06/2023] Open
Abstract
Similar to environmental factors, EDCs (endocrine-disrupting chemicals) can influence gene expression without modifying the DNA sequence. It is commonly accepted that the transgenerational inheritance of parentally acquired traits is conveyed by epigenetic alterations also known as "epimutations". DNA methylation, acetylation, histone modification, RNA-mediated effects and extracellular vesicle effects are the mechanisms that have been described so far to be responsible for these epimutations. They may lead to the transgenerational inheritance of diverse phenotypes in the progeny when they occur in the germ cells of an affected individual. While EDC-induced health effects have dramatically increased over the past decade, limited effects on sperm epigenetics have been described. However, there has been a gain of interest in this issue in recent years. The gametes (sperm and oocyte) represent targets for EDCs and thus a route for environmentally induced changes over several generations. This review aims at providing an overview of the epigenetic mechanisms that might be implicated in this transgenerational inheritance.
Collapse
Affiliation(s)
- Debbie Montjean
- Fertilys Fertility Center, 1950 Rue Maurice-Gauvin #103, Laval, QC H7S 1Z5, Canada;
| | - Anne-Sophie Neyroud
- CHU de Rennes, Département de Gynécologie Obstétrique et Reproduction Humaine-CECOS, Hôpital Sud, 16 Boulevard de Bulgarie, 35000 Rennes, France;
| | - Marina G. Yefimova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223 St-Petersburg, Russia;
| | - Moncef Benkhalifa
- Fertilys Fertility Center, 1950 Rue Maurice-Gauvin #103, Laval, QC H7S 1Z5, Canada;
- Médecine et Biologie de la Reproduction, CECOS de Picardie, CHU Amiens, 80054 Amiens, France;
- UFR de Médecine, Université de Picardie Jules Verne, 80054 Amiens, France
- Peritox, Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, 80054 Amiens, France
| | - Rosalie Cabry
- Médecine et Biologie de la Reproduction, CECOS de Picardie, CHU Amiens, 80054 Amiens, France;
- UFR de Médecine, Université de Picardie Jules Verne, 80054 Amiens, France
- Peritox, Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, 80054 Amiens, France
| | - Célia Ravel
- CHU de Rennes, Département de Gynécologie Obstétrique et Reproduction Humaine-CECOS, Hôpital Sud, 16 Boulevard de Bulgarie, 35000 Rennes, France;
- CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail)—UMR_S 1085, University Rennes, 35000 Rennes, France
| |
Collapse
|
20
|
Wilson NRC, Veatch OJ, Johnson SM. On the Relationship between Diabetes and Obstructive Sleep Apnea: Evolution and Epigenetics. Biomedicines 2022; 10:668. [PMID: 35327470 PMCID: PMC8945691 DOI: 10.3390/biomedicines10030668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/17/2022] [Accepted: 03/01/2022] [Indexed: 12/21/2022] Open
Abstract
This review offers an overview of the relationship between diabetes, obstructive sleep apnea (OSA), obesity, and heart disease. It then addresses evidence that the traditional understanding of this relationship is incomplete or misleading. In the process, there is a brief discussion of the evolutionary rationale for the development and retention of OSA in light of blood sugar dysregulation, as an adaptive mechanism in response to environmental stressors, followed by a brief overview of the general concepts of epigenetics. Finally, this paper presents the results of a literature search on the epigenetic marks and changes in gene expression found in OSA and diabetes. (While some of these marks will also correlate with obesity and heart disease, that is beyond the scope of this project). We conclude with an exploration of alternative explanations for the etiology of these interlinking diseases.
Collapse
Affiliation(s)
- N. R. C. Wilson
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA;
| | - Olivia J. Veatch
- Department of Psychiatry & Behavioral Sciences, University of Kansas Medical Center, Kansas City, KS 66160, USA;
| | - Steven M. Johnson
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA;
| |
Collapse
|
21
|
Anisman H, Kusnecov AW. Stressors: Psychological and neurobiological processes. Cancer 2022. [DOI: 10.1016/b978-0-323-91904-3.00005-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
22
|
OUP accepted manuscript. Hum Reprod Update 2022; 28:457-479. [DOI: 10.1093/humupd/dmac014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 02/17/2022] [Indexed: 11/12/2022] Open
|
23
|
Molecular insights into transgenerational inheritance of stress memory. J Genet Genomics 2021; 49:89-95. [PMID: 34923165 DOI: 10.1016/j.jgg.2021.11.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 11/23/2022]
Abstract
There is accumulating evidence to show that environmental stressors can regulate a variety of phenotypes in descendants through germline-mediated epigenetic inheritance. Studies of model organisms exposed to environmental cues (e.g., diet, heat stress, toxins) indicate that altered DNA methylations, histone modifications, or non-coding RNAs in the germ cells are responsible for the transgenerational effects. In addition, it has also become evident that maternal provision could provide a mechanism for the transgenerational inheritance of stress adaptations that result from ancestral environmental cues. However, how the signal of environmentally-induced stress response transmits from the soma to the germline, which may influence offspring fitness, remains largely elusive. Small RNAs could serve as signaling molecules that transmit between tissues and even across generations. Furthermore, a recent study revealed that neuronal mitochondrial perturbations induce a transgenerational induction of the mitochondrial unfolded protein response mediated by a Wnt-dependent increase in mitochondrial DNA levels. Here, we review recent work on the molecular mechanism by which parental experience can affect future generations and the importance of soma-to-germline signaling for transgenerational inheritance.
Collapse
|
24
|
The Role of Diet and Lifestyle in Early-Onset Colorectal Cancer: A Systematic Review. Cancers (Basel) 2021; 13:cancers13235933. [PMID: 34885046 PMCID: PMC8657307 DOI: 10.3390/cancers13235933] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/16/2021] [Accepted: 11/24/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary This systematic review sifted through the exogenous dietary and lifestyle risk factors associated with early-onset colorectal cancer, going through the putative involvement of these exogenous risk factors in epigenetic and microbiota modifications. Given the burden of early-onset colorectal cancer and its globally increasing trend with scant literature on its pathogenesis, we believe it would be of benefit to highlight the importance of further systematic and large studies. Indeed, dietary and lifestyle modification could complement colorectal screening for early-onset colorectal cancer prevention. Abstract The incidence of early-onset colorectal cancer, defined as colorectal cancer occurring in young adults under the age of 50, is increasing globally. Knowledge of the etiological factors in young adults is far from complete. Questionable eoCRCs’ exogenous factors are represented by processed meat, sugary drinks, alcohol, Western dietary pattern, overweight and obesity, physical inactivity, and smoking, though with heterogeneous results. Therefore, we performed a systematic review to summarize the current evidence on the role of diet and lifestyle as eoCRC risk factors. We systematically searched PubMed, Scopus, and EMBASE up to July 2021, for original studies evaluating diet, alcohol, physical activity, BMI, and smoking in eoCRC and included twenty-six studies. Indeed, the exogenous factors could represent modifiable key factors, whose recognition could establish areas of future interventions through public health strategies for eoCRC primary prevention. Additionally, we discussed the role of additional non-modifiable risk factors, and of epigenetic regulation and microbiota as mediators of the eoCRC triggered by diet and lifestyle.
Collapse
|
25
|
Ghai M, Kader F. A Review on Epigenetic Inheritance of Experiences in Humans. Biochem Genet 2021; 60:1107-1140. [PMID: 34792705 DOI: 10.1007/s10528-021-10155-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 11/04/2021] [Indexed: 12/13/2022]
Abstract
If genetics defines the inheritance of DNA, epigenetics aims to regulate and make it adaptable. Epigenetic alterations include DNA methylation, chromatin remodelling, post-translational modifications of histone proteins and activity of non-coding RNAs. Several studies, especially in animal models, have reported transgenerational inheritance of epigenetic marks. However, evidence of transgenerational inheritance in humans via germline in the absence of any direct exposure to the driving external stimulus remains controversial. Most of the epimutations exist in relation with genetic variants. The present review looks at intergenerational and transgenerational inheritance in humans, (both father and mother) in response to diet, exposure to chemicals, stress, exercise, and disease status. If not transgenerational, at least intergenerational human studies could help to understand early processes of inheritance. In humans, female and male germline development follow separate paths of epigenetic events and both oocyte and sperm possess their own unique epigenomes. While DNA methylation alterations are reset during epigenetic reprogramming, non-coding RNAs via human sperm provide evidence of being reliable carriers for transgenerational inheritance. Human studies reveal that one mechanism of epigenetic inheritance cannot be applied to the complete human genome. Multiple factors including time, type, and tissue of exposure determine if the modified epigenetic mark could be transmissible and till which generation. Population-specific differences should also be taken into consideration while associating inheritance to an environmental exposure. A longitudinal study targeting one environmental factor, but different population groups should be conducted at a specific geographical location to pinpoint heritable epigenetic changes.
Collapse
Affiliation(s)
- Meenu Ghai
- Discipline of Genetics, School of Life Sciences, Westville Campus, University of KwaZulu-Natal, Private Bag X54001, Durban, KwaZulu Natal, South Africa.
| | - Farzeen Kader
- Discipline of Genetics, School of Life Sciences, Westville Campus, University of KwaZulu-Natal, Private Bag X54001, Durban, KwaZulu Natal, South Africa
| |
Collapse
|
26
|
Martynyuk AE, Ju LS, Morey TE. The potential role of stress and sex steroids in heritable effects of sevoflurane. Biol Reprod 2021; 105:735-746. [PMID: 34192761 DOI: 10.1093/biolre/ioab129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/17/2021] [Accepted: 06/25/2021] [Indexed: 12/11/2022] Open
Abstract
Most surgical procedures require general anesthesia, which is a reversible deep sedation state lacking all perception. The induction of this state is possible because of complex molecular and neuronal network actions of general anesthetics (GAs) and other pharmacological agents. Laboratory and clinical studies indicate that the effects of GAs may not be completely reversible upon anesthesia withdrawal. The long-term neurocognitive effects of GAs, especially when administered at the extremes of ages, are an increasingly recognized health concern and the subject of extensive laboratory and clinical research. Initial studies in rodents suggest that the adverse effects of GAs, whose actions involve enhancement of GABA type A receptor activity (GABAergic GAs), can also extend to future unexposed offspring. Importantly, experimental findings show that GABAergic GAs may induce heritable effects when administered from the early postnatal period to at least young adulthood, covering nearly all age groups that may have children after exposure to anesthesia. More studies are needed to understand when and how the clinical use of GAs in a large and growing population of patients can result in lower resilience to diseases in the even larger population of their unexposed offspring. This minireview is focused on the authors' published results and data in the literature supporting the notion that GABAergic GAs, in particular sevoflurane, may upregulate systemic levels of stress and sex steroids and alter expressions of genes that are essential for the functioning of these steroid systems. The authors hypothesize that stress and sex steroids are involved in the mediation of sex-specific heritable effects of sevoflurane.
Collapse
Affiliation(s)
- Anatoly E Martynyuk
- Department of Anesthesiology, University of Florida College of Medicine, Gainesville, FL, USA.,McKnight Brain Institute, University of Florida College of Medicine, Gainesville, FL, USA
| | - Ling-Sha Ju
- Department of Anesthesiology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Timothy E Morey
- Department of Anesthesiology, University of Florida College of Medicine, Gainesville, FL, USA
| |
Collapse
|
27
|
Cullen SM, Hassan N, Smith-Raska M. Effects of non-inherited ancestral genotypes on offspring phenotypes. Biol Reprod 2021; 105:747-760. [PMID: 34159361 DOI: 10.1093/biolre/ioab120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 11/13/2022] Open
Abstract
It is well established that environmental exposures can modify the profile of heritable factors in an individual's germ cells, ultimately affecting the inheritance of phenotypes in descendants. Similar to exposures, an ancestor's genotype can also affect the inheritance of phenotypes across generations, sometimes in offspring who do not inherit the genetic aberration. This can occur via a variety of prenatal, in utero, or postnatal mechanisms. In this review, we discuss the evidence for this process in mammals, with a focus on examples that are potentially mediated through the germline, while also considering alternate routes of inheritance. Non-inherited ancestral genotypes may influence descendant's disease risk to a much greater extent than currently appreciated, and focused evaluation of this phenomenon may reveal novel mechanisms of inheritance.
Collapse
Affiliation(s)
- Sean M Cullen
- Division of Newborn Medicine, Department of Pediatrics, Weill Cornell Medicine, 413 East 69th Street, Room 1252D, New York, NY 10021
| | - Nora Hassan
- Division of Newborn Medicine, Department of Pediatrics, Weill Cornell Medicine, 413 East 69th Street, Room 1252D, New York, NY 10021
| | - Matthew Smith-Raska
- Division of Newborn Medicine, Department of Pediatrics, Weill Cornell Medicine, 413 East 69th Street, Room 1252D, New York, NY 10021
| |
Collapse
|
28
|
Escher J. How Family Histories Can Inform Research About Germ Cell Exposures: The Example of Autism. Biol Reprod 2021; 105:767-773. [PMID: 33959752 DOI: 10.1093/biolre/ioab092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/08/2021] [Accepted: 04/30/2021] [Indexed: 12/19/2022] Open
Abstract
Throughout the scientific literature, heritable traits are routinely presumed to be genetic in origin. However, as emerging evidence from the realms of genetic toxicology and epigenomics demonstrate, heritability may be better understood as encompassing not only DNA sequence passed down through generations, but also disruptions to the parental germ cells causing de novo mutations or epigenetic alterations, with subsequent shifts in gene expression and functions in offspring. The Beyond Genes conference highlighted advances in understanding these aspects at molecular, experimental and epidemiological levels. In this commentary I suggest that future research on this topic could be inspired by collecting parents' germ cell exposure histories, with particular attention to cases of families with multiple children suffering idiopathic disorders. In so doing I focus on the endpoint of autism spectrum disorders (ASD). Rates of this serious neurodevelopment disability have climbed around the world, a growing crisis that cannot be explained by diagnostic shifts. ASD's strong heritability has prompted a research program largely focused on DNA sequencing to locate rare and common variants, but decades of this gene-focused research have revealed surprisingly little about the molecular origins of the disorder. Based on my experience as the mother of two children with idiopathic autism, and as a research philanthropist and autism advocate, I suggest ways researchers might probe parental germ cell exposure histories to develop new hypotheses that may ultimately reveal sources of non-genetic heritability in a subset of idiopathic heritable pathologies.
Collapse
|
29
|
Viet SM, Dellarco M, Chen E, McDade T, Faustman E, Brachvogel S, Smith M, Wright R. Recommendations for Assessment of Environmental Exposures in Longitudinal Life Course Studies Such as the National Children's Study. Front Pediatr 2021; 9:629487. [PMID: 33996684 PMCID: PMC8116497 DOI: 10.3389/fped.2021.629487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 02/25/2021] [Indexed: 11/23/2022] Open
Abstract
An important step toward understanding the relationship between the environment and child health and development is the comprehensive cataloging of external environmental factors that may modify health and development over the life course. Our understanding of the environmental influences on health is growing increasingly complex. Significant key questions exist as to what genes, environment, and life stage mean to defining normal variations and altered developmental trajectories throughout the life course and also across generations. With the rapid advances in genetic technology came large-scale genomic studies to search for the genetic etiology of complex diseases. While genome-wide association studies (GWAS) have revealed genetic factors and networks that advance our understanding to some extent, it is increasingly recognized that disease causation is largely non-genetic and reflects interactions between an individual's genetic susceptibility and his or her environment. Thus, the full promise of the human genome project to prevent or treat disease and promote good health arguably depends on a commitment to understanding the interactions between our environment and our genetic makeup and requires a design with prospective environmental data collection that considers critical windows of susceptibility that likely correspond to the expression of specific genes and gene pathways. Unlike the genome, which is static, relevant exposures as well as our response to exposures, change over time. This has fostered the complementary concept of the exposome ideally defined as the measure of all exposures of an individual over a lifetime and how those exposures relate to health. The exposome framework considers multiple external exposures (e.g., chemical, social) and behaviors that may modify exposures (e.g., diet), as well as consequences of environmental exposures indexed via biomarkers of physiological response or measures of behavioral response throughout the lifespan. The exposome concept can be applied in prospective developmental studies such as the National Children's Study (NCS) with the practical understanding that even a partial characterization will bring major advances to health. Lessons learned from the NCS provide an important opportunity to inform future studies that can leverage these evolving paradigms in elucidating the role of environment on health across the life course.
Collapse
Affiliation(s)
| | - Michael Dellarco
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, United States
| | - Edith Chen
- Department of Pscychology, Northwestern University, Evanston, IL, United States
| | - Thomas McDade
- Department of Anthropology, Northwestern University, Evanston, IL, United States
| | | | | | - Marissa Smith
- University of Washington, Seattle, WA, United States
| | - Rosalind Wright
- Icahn School of Medicine at Mount Sinai School, New York, NY, United States
| |
Collapse
|