1
|
Li B, Zheng W. The Impact of Endoscopic Mucosal Resection and Endoscopic Submucosal Dissection on Colonic Polyp Resection and Factors Influencing Recurrence. Surg Laparosc Endosc Percutan Tech 2024; 34:607-613. [PMID: 39632425 DOI: 10.1097/sle.0000000000001329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 09/03/2024] [Indexed: 12/07/2024]
Abstract
OBJECTIVE This study aims to assess the effectiveness of endoscopic mucosal resection (EMR) and endoscopic submucosal dissection (ESD) in the endoscopic resection of colonic polyps and investigate the factors influencing polyp recurrence. METHODS A total of 174 patients with colorectal polyps admitted to the Gastroenterology Department during the same period were included in this prospective randomized controlled study. The patients were randomly allocated to the EMR group and ESD group (72 cases in each group) using a random number table. The clinical efficacy, quality of life, adverse reactions, and 1-year postoperative recurrence rate were compared between the 2 groups. In addition, factors influencing polyp recurrence were analyzed. RESULTS No significant differences were observed between the EMR and ESD groups in terms of clinical efficacy, postoperative quality of life, and postoperative complications. However, the postoperative recurrence rate in the ESD group was significantly lower than that in the EMR group. Multifactorial logistic regression analysis revealed that the number of polyps ≥3, maximum polyp diameter ≥2 cm, and family history of colorectal cancer were independent risk factors for colonic polyp recurrence. CONCLUSION ESD and EMR demonstrate similar efficacy and safety in patients with colonic polyps. However, the recurrence rate after ESD is significantly lower than after EMR. Furthermore, multifactorial analysis indicates that a larger polyp diameter, a more significant number of polyps, and a family history of colorectal cancer are independent risk factors for the recurrence of colonic polyps following resection.
Collapse
Affiliation(s)
- Binnan Li
- Department of General Surgery, Wenzhou Integrated Traditional Chinese and Western Medicine Hospital, Wenzhou, China
| | | |
Collapse
|
2
|
Ramesh J, Gopalakrishnan RM, Nguyen THA, Lai SK, Li HY, Kim PS, Kutzner A, Inoue N, Heese K. Deciphering the molecular landscape of the FAM72 gene family: Implications for stem cell biology and cancer. Neurochem Int 2024; 180:105853. [PMID: 39236808 DOI: 10.1016/j.neuint.2024.105853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
Family with sequence similarity 72 (FAM72) is a protein-coding gene family located on chromosome 1 in humans, uniquely featuring four paralogs: FAM72A, FAM72B, FAM72C, and FAM72D. While FAM72's presence as a gene pair with the SLIT-ROBO Rho GTPase-activating protein 2 (SRGAP2) is intriguing, its functional roles, particularly in neural stem cells, remain incompletely understood. This review explores the distinct characteristics of FAM72, shedding light on its expression patterns, potential roles in cell cycle regulation, stem cell renewal and implications in neurogenesis and tumorigenesis.
Collapse
Affiliation(s)
- Janani Ramesh
- Department of Medical Biochemistry, Dr ALM Postgraduate Institute of Biomedical Sciences, University of Madras, Chennai, Tamil Nadu, 600-113, India.
| | - Raja Mohan Gopalakrishnan
- Centre for Advanced Studies in Botany, University of Madras, Guindy Campus, Chennai, Tamil Nadu, 600-025, India.
| | - Tuan Hoang Anh Nguyen
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Republic of Korea.
| | - Soak-Kuan Lai
- School of Biological Sciences, College of Science, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637-551, Singapore.
| | - Hoi-Yeung Li
- School of Biological Sciences, College of Science, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637-551, Singapore.
| | - Pok-Son Kim
- Department of Information Security, Cryptology, and Mathematics, Kookmin University, Seoul, 136-702, Republic of Korea.
| | - Arne Kutzner
- Department of Information Systems, College of Computer Science, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Republic of Korea.
| | - Noriko Inoue
- Osaka University Institute for Sports and Global Health, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Klaus Heese
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Republic of Korea.
| |
Collapse
|
3
|
Wang Z, He Z, Lin R, Feng Z, Li X, Sui X, Gu L, Xia T, Zhou D, Zhao B, Li Y, Li Z, Bai Y. Evaluation of a plasma cell-free DNA methylation test for colorectal cancer diagnosis: a multicenter clinical study. BMC Med 2024; 22:436. [PMID: 39379942 PMCID: PMC11462859 DOI: 10.1186/s12916-024-03662-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 09/26/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND A blood-based diagnostic test is a promising strategy for colorectal cancer (CRC). The MethyDT test (IColohunter), which detects methylation levels of NTMT1 and MAP3K14-AS1, exhibited potential in discriminating CRC, but its clinical performance needs to be validated in large-scale populations. METHODS A multicenter, double-blinded, cross-sectional study that enrolled 1194 participants was performed. Plasma samples were collected to detect methylation levels of NTMT1 and MAP3K14-AS1 using quantitative methylation-specific PCR with the MethyDT test, and the accuracy was further evaluated by Sanger sequencing. RESULTS The sensitivities of the MethyDT test for detecting CRC, early stages of CRC (I and II), advanced adenoma (AA), and high-grade intraepithelial neoplasia (HGIN) were 91.2% (95% confidence interval [CI], 88.4-94.0), 87.4% (95% CI, 82.5-92.2), 43.5% (95% CI, 35.7-51.4), and 72.7% (95% CI, 57.5-87.9), respectively. The specificities for participants with non-AA, interfering diseases (ID), and no evidence of disease (NED) were 85.0% (95% CI, 78.8-91.3), 93.7% (95% CI, 91.4-95.9) and 97.3% (95% CI, 90.5-99.7), respectively, and its overall specificity for all-controls was 92.4% (95% CI, 90.3-94.4). The consistency of the MethyDT test with pathology for CRC was high with a kappa value of 0.830 (95% CI, 0.795-0.865). Additionally, the MethyDT test was comparable to Sanger sequencing for detecting methylation with kappa values > 0.97. CONCLUSIONS The MethyDT test demonstrates excellent sensitivity and specificity for CRC and high consistency with Sanger sequencing for methylation, suggesting it may serve as a potential noninvasive diagnostic tool for the detection of CRC. TRIAL REGISTRATION This clinical trial has been registered in ClinicalTrials.gov (NCT05508503).
Collapse
Affiliation(s)
- Zhijie Wang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zixuan He
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Rong Lin
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhijie Feng
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiuling Li
- Department of Gastroenterology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, China
| | - Xiangyu Sui
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Lun Gu
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Tian Xia
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Dihan Zhou
- Wuhan Ammunition Life-Tech Co, Ltd, Wuhan, China
| | - Bali Zhao
- Wuhan Ammunition Life-Tech Co, Ltd, Wuhan, China
| | - Yanqing Li
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.
| | - Zhaoshen Li
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China.
| | - Yu Bai
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China.
| |
Collapse
|
4
|
Tovar Perez JE, Zhang S, Hodgeman W, Kapoor S, Rajendran P, Kobayashi KS, Dashwood RH. Epigenetic regulation of major histocompatibility complexes in gastrointestinal malignancies and the potential for clinical interception. Clin Epigenetics 2024; 16:83. [PMID: 38915093 PMCID: PMC11197381 DOI: 10.1186/s13148-024-01698-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 06/18/2024] [Indexed: 06/26/2024] Open
Abstract
BACKGROUND Gastrointestinal malignancies encompass a diverse group of cancers that pose significant challenges to global health. The major histocompatibility complex (MHC) plays a pivotal role in immune surveillance, orchestrating the recognition and elimination of tumor cells by the immune system. However, the intricate regulation of MHC gene expression is susceptible to dynamic epigenetic modification, which can influence functionality and pathological outcomes. MAIN BODY By understanding the epigenetic alterations that drive MHC downregulation, insights are gained into the molecular mechanisms underlying immune escape, tumor progression, and immunotherapy resistance. This systematic review examines the current literature on epigenetic mechanisms that contribute to MHC deregulation in esophageal, gastric, pancreatic, hepatic and colorectal malignancies. Potential clinical implications are discussed of targeting aberrant epigenetic modifications to restore MHC expression and 0 the effectiveness of immunotherapeutic interventions. CONCLUSION The integration of epigenetic-targeted therapies with immunotherapies holds great potential for improving clinical outcomes in patients with gastrointestinal malignancies and represents a compelling avenue for future research and therapeutic development.
Collapse
Affiliation(s)
| | - Shilan Zhang
- Department of Cardiovascular Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200070, China
| | - William Hodgeman
- Wolfson Medical School, The University of Glasgow, Glasgow, G12 8QQ, UK
| | - Sabeeta Kapoor
- Center for Epigenetics and Disease Prevention, Texas A&M Health, Houston, TX, 77030, USA
| | - Praveen Rajendran
- Center for Epigenetics and Disease Prevention, Texas A&M Health, Houston, TX, 77030, USA
- Department of Translational Medical Sciences, and Antibody & Biopharmaceuticals Core, Texas A&M Medicine, Houston, TX, 77030, USA
| | - Koichi S Kobayashi
- Department of Immunology, Hokkaido University Graduate School of Medicine, Sapporo, 060-8638, Japan
- Hokkaido University Institute for Vaccine Research and Development, Sapporo, 060-8638, Japan
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health, Bryan, TX, 77087, USA
| | - Roderick H Dashwood
- Center for Epigenetics and Disease Prevention, Texas A&M Health, Houston, TX, 77030, USA.
- Department of Translational Medical Sciences, and Antibody & Biopharmaceuticals Core, Texas A&M Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
5
|
Magowan D, Abdulshafea M, Thompson D, Rajamoorthy SI, Owen R, Harris D, Prosser S. Blood-based biomarkers and novel technologies for the diagnosis of colorectal cancer and adenomas: a narrative review. Biomark Med 2024; 18:493-506. [PMID: 38900496 DOI: 10.1080/17520363.2024.2345583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 03/12/2024] [Indexed: 06/21/2024] Open
Abstract
Aim: Blood-based biomarkers have shown promise for diagnosing colorectal cancer (CRC) and adenomas (CRA). This review summarizes recent studies in this area. Methods: A literature search was undertaken for 01/01/2017-01/03/2023. Criteria included CRC, CRA, liquid-biopsy, blood-based tests and diagnosis. Results: 12,378 studies were reduced to 178 for data extraction. Sixty focused on proteomics, 53 on RNA species, 30 on cfDNA methylation, seven on antigens and autoantibodies and 28 on novel techniques. 169 case control and nine cohort studies. Number of participants ranged 100-54,297, mean age 58.26. CRC sensitivity and specificity ranged 9.10-100% and 20.40-100%, respectively. CRA sensitivity and specificity ranged 8.00-95.70% and 4.00-97.00%, respectively. Conclusion: Sensitive and specific blood-based tests exist for CRC and CRA. However, studies demonstrate heterogenous techniques and reporting quality. Further work should concentrate on validation and meta-analyzes.
Collapse
Affiliation(s)
- Drew Magowan
- Swansea University, Singleton Park, SA2 8PP, Swansea, UK
- Swansea Bay University Health Board, Department of General Surgery, Morriston Hospital, SA6 6NL, Swansea, UK
| | - Mansour Abdulshafea
- Swansea Bay University Health Board, Department of General Surgery, Morriston Hospital, SA6 6NL, Swansea, UK
| | - Dominic Thompson
- Swansea Bay University Health Board, Department of General Surgery, Morriston Hospital, SA6 6NL, Swansea, UK
| | - Shri-Ishvarya Rajamoorthy
- Swansea Bay University Health Board, Department of General Surgery, Morriston Hospital, SA6 6NL, Swansea, UK
| | - Rhiannon Owen
- Swansea University, Singleton Park, SA2 8PP, Swansea, UK
| | - Dean Harris
- Swansea University, Singleton Park, SA2 8PP, Swansea, UK
- Swansea Bay University Health Board, Department of General Surgery, Morriston Hospital, SA6 6NL, Swansea, UK
| | - Susan Prosser
- Swansea Bay University Health Board, Department of General Surgery, Morriston Hospital, SA6 6NL, Swansea, UK
| |
Collapse
|
6
|
Cao Q, Tian Y, Deng Z, Yang F, Chen E. Epigenetic Alteration in Colorectal Cancer: Potential Diagnostic and Prognostic Implications. Int J Mol Sci 2024; 25:3358. [PMID: 38542332 PMCID: PMC10969857 DOI: 10.3390/ijms25063358] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/01/2024] [Accepted: 03/12/2024] [Indexed: 01/03/2025] Open
Abstract
Colorectal cancer (CRC), a prevalent malignant tumor of the digestive system, ranks as the third and second in global incidence and mortality, respectively, in 2020, with 1.93 million new cases (≈10% of all cancers). There are 940,000 deaths (≈9.4% of all cancers), and the incidence of CRC in younger patients (under 50 years of age) has become a new trend. The pathogenesis of CRC is primarily attributed to a series of genetic and epigenetic abnormalities within normal colonic epithelial cells, coupled with the reshaping of the tumor microenvironment in the surrounding stroma. This process leads to the transformation of colorectal adenomas into invasive adenocarcinomas. Although genetic changes are known to be the primary driving force in the occurrence and progression of CRC, recent research indicates that epigenetic regulation serves as a crucial molecular marker in cancer, playing a significant role in the pathological and physiological control of interactions between genetics and the environment. This review discusses the current global epidemiology of CRC, its risk factors, and preventive treatment strategies. The current study explores the latest advancements in the epigenetic regulation of CRC, including DNA methylation, histone modifications, and non-coding RNAs (ncRNAs). These developments hold potential as screening tools, prognostic biomarkers, and therapeutic targets for CRC.
Collapse
Affiliation(s)
- Qing Cao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an 710069, China; (Q.C.); (Y.T.); (Z.D.); (F.Y.)
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi’an 710069, China
| | - Ye Tian
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an 710069, China; (Q.C.); (Y.T.); (Z.D.); (F.Y.)
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi’an 710069, China
| | - Zhiyi Deng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an 710069, China; (Q.C.); (Y.T.); (Z.D.); (F.Y.)
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi’an 710069, China
| | - Fangfang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an 710069, China; (Q.C.); (Y.T.); (Z.D.); (F.Y.)
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi’an 710069, China
| | - Erfei Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an 710069, China; (Q.C.); (Y.T.); (Z.D.); (F.Y.)
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi’an 710069, China
- School of Medicine, Northwest University, Xi’an 710069, China
| |
Collapse
|
7
|
Huang Q, Xun Z, Lin J, Xie R, Zhu C, Wang L, Shang H, Wu S, Ou Q, Liu C. A novel microfluidic chip-based digital PCR method for enhanced sensitivity in the early diagnosis of colorectal cancer via mSEPT9. Clin Chim Acta 2024; 554:117781. [PMID: 38224929 DOI: 10.1016/j.cca.2024.117781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/17/2024]
Abstract
BACKGROUND To enhance the sensitivity of plasma methylated Septin9 gene (mSEPT9) detection in colorectal cancer (CRC) screening, we developed a microfluidic chip-based digital PCR (dPCR) method suitable for low-concentration samples, aiming to apply it for mSEPT9 detection in CRC diagnosis. METHODS Our microfluidic chip-based dPCR method utilized specific primers and probes with locked nucleic acids (LNAs) modifications for mSEPT9 detection. We evaluated its performance, including detection limit, specificity, and linear range, comparing it with a commercial qPCR reagent kit using the same samples (95 CRC, 23 non-CRC). RESULTS The LNAs-modified dPCR method showed a linear range of 100-104 copies/μL and a detection limit of 100 copies/μL. Clinical testing revealed that our dPCR method exhibited a sensitivity of 82.11 % and specificity of 95.65 % for CRC diagnosis, outperforming the commercial qPCR kit (sensitivity: 58.95 %, specificity: 91.30 %), particularly in Stage I with a diagnostic sensitivity of 90.91 %. Combining mSEPT9 and carcinoembryonic antigen (CEA) improved diagnostic sensitivity to 91.49 %. CONCLUSIONS Our accurate microfluidic chip-based dPCR method, especially in combination with CEA, holds promise for effective CRC screening and timely interventions, offering enhanced mSEPT9 quantification over conventional qPCR.
Collapse
Affiliation(s)
- Qunfang Huang
- Department of Laboratory Medicine, Fujian Key Laboratory of Laboratory Medicine, Gene Diagnosis Research Center, Fujian Clinical Research Center for Laboratory Medicine of Immunology, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, Fujian, China; Department of Laboratory Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, Fujian, China
| | - Zhen Xun
- Department of Laboratory Medicine, Fujian Key Laboratory of Laboratory Medicine, Gene Diagnosis Research Center, Fujian Clinical Research Center for Laboratory Medicine of Immunology, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, Fujian, China; Department of Laboratory Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, Fujian, China; The First Clinical College, Fujian Medical University, Fuzhou 350005, Fujian, China
| | - Junyu Lin
- The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, Fujian, China
| | - Rubing Xie
- Department of Laboratory Medicine, Fujian Key Laboratory of Laboratory Medicine, Gene Diagnosis Research Center, Fujian Clinical Research Center for Laboratory Medicine of Immunology, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, Fujian, China; The First Clinical College, Fujian Medical University, Fuzhou 350005, Fujian, China
| | - Chenggong Zhu
- Department of Laboratory Medicine, Fujian Key Laboratory of Laboratory Medicine, Gene Diagnosis Research Center, Fujian Clinical Research Center for Laboratory Medicine of Immunology, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, Fujian, China; The First Clinical College, Fujian Medical University, Fuzhou 350005, Fujian, China
| | - Long Wang
- Department of Laboratory Medicine, Fujian Key Laboratory of Laboratory Medicine, Gene Diagnosis Research Center, Fujian Clinical Research Center for Laboratory Medicine of Immunology, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, Fujian, China; The First Clinical College, Fujian Medical University, Fuzhou 350005, Fujian, China
| | - Hongyan Shang
- Department of Laboratory Medicine, Fujian Key Laboratory of Laboratory Medicine, Gene Diagnosis Research Center, Fujian Clinical Research Center for Laboratory Medicine of Immunology, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, Fujian, China; Department of Laboratory Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, Fujian, China
| | - Songhang Wu
- Department of Laboratory Medicine, Fujian Key Laboratory of Laboratory Medicine, Gene Diagnosis Research Center, Fujian Clinical Research Center for Laboratory Medicine of Immunology, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, Fujian, China; Department of Laboratory Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, Fujian, China
| | - Qishui Ou
- Department of Laboratory Medicine, Fujian Key Laboratory of Laboratory Medicine, Gene Diagnosis Research Center, Fujian Clinical Research Center for Laboratory Medicine of Immunology, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, Fujian, China; Department of Laboratory Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, Fujian, China; The First Clinical College, Fujian Medical University, Fuzhou 350005, Fujian, China.
| | - Can Liu
- Department of Laboratory Medicine, Fujian Key Laboratory of Laboratory Medicine, Gene Diagnosis Research Center, Fujian Clinical Research Center for Laboratory Medicine of Immunology, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, Fujian, China; Department of Laboratory Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, Fujian, China; The First Clinical College, Fujian Medical University, Fuzhou 350005, Fujian, China.
| |
Collapse
|
8
|
Ye J, Zhang J, Ding W. DNA methylation modulates epigenetic regulation in colorectal cancer diagnosis, prognosis and precision medicine. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:34-53. [PMID: 38464391 PMCID: PMC10918240 DOI: 10.37349/etat.2024.00203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/11/2023] [Indexed: 03/12/2024] Open
Abstract
Colorectal cancer (CRC) is a multifaceted disease influenced by the interplay of genetic and environmental factors. The clinical heterogeneity of CRC cannot be attributed exclusively to genetic diversity and environmental exposures, and epigenetic markers, especially DNA methylation, play a critical role as key molecular markers of cancer. This review compiles a comprehensive body of evidence underscoring the significant involvement of DNA methylation modifications in the pathogenesis of CRC. Moreover, this review explores the potential utility of DNA methylation in cancer diagnosis, prognostics, assessment of disease activity, and prediction of drug responses. Recognizing the impact of DNA methylation will enhance the ability to identify distinct CRC subtypes, paving the way for personalized treatment strategies and advancing precision medicine in the management of CRC.
Collapse
Affiliation(s)
- Jingxin Ye
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
- Department of Gastroenterology, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian 223800, Jiangsu Province, China
| | - Jianfeng Zhang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Weifeng Ding
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| |
Collapse
|
9
|
Khabbazpour M, Tat M, Karbasi A, Abyazi MA, Khodadoustan G, Heidary Z, Zaki-Dizaji M. Advances in blood DNA methylation-based assay for colorectal cancer early detection: a systematic updated review. GASTROENTEROLOGY AND HEPATOLOGY FROM BED TO BENCH 2024; 17:225-240. [PMID: 39308542 PMCID: PMC11413380 DOI: 10.22037/ghfbb.v17i3.2978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/04/2024] [Indexed: 09/25/2024]
Abstract
Aim A systematic review was conducted to summarize the methylated circulating tumor DNA (ctDNA) markers reported over the last decade for early detection of colorectal cancer (CRC) and to identify the main technical challenges that are impeding their clinical implementation. Background CRC is a major cause of cancer deaths worldwide, but early detection is key for successful treatment. Non-invasive methods such as methylated ctDNA testing show promise for improving detection and monitoring of CRC. Methods A comprehensive search was performed using Web of Science, PubMed, and Scopus up to December 30, 2023, limited to articles published in the last 10 years (after 2012), while including advanced adenoma/stage 0 or stage I/II samples in biomarker validation. Results After identifying 694 articles, removing duplicates and screening titles, abstracts, and full texts, a total of 62 articles were found to meet the inclusion criteria. Among the single biomarkers, MYO1-G, SEPT9, SDC2, and JAM3 revealed the highest sensitivity for polyps and stage I/II CRC. For multi-biomarkers with suitable sensitivity, combinations of SFRP1, SFRP2, SDC2, PRIMA1, or ALX4, BMP3, NPTX2, RARB, SDC2, SEPT9, VIM or ZFHX4, ZNF334, ELOVL2, UNC5C, LOC146880, SFMBT2, GFRA1 were identified for polyps and stage I/II CRC. Conclusion Enhancing sensitivity and specificity of molecular screening methods is crucial for improving CRC detection. Identifying a select few valuable biomarkers is key to reducing costs, despite challenges posed by low ctDNA levels in plasma, particularly in early-stage cancers.
Collapse
Affiliation(s)
- Milad Khabbazpour
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Masoud Tat
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ashraf Karbasi
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases (BRCGL), Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Abyazi
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases (BRCGL), Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ghazal Khodadoustan
- Department of Cell and Molecular Biology and Microbiology, Faculty of biological science and technology, University of Isfahan, Isfahan, Iran
| | - Zohreh Heidary
- Vali-e-Asr Reproductive Health Research Center, Family Health Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Majid Zaki-Dizaji
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Maqbool M, Khan A, Shahzad A, Sarfraz Z, Sarfraz A, Aftab H, Jaan A. Predictive biomarkers for colorectal cancer: a state-of-the-art systematic review. Biomarkers 2023; 28:562-598. [PMID: 37585692 DOI: 10.1080/1354750x.2023.2247185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/06/2023] [Indexed: 08/18/2023]
Abstract
INTRODUCTION Colorectal cancer (CRC) poses a substantial health burden, with early detection paramount for improved prognosis. This study aims to evaluate potential CRC biomarkers and detection techniques. MATERIALS AND METHODS This systematic review, reported in adherence to PRISMA Statement 2020 guidelines, collates the latest research on potential biomarkers and detection/prognosis methods for CRC, spanning the last decade. RESULTS Out of the 38 included studies, diverse biomarkers and detection methods emerged, with DNA methylation markers like SFRP2 and SDC2, microRNAs including miR-1290, miR-506, and miR-4316, and serum and plasma markers such as NTS levels and U2 snRNA fragments standing out. Methylated cfDNA and m5C methylation alteration in immune cells of the blood, along with circular RNA, showed promise as diagnostic markers. Meanwhile, techniques involving extracellular vesicles and lateral flow immunoassays exhibited potential for swift and effective CRC screening. DISCUSSION Our state-of-the-art review identifies potential biomarkers, including SFRP2, SDC2, miR-1290, miR-506, miR-4316, and U2 snRNA fragments, with significant potential in enhancing CRC detection. However, comprehensive validation studies and a rigorous evaluation of clinical utility and cost-effectiveness remain necessary before integration into routine clinical practice. CONCLUSION The findings emphasize the need for continued research into biomarkers and detection methods to improve patient outcomes.
Collapse
Affiliation(s)
- Moeez Maqbool
- Sheikh Zayed Medical College, Rahim Yar Khan, Pakistan
| | - Aden Khan
- Fatima Jinnah Medical University, Lahore, Pakistan
| | | | | | | | - Hinna Aftab
- CMH Lahore Medical and Dental College, Lahore, Pakistan
| | - Ali Jaan
- Rochester General Hospital, Rochester, NY, USA
| |
Collapse
|
11
|
Gou H, Chen P, Wu W. FAM72 family proteins as poor prognostic markers in clear cell renal carcinoma. Biochem Biophys Rep 2023; 35:101506. [PMID: 37457361 PMCID: PMC10344709 DOI: 10.1016/j.bbrep.2023.101506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/08/2023] [Accepted: 06/24/2023] [Indexed: 07/18/2023] Open
Abstract
Purpose This study aimed to investigate the prognostic significance of the Family with Sequence Similarity 72 member (FAM72) gene family in clear cell renal carcinoma (ccRCC) using a bioinformatic approach. Patients and methods To investigate the association between FAM72 and ccRCC, we utilized various databases and analysis tools, including TCGA, GEPIA, Metscape, cBioPortal, and MethSurv. We conducted an analysis of FAM72 expression levels in ccRCC tissues compared to normal kidney tissues and performed univariate and multivariate Cox analysis to determine the relationship between FAM72 expression and patient prognosis. Furthermore, we carried out Gene Ontology (GO) and Gene Set Enrichment Analysis (GSEA) to identify enriched biological processes associated with FAM72 expression. Additionally, we analyzed immune cell infiltration and the level of methylation in ccRCC patients. Our bioinformatic analysis revealed that FAM72 expression levels were significantly higher in ccRCC tissues than in normal kidney tissues. High expression of FAM72 was associated with poor prognosis in ccRCC patients and was found to be an independent prognostic factor for ccRCC. GO and GSEA analyses indicated that FAM72 was enriched in biological processes related to mitosis, cell cycle, and DNA metabolism. Moreover, we found a significant correlation between FAM72 and immune cell infiltration and the level of methylation in ccRCC patients. Conclusion Our findings suggest that FAM72 could serve as an unfavorable prognostic molecular marker for ccRCC. A comprehensive understanding of FAM72 could provide crucial insights into tumor progression and prognosis.
Collapse
Affiliation(s)
- Hui Gou
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Ping Chen
- Department of Pharmacy, Suining Central Hospital, Suining, 629000, China
| | - Wenbing Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| |
Collapse
|
12
|
Ponomaryova AA, Rykova EY, Solovyova AI, Tarasova AS, Kostromitsky DN, Dobrodeev AY, Afanasiev SA, Cherdyntseva NV. Genomic and Transcriptomic Research in the Discovery and Application of Colorectal Cancer Circulating Markers. Int J Mol Sci 2023; 24:12407. [PMID: 37569782 PMCID: PMC10419249 DOI: 10.3390/ijms241512407] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/24/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
Colorectal cancer (CRC) is the most frequently occurring malignancy in the world. However, the mortality from CRC can be reduced through early diagnostics, selection of the most effective treatment, observation of the therapy success, and the earliest possible diagnosis of recurrences. A comprehensive analysis of genetic and epigenetic factors contributing to the CRC development is needed to refine diagnostic, therapeutic, and preventive strategies and to ensure appropriate decision making in managing specific CRC cases. The liquid biopsy approach utilizing circulating markers has demonstrated its good performance as a tool to detect the changes in the molecular pathways associated with various cancers. In this review, we attempted to brief the main tendencies in the development of circulating DNA and RNA-based markers in CRC such as cancer-associated DNA mutations, DNA methylation changes, and non-coding RNA expression shifts. Attention is devoted to the existing circulating nucleic acid-based CRC markers, the possibility of their application in clinical practice today, and their future improvement. Approaches to the discovery and verification of new markers are described, and the existing problems and potential solutions for them are highlighted.
Collapse
Affiliation(s)
- Anastasia A. Ponomaryova
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634009 Tomsk, Russia
| | - Elena Yu. Rykova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Department of Engineering Problems of Ecology, Novosibirsk State Technical University, 630087 Novosibirsk, Russia
| | - Anastasia I. Solovyova
- Department of Biochemistry, Medico-Biological Faculty, Siberian State Medical University, 634050 Tomsk, Russia
| | - Anna S. Tarasova
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634009 Tomsk, Russia
| | - Dmitry N. Kostromitsky
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634009 Tomsk, Russia
| | - Alexey Yu. Dobrodeev
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634009 Tomsk, Russia
| | - Sergey A. Afanasiev
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634009 Tomsk, Russia
| | - Nadezhda V. Cherdyntseva
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634009 Tomsk, Russia
- Faculty of Chemistry, National Research Tomsk State University, 634050 Tomsk, Russia
| |
Collapse
|
13
|
Qu R, Zhang Y, Ma Y, Zhou X, Sun L, Jiang C, Zhang Z, Fu W. Role of the Gut Microbiota and Its Metabolites in Tumorigenesis or Development of Colorectal Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205563. [PMID: 37263983 PMCID: PMC10427379 DOI: 10.1002/advs.202205563] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 04/20/2023] [Indexed: 06/03/2023]
Abstract
Colorectal cancer (CRC) is the most common cancer of the digestive system with high mortality and morbidity rates. Gut microbiota is found in the intestines, especially the colorectum, and has structured crosstalk interactions with the host that affect several physiological processes. The gut microbiota include CRC-promoting bacterial species, such as Fusobacterium nucleatum, Escherichia coli, and Bacteroides fragilis, and CRC-protecting bacterial species, such as Clostridium butyricum, Streptococcus thermophilus, and Lacticaseibacillus paracasei, which along with other microorganisms, such as viruses and fungi, play critical roles in the development of CRC. Different bacterial features are identified in patients with early-onset CRC, combined with different patterns between fecal and intratumoral microbiota. The gut microbiota may be beneficial in the diagnosis and treatment of CRC; some bacteria may serve as biomarkers while others as regulators of chemotherapy and immunotherapy. Furthermore, metabolites produced by the gut microbiota play essential roles in the crosstalk with CRC cells. Harmful metabolites include some primary bile acids and short-chain fatty acids, whereas others, including ursodeoxycholic acid and butyrate, are beneficial and impede tumor development and progression. This review focuses on the gut microbiota and its metabolites, and their potential roles in the development, diagnosis, and treatment of CRC.
Collapse
Affiliation(s)
- Ruize Qu
- Department of General SurgeryPeking University Third HospitalBeijing100191P. R. China
- Cancer CenterPeking University Third HospitalBeijing100191P. R. China
| | - Yi Zhang
- Department of General SurgeryPeking University Third HospitalBeijing100191P. R. China
- Cancer CenterPeking University Third HospitalBeijing100191P. R. China
| | - Yanpeng Ma
- Department of General SurgeryPeking University Third HospitalBeijing100191P. R. China
- Cancer CenterPeking University Third HospitalBeijing100191P. R. China
| | - Xin Zhou
- Department of General SurgeryPeking University Third HospitalBeijing100191P. R. China
- Cancer CenterPeking University Third HospitalBeijing100191P. R. China
| | - Lulu Sun
- State Key Laboratory of Women's Reproductive Health and Fertility PromotionPeking UniversityBeijing100191P. R. China
- Department of Endocrinology and MetabolismPeking University Third HospitalBeijing100191P. R. China
| | - Changtao Jiang
- Center of Basic Medical ResearchInstitute of Medical Innovation and ResearchThird HospitalPeking UniversityBeijing100191P. R. China
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesPeking University and the Key Laboratory of Molecular Cardiovascular Science (Peking University)Ministry of EducationBeijing100191P. R. China
- Center for Obesity and Metabolic Disease ResearchSchool of Basic Medical SciencesPeking UniversityBeijing100191P. R. China
| | - Zhipeng Zhang
- Department of General SurgeryPeking University Third HospitalBeijing100191P. R. China
- Cancer CenterPeking University Third HospitalBeijing100191P. R. China
| | - Wei Fu
- Department of General SurgeryPeking University Third HospitalBeijing100191P. R. China
- Cancer CenterPeking University Third HospitalBeijing100191P. R. China
| |
Collapse
|
14
|
Goyal R, Wassie MM, Winter JM, Lathlean TJ, Young GP, Symonds EL. Progress in the field of noninvasive diagnostics for colorectal cancer: a systematic review for the accuracy of blood-based biomarkers for detection of advanced pre-cancerous lesions. Expert Rev Mol Diagn 2023; 23:1233-1250. [PMID: 38044883 DOI: 10.1080/14737159.2023.2290646] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 11/22/2023] [Indexed: 12/05/2023]
Abstract
BACKGROUND Early detection of pre-cancerous adenomas through screening can reduce colorectal cancer (CRC) incidence. Fecal immunochemical tests are commonly used, but have limited sensitivity for pre-cancerous lesions. Blood-based screening may improve test sensitivity. This systematic review and meta-analysis was conducted to evaluate the accuracy of blood-based biomarkers for detection of advanced pre-cancerous lesions. RESEARCH DESIGN AND METHODS We present the accuracy of blood-based biomarkers for the detection of advanced pre-cancerous lesions. EMBASE, Web of Science and PubMed databases were searched, with study populations limited to adults diagnosed with advanced pre-cancerous lesions at colonoscopy, who had a blood-based biomarker test analyzed with reports of sensitivity and specificity. RESULTS 69 studies were identified, which assessed 133 unique biomarkers sets. The best performing test was a panel of 6 miRNAs, with a sensitivity of 95% and specificity of 90% for advanced pre-cancerous lesions. Only 6 biomarkers demonstrated sensitivity ≥ 50% and specificity ≥ 90% for the detection of advanced pre-cancerous lesions. CONCLUSION Many different blood-based biomarkers have been assessed for detection of advanced pre-cancerous lesions, but few have progressed beyond the discovery stage. While some biomarkers have reported high sensitivity and specificity, larger prospective studies in unbiased intended-use screening populations are required for validation.
Collapse
Affiliation(s)
- Rishabh Goyal
- Department of Medicine, College of Medicine and Public Health, Flinders University, Bedford Park, Australia
| | - Molla M Wassie
- Cancer Research, Flinders Health and Medical Research Institute, Flinders University, Bedford Park, Australia
| | - Jean M Winter
- Cancer Research, Flinders Health and Medical Research Institute, Flinders University, Bedford Park, Australia
| | - Timothy Jh Lathlean
- Cancer Research, Flinders Health and Medical Research Institute, Flinders University, Bedford Park, Australia
- ROSA Research Centre, South Australian Health and Medical Research Institue, Adelaide, Australia
| | - Graeme P Young
- Cancer Research, Flinders Health and Medical Research Institute, Flinders University, Bedford Park, Australia
| | - Erin L Symonds
- Cancer Research, Flinders Health and Medical Research Institute, Flinders University, Bedford Park, Australia
- Gastroenterology Department, Flinders Medical Centre, Bedford Park, Australia
| |
Collapse
|
15
|
Mokhtari K, Peymani M, Rashidi M, Hushmandi K, Ghaedi K, Taheriazam A, Hashemi M. Colon cancer transcriptome. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 180-181:49-82. [PMID: 37059270 DOI: 10.1016/j.pbiomolbio.2023.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 04/16/2023]
Abstract
Over the last four decades, methodological innovations have continuously changed transcriptome profiling. It is now feasible to sequence and quantify the transcriptional outputs of individual cells or thousands of samples using RNA sequencing (RNA-seq). These transcriptomes serve as a connection between cellular behaviors and their underlying molecular mechanisms, such as mutations. This relationship, in the context of cancer, provides a chance to unravel tumor complexity and heterogeneity and uncover novel biomarkers or treatment options. Since colon cancer is one of the most frequent malignancies, its prognosis and diagnosis seem to be critical. The transcriptome technology is developing for an earlier and more accurate diagnosis of cancer which can provide better protectivity and prognostic utility to medical teams and patients. A transcriptome is a whole set of expressed coding and non-coding RNAs in an individual or cell population. The cancer transcriptome includes RNA-based changes. The combined genome and transcriptome of a patient may provide a comprehensive picture of their cancer, and this information is beginning to affect treatment decision-making in real-time. A full assessment of the transcriptome of colon (colorectal) cancer has been assessed in this review paper based on risk factors such as age, obesity, gender, alcohol use, race, and also different stages of cancer, as well as non-coding RNAs like circRNAs, miRNAs, lncRNAs, and siRNAs. Similarly, they have been examined independently in the transcriptome study of colon cancer.
Collapse
Affiliation(s)
- Khatere Mokhtari
- Department of Modern Biology, ACECR Institute of Higher Education (Isfahan Branch), Isfahan, Iran
| | - Maryam Peymani
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, 4815733971, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, 4815733971, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Kamran Ghaedi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
16
|
Zhang X, Li B. Updates of liquid biopsy in oral cancer and multiomics analysis. Oral Dis 2023; 29:51-61. [PMID: 34716963 DOI: 10.1111/odi.14064] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/28/2021] [Accepted: 10/21/2021] [Indexed: 12/24/2022]
Abstract
Liquid biopsy is a method sampled from body fluids, such as blood, saliva, urine, pleural effusion, cerebrospinal fluid, and so on. It is minimally invasive and reproducible and therefore can build a dynamic, real-time monitoring of oral squamous cell carcinoma patient's conditions and treatment responses. Circulating tumor cells, circulating tumor DNA and exosomes are three main detection objects of liquid biopsy, having different detection methods and features involving cost, sensitivity, specificity and output. Blood and saliva are the options of liquid biopsy in oral cancer. Then we reviewed the studies of liquid biopsy in oral cancer, integrating multiomics analysis of these results. The multiomics analysis of genomics, transcriptomics, proteomics, metabolomics, and DNA methylation have shown potential for the early screening, diagnosis, staging, prognosis, personalized medicine therapy, and monitoring of recurrence (minimal residual disease). Besides, we concluded some problems to be solved, such as the lack of the standard of the measurement methods and procedures of samples, the insufficient connection among different omics, and how to improve the sensitivity and specificity. And we also put up rough assumptions to these problems. However, the analysis of multiomics of liquid biopsy in oral cancer still shows great clinical value in the diagnosis and treatment of oral squamous cell carcinoma.
Collapse
Affiliation(s)
- Xinning Zhang
- Department of Oral Pathology, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
- Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing, China
| | - Binbin Li
- Department of Oral Pathology, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
- Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing, China
| |
Collapse
|
17
|
Ibrahim J, Peeters M, Van Camp G, Op de Beeck K. Methylation biomarkers for early cancer detection and diagnosis: Current and future perspectives. Eur J Cancer 2023; 178:91-113. [PMID: 36427394 DOI: 10.1016/j.ejca.2022.10.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 11/25/2022]
Abstract
The increase in recent scientific studies on cancer biomarkers has brought great new insights into the field. Moreover, novel technological breakthroughs such as long read sequencing and microarrays have enabled high throughput profiling of many biomarkers, while advances in bioinformatic tools have made the possibility of developing highly reliable and accurate biomarkers a reality. These changes triggered renewed interest in biomarker research and provided tremendous opportunities for enhancing cancer management and improving early disease detection. DNA methylation alterations are known to accompany and contribute to carcinogenesis, making them promising biomarkers for cancer, namely due to their stability, frequency and accessibility in bodily fluids. The advent of newer minimally invasive experimental methods such as liquid biopsies provide the perfect setting for methylation-based biomarker development and application. Despite their huge potential, accurate and robust biomarkers for the conclusive diagnosis of most cancer types are still not routinely used, hence a strong need for sustained research in this field is still needed. This review provides a brief exposition of current methylation biomarkers for cancer diagnosis and early detection, including markers already in clinical use as well as various upcoming ones. It also outlines how recent big data and novel technologies will revolutionise the next generation of cancer tests in supplementing or replacing currently existing invasive techniques.
Collapse
Affiliation(s)
- Joe Ibrahim
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Prins Boudewijnlaan 43, 2650 Edegem, Belgium; Center for Oncological Research, University of Antwerp and Antwerp University Hospital, Wilrijkstraat 10, 2650 Edegem, Belgium
| | - Marc Peeters
- Center for Oncological Research, University of Antwerp and Antwerp University Hospital, Wilrijkstraat 10, 2650 Edegem, Belgium; Department of Medical Oncology, Antwerp University Hospital, Wilrijkstraat 10, 2650 Edegem, Belgium
| | - Guy Van Camp
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Prins Boudewijnlaan 43, 2650 Edegem, Belgium; Center for Oncological Research, University of Antwerp and Antwerp University Hospital, Wilrijkstraat 10, 2650 Edegem, Belgium
| | - Ken Op de Beeck
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Prins Boudewijnlaan 43, 2650 Edegem, Belgium; Center for Oncological Research, University of Antwerp and Antwerp University Hospital, Wilrijkstraat 10, 2650 Edegem, Belgium.
| |
Collapse
|
18
|
Yang X, Wen X, Guo Q, Zhang Y, Liang Z, Wu Q, Li Z, Ruan W, Ye Z, Wang H, Chen Z, Fan JB, Lan P, Liu H, Wu X. Predicting disease-free survival in colorectal cancer by circulating tumor DNA methylation markers. Clin Epigenetics 2022; 14:160. [PMID: 36457093 PMCID: PMC9714195 DOI: 10.1186/s13148-022-01383-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/19/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Recurrence represents a well-known poor prognostic factor for colorectal cancer (CRC) patients. This study aimed to establish an effective prognostic prediction model based on noninvasive circulating tumor DNA methylation markers for CRC patients receiving radical surgery. RESULTS Two methylation markers (cg11186405 and cg17296166) were identified by Cox regression and receiver operating characteristics, which could classify CRC patients into high recurrence risk and low recurrence risk group. The 3-year disease-free survival was significantly different between CRC patients with low and high recurrence risk [Training set: hazard ratio (HR) 28.776, 95% confidence interval (CI) 3.594-230.400; P = 0.002; Validation set: HR 7.796, 95% CI 1.425-42.660, P = 0.018]. The nomogram based on the above two methylation markers and TNM stage was established which demonstrated robust prognostic prediction potential, as evidenced by the decision curve analysis result. CONCLUSIONS A cell-free DNA methylation model consisting of two DNA methylation markers is a promising method for prognostic prediction in CRC patients.
Collapse
Affiliation(s)
- Xin Yang
- grid.12981.330000 0001 2360 039XDepartment of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Erheng Rd, Guangzhou, 510655 Guangdong China
| | - Xiaofeng Wen
- grid.12981.330000 0001 2360 039XDepartment of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Erheng Rd, Guangzhou, 510655 Guangdong China
| | - Qin Guo
- grid.12981.330000 0001 2360 039XDepartment of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Erheng Rd, Guangzhou, 510655 Guangdong China
| | - Yunfeng Zhang
- grid.440218.b0000 0004 1759 7210Department of the General Surgery, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020 Guangdong China
| | - Zhenxing Liang
- grid.12981.330000 0001 2360 039XDepartment of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Erheng Rd, Guangzhou, 510655 Guangdong China ,grid.12981.330000 0001 2360 039XGuangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655 Guangdong China
| | - Qian Wu
- grid.12981.330000 0001 2360 039XDepartment of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Erheng Rd, Guangzhou, 510655 Guangdong China ,grid.12981.330000 0001 2360 039XGuangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655 Guangdong China
| | - Zhihao Li
- grid.12981.330000 0001 2360 039XDepartment of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Erheng Rd, Guangzhou, 510655 Guangdong China ,grid.12981.330000 0001 2360 039XGuangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655 Guangdong China
| | - Weimei Ruan
- AnchorDx Medical Co., Ltd, Unit 502, 3rd Luoxuan Road, International Bio-Island, Guangzhou, 510300 China
| | - Zhujia Ye
- AnchorDx Medical Co., Ltd, Unit 502, 3rd Luoxuan Road, International Bio-Island, Guangzhou, 510300 China
| | - Hong Wang
- AnchorDx Medical Co., Ltd, Unit 502, 3rd Luoxuan Road, International Bio-Island, Guangzhou, 510300 China
| | - Zhiwei Chen
- AnchorDx Medical Co., Ltd, Unit 502, 3rd Luoxuan Road, International Bio-Island, Guangzhou, 510300 China
| | - Jian-Bing Fan
- grid.284723.80000 0000 8877 7471Department of Pathology, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515 China ,AnchorDx Medical Co., Ltd, Unit 502, 3rd Luoxuan Road, International Bio-Island, Guangzhou, 510300 China
| | - Ping Lan
- grid.12981.330000 0001 2360 039XDepartment of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Erheng Rd, Guangzhou, 510655 Guangdong China ,grid.12981.330000 0001 2360 039XGuangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655 Guangdong China
| | - Huashan Liu
- grid.12981.330000 0001 2360 039XDepartment of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Erheng Rd, Guangzhou, 510655 Guangdong China ,grid.12981.330000 0001 2360 039XGuangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655 Guangdong China
| | - Xianrui Wu
- grid.12981.330000 0001 2360 039XDepartment of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Erheng Rd, Guangzhou, 510655 Guangdong China ,grid.12981.330000 0001 2360 039XGuangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655 Guangdong China
| |
Collapse
|
19
|
Zhan L, Sun C, Zhang Y, Zhang Y, Jia Y, Wang X, Li F, Li D, Wang S, Yu T, Zhang J, Li D. Four methylation-driven genes detected by linear discriminant analysis model from early-stage colorectal cancer and their methylation levels in cell-free DNA. Front Oncol 2022; 12:949244. [PMID: 36158666 PMCID: PMC9491101 DOI: 10.3389/fonc.2022.949244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/12/2022] [Indexed: 12/24/2022] Open
Abstract
The process of colorectal cancer (CRC) formation is considered a typical model of multistage carcinogenesis in which aberrant DNA methylation plays an important role. In this study, 752 methylation-driven genes (MDGs) were identified by the MethylMix package based on methylation and gene expression data of CRC in The Cancer Genome Atlas (TCGA). Iterative recursive feature elimination (iRFE) based on linear discriminant analysis (LDA) was used to determine the minimum MDGs (iRFE MDGs), which could distinguish between cancer and cancer-adjacent tissues. Further analysis indicated that the changes in methylation levels of the four iRFE MDGs, ADHFE1-Cluster1, CNRIP1-Cluster1, MAFB, and TNS4, occurred in adenoma tissues, while changes did not occur until stage IV in cell-free DNA. Furthermore, the methylation levels of iRFE MDGs were correlated with the genes involved in the reprogramming process of somatic cells to pluripotent stem cells, which is considered the common signature of cancer cells and embryonic stem cells. The above results indicated that the four iRFE MDGs may play roles in the early stage of colorectal carcinogenesis and highlighted the complicated relationship between tissue DNA and cell-free DNA (cfDNA).
Collapse
Affiliation(s)
- Lei Zhan
- Medical Oncology Department of Gastrointestinal Cancer, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Changjian Sun
- Clinical Laboratory, Air Force Hospital of Northern Theater, PLA, Shenyang, China
| | - Yu Zhang
- Clinical Laboratory, Air Force Hospital of Northern Theater, PLA, Shenyang, China
| | - Yue Zhang
- Clinical Laboratory, Air Force Hospital of Northern Theater, PLA, Shenyang, China
| | - Yuzhe Jia
- Clinical Laboratory, Air Force Hospital of Northern Theater, PLA, Shenyang, China
| | - Xiaoyan Wang
- Clinical Laboratory, Air Force Hospital of Northern Theater, PLA, Shenyang, China
| | - Feifei Li
- Medical Oncology Department of Gastrointestinal Cancer, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Donglin Li
- Orthopedics Department, Air Force Hospital of Northern Theater, PLA, Shenyang, China
| | - Shen Wang
- Department of Ultrasound and Special Diagnosis, Air Force Hospital of Northern Theater, PLA, Shenyang, China
| | - Tao Yu
- Nursing Department, Air Force Medical Center, PLA, Beijing, China
| | - Jingdong Zhang
- Medical Oncology Department of Gastrointestinal Cancer, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Deyang Li
- Clinical Laboratory, Air Force Hospital of Northern Theater, PLA, Shenyang, China
- *Correspondence: Deyang Li,
| |
Collapse
|
20
|
Lamare FA, Khongsti S, Marthong L, Ghosh S, Chenkual S, Dkhar H, Maitra A, Ghosh S. Genome-wide DNA methylation profiling of stomach cancer in the ethnic population of Mizoram, North East India. Genomics 2022; 114:110478. [PMID: 36064073 DOI: 10.1016/j.ygeno.2022.110478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/10/2022] [Accepted: 08/31/2022] [Indexed: 12/01/2022]
Abstract
Stomach cancer is the fifth most common cancer in terms of prevalence and incidence and the fourth leading cause of mortality in men and women worldwide. It is well-established that aberrant DNA methylation in cells can lead to carcinogenesis. The primary objective of our study was to investigate the aberrant DNA methylation status of genes associated with stomach cancer with a particular reference to the ethnic population of Mizoram, North East India. The site-level analysis identified 2883 CpG sites differentially methylated, representing ~922 genes. Out of which 476 Differentially Methylated Positions (DMPs) were promoter-associated, 452 DMPs were hypermethylated, and 24 were hypomethylated. The region-level analysis identified 462 Differentially Methylated Regions (DMRs) corresponding to ~320 genes, of which ~281 genes were hypermethylated and ~ 40 genes were hypomethylated. TCGA analysis showed that some of the genes had been previously implicated in other cancers including stomach cancer. Five hypermethylated genes were selected as candidate genes for further investigations and they have shown to be novel and could serve as candidate hypermethylation biomarkers for stomach cancer in this particular ethnic group.
Collapse
Affiliation(s)
- F A Lamare
- Department of Zoology, North-Eastern Hill University (NEHU), Shillong, India
| | - S Khongsti
- Department of Zoology, North-Eastern Hill University (NEHU), Shillong, India
| | - L Marthong
- Department of Zoology, North-Eastern Hill University (NEHU), Shillong, India
| | - S Ghosh
- National Institute of Biomedical Genomics (NIBMG), Kalyani, West Bengal, India
| | | | - H Dkhar
- Nazareth Hospital, Shillong, India
| | - A Maitra
- National Institute of Biomedical Genomics (NIBMG), Kalyani, West Bengal, India
| | - S Ghosh
- Department of Zoology, North-Eastern Hill University (NEHU), Shillong, India.
| |
Collapse
|
21
|
Prostate Cancer Secretome and Membrane Proteome from Pten Conditional Knockout Mice Identify Potential Biomarkers for Disease Progression. Int J Mol Sci 2022; 23:ijms23169224. [PMID: 36012492 PMCID: PMC9409251 DOI: 10.3390/ijms23169224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 12/24/2022] Open
Abstract
Prostate cancer (PCa) is the second most common cause of mortality among men. Tumor secretome is a promising strategy for understanding the biology of tumor cells and providing markers for disease progression and patient outcomes. Here, transcriptomic-based secretome analysis was performed on the PCa tumor transcriptome of Genetically Engineered Mouse Model (GEMM) Pb-Cre4/Ptenf/f mice to identify potentially secreted and membrane proteins—PSPs and PMPs. We combined a selection of transcripts from the GSE 94574 dataset and a list of protein-coding genes of the secretome and membrane proteome datasets using the Human Protein Atlas Secretome. Notably, nine deregulated PMPs and PSPs were identified in PCa (DMPK, PLN, KCNQ5, KCNQ4, MYOC, WIF1, BMP7, F3, and MUC1). We verified the gene expression patterns of Differentially Expressed Genes (DEGs) in normal and tumoral human samples using the GEPIA tool. DMPK, KCNQ4, and WIF1 targets were downregulated in PCa samples and in the GSE dataset. A significant association between shorter survival and KCNQ4, PLN, WIF1, and F3 expression was detected in the MSKCC dataset. We further identified six validated miRNAs (mmu-miR-6962-3p, mmu-miR- 6989-3p, mmu-miR-6998-3p, mmu-miR-5627-5p, mmu-miR-15a-3p, and mmu-miR-6922-3p) interactions that target MYOC, KCNQ5, MUC1, and F3. We have characterized the PCa secretome and membrane proteome and have spotted new dysregulated target candidates in PCa.
Collapse
|
22
|
Lv L, Ma J, Wu L, Zhang C, Wang Y, Wang G. New Studies of the Aberrant Alterations in Fibrillin-1 Methylation During Colorectal Cancer Development. Front Oncol 2022; 12:862887. [PMID: 35515111 PMCID: PMC9067271 DOI: 10.3389/fonc.2022.862887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/04/2022] [Indexed: 11/26/2022] Open
Abstract
Background Fibrillin-1 (FBN1) methylation risk from control to colorectal cancer (CRC), the variation regularities of FBN1 methylation, and DNA methyltransferase (DNMT) catalyzed with FBN1 methylation had not been reported yet; these were all studied in this paper. Methods FBN1 methylation roles were investigated with big data and meta-analysis. Results The 6 independent studies were searched including 702 tissue and 448 feces. FBN1 methylation frequencies of CRC, adenoma or polyp, and control in tissue were 79.1%, 69.4%, and 2.7%, respectively; those in feces were 74.6%, 50.7%, and 10.8%, respectively. FBN1 methylation of control samples was used as a standard reference; this study showed that ORs (95% CI) of FBN1 methylation in CRC and control tissues were 124.79 (62.86-248.35); those in feces were detected to be 30.87 (16.48-57.85). FBN1 methylation risk in tissue was higher than that in feces; there was a quadratic equation between the methylation rate of tissue and that of feces. There was another quadratic curve in the variation process of FBN1 methylation; this curve reflected the overall metabolism regularity of DNMT. Conclusions The transcriptional inactivation of FBN1 gene might start from normal colonic epithelium; the quadratic curve of FBN1 methylation catalyzed by DNMT can gradually produce powerful strength, accelerate expansion, and eventually lead to CRC. The overall metabolism regularity of DNMT maintains the changing process of FBN1 methylation; it has the changing feature of the same quadratic curve. FBN1 methylation is a promising biomarker. FBN1 methylation risk size in feces reflects that in tissue in non-invasive detection.
Collapse
Affiliation(s)
- Ling Lv
- Department of Thoracic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jianzhong Ma
- School of Business, Xianda College of Economics & Humanities, Shanghai International Studies University, Shanghai, China
| | - Lina Wu
- Department of Medical Laboratory, Shengjing Hospital of China Medical University, Shenyang, China
| | - Chao Zhang
- School of Business, Xianda College of Economics & Humanities, Shanghai International Studies University, Shanghai, China
| | - Yueping Wang
- Department of Infection Diseases, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Guang Wang
- Hepatobiliary Surgery Department, The First Affiliated Hospital, China Medical University, Shenyang, China
| |
Collapse
|
23
|
Müller D, Győrffy B. DNA methylation-based diagnostic, prognostic, and predictive biomarkers in colorectal cancer. Biochim Biophys Acta Rev Cancer 2022; 1877:188722. [PMID: 35307512 DOI: 10.1016/j.bbcan.2022.188722] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/21/2022] [Accepted: 03/13/2022] [Indexed: 12/12/2022]
Abstract
DNA methylation is an epigenetic mechanism regulating gene expression. Changes in DNA methylation were suggested to be useful biomarkers for diagnosis, and for the determination of prognosis and treatment response. Here, we provide an overview of methylation-based biomarkers in colorectal cancer. First, we start with the two methylation-based diagnostic biomarkers already approved for colorectal cancer, SEPT9 and the combination of NDRG4 and BMP3. Then, we provide a list-based overview of new biomarker candidates depending on the sample source including plasma, stool, urine, and surgically removed tumor tissues. The most often identified markers like SDC2, VIM, APC, MGMT, SFRP1, SFRP2, and NDRG4 have distinct functions previously linked to tumor progression. Although numerous studies have identified tumor-specific methylation changes, most of these alterations were observed in a single study only. The lack of validation in independent samples means low reproducibility and is a major limitation. The genome-wide determination of methylation status (methylome) can provide data to solve these issues. In the third section of the review, methylome studies focusing on different aspects related to CRC, including precancerous lesions, CRC-specific changes, molecular subtypes, aging, and chemotherapy response are summarized. Notably, techniques simultaneously analyzing a large set of regions can also uncover epigenetic regulation of genes which have not yet been associated with tumorigenesis previously. A remaining constraint of studies published to date is the low patient number utilized in these preventing the identification of clinically valuable biomarker candidates. Either future large-scale studies or the integration of already available methylome-level data will be necessary to uncover biomarkers sufficiently robust for clinical application.
Collapse
Affiliation(s)
- Dalma Müller
- Dept. of Bioinformatics, Semmelweis University, Budapest, Hungary; Cancer Biomarker Research Group, RCNS, Budapest, Hungary
| | - Balázs Győrffy
- Dept. of Bioinformatics, Semmelweis University, Budapest, Hungary; Cancer Biomarker Research Group, RCNS, Budapest, Hungary.
| |
Collapse
|
24
|
Zhu G, Wang Y, Wang W, Shang F, Pei B, Zhao Y, Kong D, Fan Z. Untargeted GC-MS-Based Metabolomics for Early Detection of Colorectal Cancer. Front Oncol 2021; 11:729512. [PMID: 34804922 PMCID: PMC8599589 DOI: 10.3389/fonc.2021.729512] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/18/2021] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the most common malignant gastrointestinal cancers in the world with a 5-year survival rate of approximately 68%. Although researchers accumulated many scientific studies, its pathogenesis remains unclear yet. Detecting and removing these malignant polyps promptly is the most effective method in CRC prevention. Therefore, the analysis and disposal of malignant polyps is conducive to preventing CRC. METHODS In the study, metabolic profiling as well as diagnostic biomarkers for CRC was investigated using untargeted GC-MS-based metabolomics methods to explore the intervention approaches. In order to better characterize the variations of tissue and serum metabolic profiles, orthogonal partial least-square discriminant analysis was carried out to further identify significant features. The key differences in tR-m/z pairs were screened by the S-plot and VIP value from OPLS-DA. Identified potential biomarkers were leading in the KEGG in finding interactions, which show the relationships among these signal pathways. RESULTS Finally, 17 tissue and 13 serum candidate ions were selected based on their corresponding retention time, p-value, m/z, and VIP value. Simultaneously, the most influential pathways contributing to CRC were inositol phosphate metabolism, primary bile acid biosynthesis, phosphatidylinositol signaling system, and linoleic acid metabolism. CONCLUSIONS The preliminary results suggest that the GC-MS-based method coupled with the pattern recognition method and understanding these cancer-specific alterations could make it possible to detect CRC early and aid in the development of additional treatments for the disease, leading to improvements in CRC patients' quality of life.
Collapse
Affiliation(s)
- Guoxue Zhu
- Department of Neurology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yi Wang
- Department of Anorectal Medicine, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wang Wang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Fang Shang
- Department of Anorectal Medicine, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Bin Pei
- Department of Anorectal Medicine, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yang Zhao
- Department of Neurology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Desong Kong
- Chinese Medicine Modernization and Big Data Research Center, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhimin Fan
- Department of Anorectal Medicine, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
25
|
Li L, Ye Z, Yang S, Yang H, Jin J, Zhu Y, Tao J, Chen S, Xu J, Liu Y, Liang W, Wang B, Yang M, Huang Q, Chen Z, Li W, Fan JB, Liu D. Diagnosis of pulmonary nodules by DNA methylation analysis in bronchoalveolar lavage fluids. Clin Epigenetics 2021; 13:185. [PMID: 34620221 PMCID: PMC8499516 DOI: 10.1186/s13148-021-01163-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/30/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Lung cancer is the leading cause of cancer-related mortality. The alteration of DNA methylation plays a major role in the development of lung cancer. Methylation biomarkers become a possible method for lung cancer diagnosis. RESULTS We identified eleven lung cancer-specific methylation markers (CDO1, GSHR, HOXA11, HOXB4-1, HOXB4-2, HOXB4-3, HOXB4-4, LHX9, MIR196A1, PTGER4-1, and PTGER4-2), which could differentiate benign and malignant pulmonary nodules. The methylation levels of these markers are significantly higher in malignant tissues. In bronchoalveolar lavage fluid (BALF) samples, the methylation signals maintain the same differential trend as in tissues. An optimal 5-marker model for pulmonary nodule diagnosis (malignant vs. benign) was developed from all possible combinations of the eleven markers. In the test set (57 tissue and 71 BALF samples), the area under curve (AUC) value achieves 0.93, and the overall sensitivity is 82% at the specificity of 91%. In an independent validation set (111 BALF samples), the AUC is 0.82 with a specificity of 82% and a sensitivity of 70%. CONCLUSIONS This model can differentiate pulmonary adenocarcinoma and squamous carcinoma from benign diseases, especially for infection, inflammation, and tuberculosis. The model's performance is not affected by gender, age, smoking history, or the solid components of nodules.
Collapse
Affiliation(s)
- Lei Li
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, No.37 Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Zhujia Ye
- AnchorDx. Medical Co., Ltd. Unit 502, 3rd Luoxuan Road, International Bio-Island, Guangzhou, 510300, Guangdong, China
| | - Sai Yang
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, No.37 Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Hao Yang
- AnchorDx. Medical Co., Ltd. Unit 502, 3rd Luoxuan Road, International Bio-Island, Guangzhou, 510300, Guangdong, China
| | - Jing Jin
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, No.37 Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Yingying Zhu
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, No.37 Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Jinsheng Tao
- AnchorDx. Medical Co., Ltd. Unit 502, 3rd Luoxuan Road, International Bio-Island, Guangzhou, 510300, Guangdong, China
| | - Siyu Chen
- AnchorDx. Medical Co., Ltd. Unit 502, 3rd Luoxuan Road, International Bio-Island, Guangzhou, 510300, Guangdong, China
| | - Jiehan Xu
- AnchorDx. Medical Co., Ltd. Unit 502, 3rd Luoxuan Road, International Bio-Island, Guangzhou, 510300, Guangdong, China
| | - Yanying Liu
- AnchorDx. Medical Co., Ltd. Unit 502, 3rd Luoxuan Road, International Bio-Island, Guangzhou, 510300, Guangdong, China
| | - Weihe Liang
- AnchorDx. Medical Co., Ltd. Unit 502, 3rd Luoxuan Road, International Bio-Island, Guangzhou, 510300, Guangdong, China
| | - Bo Wang
- AnchorDx. Medical Co., Ltd. Unit 502, 3rd Luoxuan Road, International Bio-Island, Guangzhou, 510300, Guangdong, China
| | - Mengzhu Yang
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, No.37 Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Qiaoyun Huang
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, No.37 Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Zhiwei Chen
- AnchorDx. Medical Co., Ltd. Unit 502, 3rd Luoxuan Road, International Bio-Island, Guangzhou, 510300, Guangdong, China.
- AnchorDx, Inc., 46305 Landing Pkwy, Fremont, CA, 94538, USA.
| | - Weimin Li
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, No.37 Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan, China.
| | - Jian-Bing Fan
- AnchorDx. Medical Co., Ltd. Unit 502, 3rd Luoxuan Road, International Bio-Island, Guangzhou, 510300, Guangdong, China.
- Department of Pathology, School of Basic Medical Science, Southern Medical University, 1838 ShaTai Road, Guangzhou, 510515, China.
| | - Dan Liu
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, No.37 Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
26
|
Anghel SA, Ioniță-Mîndrican CB, Luca I, Pop AL. Promising Epigenetic Biomarkers for the Early Detection of Colorectal Cancer: A Systematic Review. Cancers (Basel) 2021; 13:4965. [PMID: 34638449 PMCID: PMC8508438 DOI: 10.3390/cancers13194965] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/22/2021] [Accepted: 09/29/2021] [Indexed: 12/12/2022] Open
Abstract
In CRC, screening compliance is decreased due to the experienced discomfort associated with colonoscopy, although this method is the gold standard in terms of sensitivity and specificity. Promoter DNA methylation (hypomethylation or hypermethylation) has been linked to all CRC stages. Study objectives: to systematically review the current knowledge on approved biomarkers, reveal new potential ones, and inspect tactics that can improve performance. This research was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines; the risk of bias was evaluated using the revised Quality Assessment of Diagnostic Accuracy Studies criteria (QUADAS-2). The Web of Science® Core Collection, MEDLINE® and Scopus® databases were searched for original articles published in peer-reviewed journals with the specific keywords "colorectal cancer", "early detection", "early-stage colorectal cancer", "epigenetics", "biomarkers", "DNA methylation biomarkers", "stool or blood or tissue or biopsy", "NDRG4", "BMP3", "SEPT9", and "SDC2". Based on eligibility criteria, 74 articles were accepted for analysis. mSDC2 and mSEPT9 were frequently assessed in studies, alone or together as part of the ColoDefense panel test-the latter with the greatest performance. mBMP3 may not be an appropriate marker for detecting CRC. A panel of five methylated binding sites of the CTCF gene holds the promise for early-stage specific detection of CRC. CRC screening compliance and accuracy can be enhanced by employing a stool mt-DNA methylation test.
Collapse
Affiliation(s)
- Sorina Andreea Anghel
- Department of Clinical Laboratory, Food Safety, "Carol Davila" University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania
- Department of Molecular Cell Biology, Institute of Biochemistry, Splaiul Independentei 296, 060031 Bucharest, Romania
| | - Corina-Bianca Ioniță-Mîndrican
- Department of Clinical Laboratory, Food Safety, "Carol Davila" University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania
- Department of Toxicology, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, 020945 Bucharest, Romania
| | - Ioana Luca
- Department of Clinical Laboratory, Food Safety, "Carol Davila" University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania
| | - Anca Lucia Pop
- Department of Clinical Laboratory, Food Safety, "Carol Davila" University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania
| |
Collapse
|