1
|
Gristina V, Russo G, Bazan Russo TD, Busuito G, Iannì G, Pisapia P, Scimone C, Palumbo L, Incorvaia L, Badalamenti G, Galvano A, Bazan V, Russo A, Troncone G, Malapelle U, Pepe F. Recent advances in the use of liquid biopsy for the diagnosis and treatment of lung cancer. Expert Rev Respir Med 2024:1-11. [PMID: 39491533 DOI: 10.1080/17476348.2024.2423824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/28/2024] [Indexed: 11/05/2024]
Abstract
INTRODUCTION In the era of precision medicine, liquid biopsy rapidly emerges as an integrative diagnostic tool to successfully stratify solid tumor patients in accordance with molecular fingerprinting. As the matter of fact, a plethora of analytes may be isolated from liquid biosources supporting the potential application of liquid biopsy in several clinical scenarios. Despite this promising role, liquid biopsy is drastically affected by low abundance of analytes in biological matrix requiring highly sensitive technologies, trained personnel, and optimized diagnostic procedures to successfully administrate this revolutionary diagnostic tool in clinical practice. AREAS COVERED This review aims to investigate the recent advancements in technical approaches available to manage liquid biopsy samples, particularly focusing on their application in LC diagnosis and treatment. EXPERT OPINION The rapidly evolving scenario of liquid biopsy-based approaches is revolutionizing clinical administration of lung cancer patients. Of note, the integration of genomic, epigenomic, and transcriptomic markers lays the basis for 'comprehensive' molecular fingerprinting of lung cancer patients. Here, the next-generation technologies are fundamental in molecular profiling in diagnostic routine biofluids.
Collapse
Affiliation(s)
- Valerio Gristina
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
| | - Gianluca Russo
- Department of Public Health, University Federico II of Naples, Naples, Italy
| | - Tancredi Didier Bazan Russo
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
| | - Giulia Busuito
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
| | - Giuliana Iannì
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
| | - Pasquale Pisapia
- Department of Public Health, University Federico II of Naples, Naples, Italy
| | - Claudia Scimone
- Department of Public Health, University Federico II of Naples, Naples, Italy
| | - Lucia Palumbo
- Department of Public Health, University Federico II of Naples, Naples, Italy
| | - Lorena Incorvaia
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
| | - Giuseppe Badalamenti
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
| | - Antonio Galvano
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
| | - Viviana Bazan
- Department of Biomedicine, Neuroscience and Advanced Diagnostic (Bi.N.D.), University of Palermo, Palermo, Italy
| | - Antonio Russo
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
| | - Giancarlo Troncone
- Department of Public Health, University Federico II of Naples, Naples, Italy
| | - Umberto Malapelle
- Department of Public Health, University Federico II of Naples, Naples, Italy
| | - Francesco Pepe
- Department of Public Health, University Federico II of Naples, Naples, Italy
| |
Collapse
|
2
|
Maqueda JJ, De Feo A, Scotlandi K. Evaluating Circulating Biomarkers for Diagnosis, Prognosis, and Tumor Monitoring in Pediatric Sarcomas: Recent Advances and Future Directions. Biomolecules 2024; 14:1306. [PMID: 39456239 PMCID: PMC11506719 DOI: 10.3390/biom14101306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/10/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Pediatric sarcomas present a significant challenge in oncology. There is an urgent need for improved therapeutic strategies for high-risk patients and better management of long-term side effects for those who survive the disease. Liquid biopsy is emerging as a promising tool to optimize treatment in these patients by offering non-invasive, repeatable assessments of disease status. Circulating biomarkers can provide valuable insights into tumor genetics and treatment response, potentially facilitating early diagnosis and dynamic disease monitoring. This review examines the potential of liquid biopsies, focusing on circulating biomarkers in the most common pediatric sarcomas, i.e., osteosarcoma, Ewing sarcoma, and rhabdomyosarcoma. We also highlight the current research efforts and the necessary advancements required before these technologies can be widely adopted in clinical practice.
Collapse
Affiliation(s)
- Joaquín J. Maqueda
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (A.D.F.); (K.S.)
| | | | | |
Collapse
|
3
|
Juškevičiūtė E, Neuberger E, Eimantas N, Heinkel K, Simon P, Brazaitis M. Cell-free DNA kinetics in response to muscle-damaging exercise: A drop jump study. Exp Physiol 2024; 109:1341-1352. [PMID: 38875105 PMCID: PMC11291858 DOI: 10.1113/ep091986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 05/24/2024] [Indexed: 06/16/2024]
Abstract
A significant increase in circulating cell-free DNA (cfDNA) occurs with physical exercise, which depends on the type of exertion and the duration. The aims of this study were as follows: (1) to investigate the time course of cfDNA and conventional markers of muscle damage from immediately after to 96 h after muscle-damaging exercise; and (2) to investigate the relationship between cfDNA and indicators of primary (low-frequency fatigue and maximal voluntary isometric contraction) and secondary (creatine kinase and delayed-onset muscle soreness) muscle damage in young healthy males. Fourteen participants (age, 22 ± 2 years; weight, 84.4 ± 11.2 kg; height, 184.0 ± 7.4 cm) performed 50 intermittent drop jumps at 20 s intervals. We measured cfDNA and creatine kinase concentrations, maximal voluntary isometric contraction torque, low-frequency fatigue and delayed-onset muscle soreness before and at several time points up to 96 h after exercise. Plasma cfDNA levels increased from immediately postexercise until 72 h postexercise (P < 0.01). Elevation of postexercise cfDNA was correlated with both more pronounced low-frequency fatigue (r = -0.52, P = 3.4 × 10-11) and delayed-onset muscle soreness (r = 0.32, P = 0.00019). Levels of cfDNA change in response to severe primary and secondary muscle damage after exercise. Levels of cfDNA exhibit a stronger correlation with variables related to primary muscle damage than to secondary muscle damage, suggesting that cfDNA is a more sensitive marker of acute loss of muscle function than of secondary inflammation or damaged muscle fibres.
Collapse
Affiliation(s)
- Ema Juškevičiūtė
- Institute of Sport Science and InnovationsLithuanian Sports UniversityKaunasLithuania
- Department of Sports Medicine, Disease Prevention and RehabilitationJohannes Gutenberg University MainzMainzGermany
| | - Elmo Neuberger
- Department of Sports Medicine, Disease Prevention and RehabilitationJohannes Gutenberg University MainzMainzGermany
| | - Nerijus Eimantas
- Institute of Sport Science and InnovationsLithuanian Sports UniversityKaunasLithuania
| | - Kirsten Heinkel
- Department of Sports Medicine, Disease Prevention and RehabilitationJohannes Gutenberg University MainzMainzGermany
| | - Perikles Simon
- Department of Sports Medicine, Disease Prevention and RehabilitationJohannes Gutenberg University MainzMainzGermany
| | - Marius Brazaitis
- Institute of Sport Science and InnovationsLithuanian Sports UniversityKaunasLithuania
| |
Collapse
|
4
|
Drexler R, Khatri R, Sauvigny T, Mohme M, Maire CL, Ryba A, Zghaibeh Y, Dührsen L, Salviano-Silva A, Lamszus K, Westphal M, Gempt J, Wefers AK, Neumann JE, Bode H, Hausmann F, Huber TB, Bonn S, Jütten K, Delev D, Weber KJ, Harter PN, Onken J, Vajkoczy P, Capper D, Wiestler B, Weller M, Snijder B, Buck A, Weiss T, Göller PC, Sahm F, Menstel JA, Zimmer DN, Keough MB, Ni L, Monje M, Silverbush D, Hovestadt V, Suvà ML, Krishna S, Hervey-Jumper SL, Schüller U, Heiland DH, Hänzelmann S, Ricklefs FL. A prognostic neural epigenetic signature in high-grade glioma. Nat Med 2024; 30:1622-1635. [PMID: 38760585 PMCID: PMC11186787 DOI: 10.1038/s41591-024-02969-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 04/03/2024] [Indexed: 05/19/2024]
Abstract
Neural-tumor interactions drive glioma growth as evidenced in preclinical models, but clinical validation is limited. We present an epigenetically defined neural signature of glioblastoma that independently predicts patients' survival. We use reference signatures of neural cells to deconvolve tumor DNA and classify samples into low- or high-neural tumors. High-neural glioblastomas exhibit hypomethylated CpG sites and upregulation of genes associated with synaptic integration. Single-cell transcriptomic analysis reveals a high abundance of malignant stemcell-like cells in high-neural glioblastoma, primarily of the neural lineage. These cells are further classified as neural-progenitor-cell-like, astrocyte-like and oligodendrocyte-progenitor-like, alongside oligodendrocytes and excitatory neurons. In line with these findings, high-neural glioblastoma cells engender neuron-to-glioma synapse formation in vitro and in vivo and show an unfavorable survival after xenografting. In patients, a high-neural signature is associated with decreased overall and progression-free survival. High-neural tumors also exhibit increased functional connectivity in magnetencephalography and resting-state magnet resonance imaging and can be detected via DNA analytes and brain-derived neurotrophic factor in patients' plasma. The prognostic importance of the neural signature was further validated in patients diagnosed with diffuse midline glioma. Our study presents an epigenetically defined malignant neural signature in high-grade gliomas that is prognostically relevant. High-neural gliomas likely require a maximized surgical resection approach for improved outcomes.
Collapse
Affiliation(s)
- Richard Drexler
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Neurology, Stanford University, Stanford, CA, USA
| | - Robin Khatri
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Sauvigny
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Malte Mohme
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Cecile L Maire
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alice Ryba
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yahya Zghaibeh
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lasse Dührsen
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Amanda Salviano-Silva
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katrin Lamszus
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Manfred Westphal
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jens Gempt
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Annika K Wefers
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julia E Neumann
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Molecular Neurobiology Hamburg (ZMNH), University Hospital Hamburg Eppendorf, Hamburg, Germany
| | - Helena Bode
- Research Institute Children's Cancer Center Hamburg, Hamburg, Germany
| | - Fabian Hausmann
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias B Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Bonn
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kerstin Jütten
- Department of Neurosurgery, University Hospital Aachen, Aachen, Germany
| | - Daniel Delev
- Department of Neurosurgery, University Hospital Aachen, Aachen, Germany
- Department of Neurosurgery, University Clinic Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Katharina J Weber
- Neurological Institute (Edinger Institute), University Hospital Frankfurt, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- University Cancer Center (UCT) Frankfurt, Frankfurt am Main, Germany
| | - Patrick N Harter
- Neurological Institute (Edinger Institute), University Hospital Frankfurt, Frankfurt am Main, Germany
- Institute of Neuropathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Julia Onken
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - David Capper
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Benedikt Wiestler
- Department of Neuroradiology, Klinikum rechts der Isar, School of Medicine, Technical University Munich, Munich, Germany
| | - Michael Weller
- Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich, Zurich, Switzerland
- Department of Neurology, University of Zürich, Zurich, Switzerland
| | - Berend Snijder
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Alicia Buck
- Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich, Zurich, Switzerland
- Department of Neurology, University of Zürich, Zurich, Switzerland
| | - Tobias Weiss
- Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich, Zurich, Switzerland
- Department of Neurology, University of Zürich, Zurich, Switzerland
| | - Pauline C Göller
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Felix Sahm
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Joelle Aline Menstel
- Department of Neurosurgery, Medical Center University of Freiburg, Freiburg, Germany
| | - David Niklas Zimmer
- Department of Neurosurgery, Medical Center University of Freiburg, Freiburg, Germany
| | | | - Lijun Ni
- Department of Neurology, Stanford University, Stanford, CA, USA
| | - Michelle Monje
- Department of Neurology, Stanford University, Stanford, CA, USA
| | - Dana Silverbush
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Volker Hovestadt
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Mario L Suvà
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Saritha Krishna
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Shawn L Hervey-Jumper
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Ulrich Schüller
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children's Cancer Center Hamburg, Hamburg, Germany
- Department of Pediatric Hematology and Oncology, Research Institute Children's Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dieter H Heiland
- Department of Neurosurgery, University Clinic Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
- Department of Neurosurgery, Medical Center University of Freiburg, Freiburg, Germany
- Translational Neurosurgery, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
| | - Sonja Hänzelmann
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Franz L Ricklefs
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
5
|
Ezegbogu M, Wilkinson E, Reid G, Rodger EJ, Brockway B, Russell-Camp T, Kumar R, Chatterjee A. Cell-free DNA methylation in the clinical management of lung cancer. Trends Mol Med 2024; 30:499-515. [PMID: 38582623 DOI: 10.1016/j.molmed.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 04/08/2024]
Abstract
The clinical use of cell-free DNA (cfDNA) methylation in managing lung cancer depends on its ability to differentiate between malignant and healthy cells, assign methylation changes to specific tissue sources, and elucidate opportunities for targeted therapy. From a technical standpoint, cfDNA methylation analysis is primed as a potential clinical tool for lung cancer screening, early diagnosis, prognostication, and treatment, pending the outcome of elaborate validation studies. Here, we discuss the current state of the art in cfDNA methylation analysis, examine the unique features and limitations of these new methods in a clinical context, propose two models for applying cfDNA methylation data for lung cancer screening, and discuss future research directions.
Collapse
Affiliation(s)
- Mark Ezegbogu
- Department of Pathology, Dunedin School of Medicine, University of Otago, New Zealand
| | - Emma Wilkinson
- Department of Pathology, Dunedin School of Medicine, University of Otago, New Zealand
| | - Glen Reid
- Department of Pathology, Dunedin School of Medicine, University of Otago, New Zealand
| | - Euan J Rodger
- Department of Pathology, Dunedin School of Medicine, University of Otago, New Zealand
| | - Ben Brockway
- Department of Medicine, Dunedin School of Medicine, University of Otago, New Zealand
| | - Takiwai Russell-Camp
- Department of Medicine, Dunedin School of Medicine, University of Otago, New Zealand
| | - Rajiv Kumar
- St George's Cancer Care Centre, 131 Leinster Road, Christchurch, 8014, New Zealand
| | - Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, New Zealand; SoHST Faculty, UPES University, Dehradun 248007, India.
| |
Collapse
|
6
|
Juškevičiūtė E, Neuberger E, Eimantas N, Venckunas T, Kamandulis S, Simon P, Brazaitis M. Three-week sprint interval training (SIT) reduces cell-free DNA and low-frequency fatigue but does not induce VO2max improvement in older men. Eur J Appl Physiol 2024; 124:1297-1309. [PMID: 38015284 DOI: 10.1007/s00421-023-05366-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 10/29/2023] [Indexed: 11/29/2023]
Abstract
PURPOSE This study aimed to investigate the impact of sprint interval training (SIT) on both the acute and 3-week modulations of cell-free DNA (cfDNA), as well as its association with neuromuscular fatigue and physical performance in healthy young and old men. METHODS Ten young (20-25 year old) and nine elderly (63-72 year old) healthy men performed nine SIT sessions consisting of 4-to-6-all-out cycling repetitions of 30 s interspaced with 4-min rest intervals. We compared the maximal voluntary contractions torque, central activation ratio, low-frequency fatigue (LFF), and cfDNA concentrations between the groups before, immediately after, 1 h after, and 24 h after the first and ninth SIT sessions. RESULTS The plasma cfDNA levels were increased post-exercise (from 1.4 ± 0.258 to 1.91 ± 0.278 ng/ml (P < 0.01) on a log10 scale), without significant differences between the groups. However, older individuals showed a slight decrease in the baseline cfDNA values, from 1.39 ± 0.176 to 1.29 ± 0.085 ng/ml on a log10 scale, after 3 weeks (P = 0.043). Importantly, the elevation of the post-exercise cfDNA values was correlated with an increase in LFF in both groups. Three weeks of SIT induced an improvement in the recovery of LFF (main session effect, P = 0.0029); however, only the young group showed an increase in aerobic capacity (VO2max) (from 40.8 ± 6.74 to 43.0 ± 5.80 ml/kg/min, P = 0.0039). CONCLUSION Three weeks of SIT diminished the baseline cfDNA values in the old group, together with an improvement in the recovery of LFF. However, VO2max was increased only in the young group.
Collapse
Affiliation(s)
- Ema Juškevičiūtė
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania.
- Department of Sports Medicine, Prevention and Rehabilitation, Johannes Gutenberg University Mainz, Mainz, Germany.
| | - Elmo Neuberger
- Department of Sports Medicine, Prevention and Rehabilitation, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Nerijus Eimantas
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - Tomas Venckunas
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - Sigitas Kamandulis
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - Perikles Simon
- Department of Sports Medicine, Prevention and Rehabilitation, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Marius Brazaitis
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania.
| |
Collapse
|
7
|
Terp SK, Pedersen IS, Stoico MP. Extraction of Cell-Free DNA: Evaluation of Efficiency, Quantity, and Quality. J Mol Diagn 2024; 26:310-319. [PMID: 38336350 DOI: 10.1016/j.jmoldx.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/03/2024] [Accepted: 01/10/2024] [Indexed: 02/12/2024] Open
Abstract
Cell-free DNA (cfDNA) serves as a valuable biomarker for early disease detection and monitoring. However, the use of cfDNA for analysis faces challenges owing to general low but variable abundance and fragmentation. Preanalytical factors, including cfDNA extraction, impact cfDNA quality and quantity. Efficient and robust cfDNA extraction is essential for reliable results in downstream applications, and various commercial extraction methods exist, each with trade-offs. To aid researchers and clinicians in choosing the proper cfDNA extraction method, manual, semiautomated, and automated methods were evaluated, including the QIAamp Circulating Nucleic Acid Kit (manual and QIAcube), QIAamp MinElute ccfDNA Kit (QIAcube), and QIAsymphony DSP Circulating DNA Kit (QIAsymphony). For each extraction method, cfDNA was extracted on two separate days, using samples obtained from 18 healthy donors. This study assessed extraction efficiency, quantity, and quality using droplet digital PCR and TapeStation. The QIAamp Circulating Nucleic Acid Kit, both manual and semiautomated, outperformed the QIAamp MinElute ccfDNA Kit (QIAcube) and QIAsymphony DSP Circulating DNA Kit (QIAsymphony), showing higher recovery rates and cfDNA quantity. All methods were reproducible, with no day-to-day variability and no contamination by high-molecular-weight DNA. The QIAamp Circulating Nucleic Acid Kit offers high yield without compromising quality. Implementation of the method should consider specific study and clinical needs, taking into account each method's advantages and limitations for optimal outcomes.
Collapse
Affiliation(s)
- Simone K Terp
- Department of Molecular Diagnostics, Aalborg University Hospital, Aalborg, Denmark; Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.
| | - Inge S Pedersen
- Department of Molecular Diagnostics, Aalborg University Hospital, Aalborg, Denmark; Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Malene P Stoico
- Department of Molecular Diagnostics, Aalborg University Hospital, Aalborg, Denmark; Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
8
|
Pru JK. Defining liquid biopsy parameters in postmenopausal women for disease diagnosis. Menopause 2024; 31:169-170. [PMID: 38385728 DOI: 10.1097/gme.0000000000002330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Affiliation(s)
- James K Pru
- From the Program in Reproductive Biology, University of Wyoming, Laramie, WY
| |
Collapse
|
9
|
Chmielecki A, Bortnik K, Galczynski S, Kopacz K, Padula G, Jerczynska H, Stawski R, Nowak D. Interleukin-4 during post-exercise recovery negatively correlates with the production of phagocyte-generated oxidants. Front Physiol 2023; 14:1186296. [PMID: 38192745 PMCID: PMC10773862 DOI: 10.3389/fphys.2023.1186296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 11/02/2023] [Indexed: 01/10/2024] Open
Abstract
Exhaustive run induced a biphasic oxidative response of circulating phagocytes in 16 amateur sportsmen. The first phase involved an increment just after exercise of enhanced whole blood chemiluminescence normalized per phagocyte count, whereas in the second phase a decrement from 1 h post-exercise and ongoing till 24 h. We tested whether plasma Interleukin IL-4, IL-8, IL-10 and Tumor Necrosis Factor α concentrations change in response to exhaustive run and whether there are associations between their levels and delta resting. Moreover, IL-8 and IL-10 significantly increased immediately post-exercise and after 1 h, but later normalized. Tumor necrosis factor α rose by 1.1-times only just after exercise. However, none of these cytokines showed any correlation with the investigated chemiluminescence. Exercise did not alter plasma concentrations of IL-4. However, pre-exercise IL-4 negatively correlated with measured luminescence just after exercise (ρ = -0.54, p < 0.05), and also tended to be negatively associated with decrements of the second phase at 1 h post-exercise ρ = -0.45, p = 0.08. It is suggested that plasma IL-4, by a negative association with blood phagocytes oxidants production, could be involved in the maintenance of proper balance between oxidants and anti-oxidants during strenuous exercise and post-exercise recovery.
Collapse
Affiliation(s)
| | | | - Szymon Galczynski
- Academic Laboratory of Movement and Human Physical Performance “DynamoLab”, Medical University of Lodz, Łódź, Poland
| | - Karolina Kopacz
- Academic Laboratory of Movement and Human Physical Performance “DynamoLab”, Medical University of Lodz, Łódź, Poland
| | - Gianluca Padula
- Academic Laboratory of Movement and Human Physical Performance “DynamoLab”, Medical University of Lodz, Łódź, Poland
| | - Hanna Jerczynska
- Central Scientific Laboratory, Medical University of Lodz, Łódź, Poland
| | - Robert Stawski
- Department of Clinical Physiology, Medical University of Lodz, Łódź, Poland
| | - Dariusz Nowak
- Department of Clinical Physiology, Medical University of Lodz, Łódź, Poland
| |
Collapse
|
10
|
Bronkhorst AJ, Holdenrieder S. The changing face of circulating tumor DNA (ctDNA) profiling: Factors that shape the landscape of methodologies, technologies, and commercialization. MED GENET-BERLIN 2023; 35:201-235. [PMID: 38835739 PMCID: PMC11006350 DOI: 10.1515/medgen-2023-2065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Liquid biopsies, in particular the profiling of circulating tumor DNA (ctDNA), have long held promise as transformative tools in cancer precision medicine. Despite a prolonged incubation phase, ctDNA profiling has recently experienced a strong wave of development and innovation, indicating its imminent integration into the cancer management toolbox. Various advancements in mutation-based ctDNA analysis methodologies and technologies have greatly improved sensitivity and specificity of ctDNA assays, such as optimized preanalytics, size-based pre-enrichment strategies, targeted sequencing, enhanced library preparation methods, sequencing error suppression, integrated bioinformatics and machine learning. Moreover, research breakthroughs have expanded the scope of ctDNA analysis beyond hotspot mutational profiling of plasma-derived apoptotic, mono-nucleosomal ctDNA fragments. This broader perspective considers alternative genetic features of cancer, genome-wide characterization, classical and newly discovered epigenetic modifications, structural variations, diverse cellular and mechanistic ctDNA origins, and alternative biospecimen types. These developments have maximized the utility of ctDNA, facilitating landmark research, clinical trials, and the commercialization of ctDNA assays, technologies, and products. Consequently, ctDNA tests are increasingly recognized as an important part of patient guidance and are being implemented in clinical practice. Although reimbursement for ctDNA tests by healthcare providers still lags behind, it is gaining greater acceptance. In this work, we provide a comprehensive exploration of the extensive landscape of ctDNA profiling methodologies, considering the multitude of factors that influence its development and evolution. By illuminating the broader aspects of ctDNA profiling, the aim is to provide multiple entry points for understanding and navigating the vast and rapidly evolving landscape of ctDNA methodologies, applications, and technologies.
Collapse
Affiliation(s)
- Abel J Bronkhorst
- Technical University Munich Munich Biomarker Research Center, Institute of Laboratory Medicine, German Heart Center Lazarettstr. 36 80636 Munich Germany
| | - Stefan Holdenrieder
- Technical University Munich Munich Biomarker Research Center, Institute of Laboratory Medicine, German Heart Center Lazarettstr. 36 80636 Munich Germany
| |
Collapse
|
11
|
Hubens WHG, Maié T, Schnitker M, Bocova L, Puri D, Wessiepe M, Kramer J, Rink L, Koschmieder S, Costa IG, Wagner W. Targeted DNA Methylation Analysis Facilitates Leukocyte Counts in Dried Blood Samples. Clin Chem 2023; 69:1283-1294. [PMID: 37708296 DOI: 10.1093/clinchem/hvad143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/10/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND Cell-type specific DNA methylation (DNAm) can be employed to determine the numbers of leukocyte subsets in blood. In contrast to conventional methods for leukocyte counts, which are based on cellular morphology or surface marker protein expression, the cellular deconvolution based on DNAm levels is applicable for frozen or dried blood. Here, we further enhanced targeted DNAm assays for leukocyte counts in clinical application. METHODS DNAm profiles of 40 different studies were compiled to identify CG dinucleotides (CpGs) with cell-type specific DNAm using a computational framework, CimpleG. DNAm levels at these CpGs were then measured with digital droplet PCR in venous blood from 160 healthy donors and 150 patients with various hematological disorders. Deconvolution was further validated with venous blood (n = 75) and capillary blood (n = 31) that was dried on Whatman paper or on Mitra microsampling devices. RESULTS In venous blood, automated cell counting or flow cytometry correlated well with epigenetic estimates of relative leukocyte counts for granulocytes (r = 0.95), lymphocytes (r = 0.97), monocytes (r = 0.82), CD4 T cells (r = 0.84), CD8 T cells (r = 0.94), B cells (r = 0.96), and NK cells (r = 0.72). Similar correlations and precisions were achieved for dried blood samples. Spike-in with a reference plasmid enabled accurate epigenetic estimation of absolute leukocyte counts from dried blood samples, correlating with conventional venous (r = 0.86) and capillary (r = 0.80) blood measurements. CONCLUSIONS The advanced selection of cell-type specific CpGs and utilization of digital droplet PCR analysis provided accurate epigenetic blood counts. Analysis of dried blood facilitates self-sampling with a finger prick, thereby enabling easier accessibility to testing.
Collapse
Affiliation(s)
- Wouter H G Hubens
- Institute for Stem Cell Biology, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Tiago Maié
- Institute for Computational Genomics, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Matthis Schnitker
- Institute for Stem Cell Biology, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Ledio Bocova
- Institute for Stem Cell Biology, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Deepika Puri
- Institute for Stem Cell Biology, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Martina Wessiepe
- Institute for Transfusion Medicine, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Jan Kramer
- Division of Nephrology and Transplantation Unit, Department of Internal Medicine I, University of Lübeck, Lübeck, Germany
- LADR Laboratory Group Dr. Kramer & Colleagues, Geesthacht, Germany
| | - Lothar Rink
- Institute of Immunology, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Steffen Koschmieder
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Ivan G Costa
- Institute for Computational Genomics, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Wolfgang Wagner
- Institute for Stem Cell Biology, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| |
Collapse
|
12
|
Haller N, Reichel T, Zimmer P, Behringer M, Wahl P, Stöggl T, Krüger K, Simon P. Blood-Based Biomarkers for Managing Workload in Athletes: Perspectives for Research on Emerging Biomarkers. Sports Med 2023; 53:2039-2053. [PMID: 37341908 PMCID: PMC10587296 DOI: 10.1007/s40279-023-01866-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2023] [Indexed: 06/22/2023]
Abstract
At present, various blood-based biomarkers have found their applications in the field of sports medicine. This current opinion addresses biomarkers that warrant consideration in future research for monitoring the athlete training load. In this regard, we identified a variety of emerging load-sensitive biomarkers, e.g., cytokines (such as IL-6), chaperones (such as heat shock proteins) or enzymes (such as myeloperoxidase) that could improve future athlete load monitoring as they have shown meaningful increases in acute and chronic exercise settings. In some cases, they have even been linked to training status or performance characteristics. However, many of these markers have not been extensively studied and the cost and effort of measuring these parameters are still high, making them inconvenient for practitioners so far. We therefore outline strategies to improve knowledge of acute and chronic biomarker responses, including ideas for standardized study settings. In addition, we emphasize the need for methodological advances such as the development of minimally invasive point-of-care devices as well as statistical aspects related to the evaluation of these monitoring tools to make biomarkers suitable for regular load monitoring.
Collapse
Affiliation(s)
- Nils Haller
- Department of Sports Medicine, Rehabilitation and Disease Prevention, Johannes Gutenberg University of Mainz, Mainz, Germany
- Department of Sport and Exercise Science, University of Salzburg, Salzburg, Austria
| | - Thomas Reichel
- Department of Exercise Physiology and Sports Therapy, Institute of Sports Science, Justus-Liebig-University Gießen, Giessen, Germany
| | - Philipp Zimmer
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, Dortmund, Germany
| | - Michael Behringer
- Department of Sports Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Patrick Wahl
- Department of Exercise Physiology, German Sport University Cologne, Cologne, Germany
| | - Thomas Stöggl
- Department of Sport and Exercise Science, University of Salzburg, Salzburg, Austria
- Red Bull Athlete Performance Center, Salzburg, Austria
| | - Karsten Krüger
- Department of Exercise Physiology and Sports Therapy, Institute of Sports Science, Justus-Liebig-University Gießen, Giessen, Germany
| | - Perikles Simon
- Department of Sports Medicine, Rehabilitation and Disease Prevention, Johannes Gutenberg University of Mainz, Mainz, Germany.
| |
Collapse
|
13
|
Drexler R, Sauvigny T, Schüller U, Eckhardt A, Maire CL, Khatri R, Hausmann F, Hänzelmann S, Huber TB, Bonn S, Bode H, Lamszus K, Westphal M, Dührsen L, Ricklefs FL. Epigenetic profiling reveals a strong association between lack of 5-ALA fluorescence and EGFR amplification in IDH-wildtype glioblastoma. Neurooncol Pract 2023; 10:462-471. [PMID: 37720395 PMCID: PMC10502788 DOI: 10.1093/nop/npad025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023] Open
Abstract
Background 5-aminolevulinic acid (5-ALA) fluorescence-guided resection increases the percentage of complete CNS tumor resections and improves the progression-free survival of IDH-wildtype glioblastoma patients. A small subset of IDH-wildtype glioblastoma shows no 5-ALA fluorescence. An explanation for these cases is missing. In this study, we used DNA methylation profiling to further characterize non-fluorescent glioblastomas. Methods Patients with newly diagnosed and recurrent IDH-wildtype glioblastoma that underwent surgery were analyzed. The intensity of intraoperative 5-ALA fluorescence was categorized as non-visible or visible. DNA was extracted from tumors and genome-wide DNA methylation patterns were analyzed using Illumina EPIC (850k) arrays. Furthermore, 5-ALA intensity was measured by flow cytometry on human gliomasphere lines (BT112 and BT145). Results Of 74 included patients, 12 (16.2%) patients had a non-fluorescent glioblastoma, which were compared to 62 glioblastomas with 5-ALA fluorescence. Clinical characteristics were equally distributed between both groups. We did not find significant differences between DNA methylation subclasses and 5-ALA fluorescence (P = .24). The distribution of cells of the tumor microenvironment was not significantly different between the non-fluorescent and fluorescent tumors. Copy number variations in EGFR and simultaneous EGFRvIII expression were strongly associated with 5-ALA fluorescence since all non-fluorescent glioblastomas were EGFR-amplified (P < .01). This finding was also demonstrated in recurrent tumors. Similarly, EGFR-amplified glioblastoma cell lines showed no 5-ALA fluorescence after 24 h of incubation. Conclusions Our study demonstrates an association between non-fluorescent IDH-wildtype glioblastomas and EGFR gene amplification which should be taken into consideration for recurrent surgery and future studies investigating EGFR-amplified gliomas.
Collapse
Affiliation(s)
- Richard Drexler
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Sauvigny
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ulrich Schüller
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Pediatric Hematology and Oncology, Research Institute Children’s Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children’s Cancer Center Hamburg, Hamburg, Germany
| | - Alicia Eckhardt
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Lab of Radiobiology & Experimental Radiation Oncology, University Cancer Center Hamburg, Hamburg, Germany
- Research Institute Children’s Cancer Center Hamburg, Hamburg, Germany
| | - Cecile L Maire
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Robin Khatri
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fabian Hausmann
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sonja Hänzelmann
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias B Huber
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Bonn
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Helena Bode
- Research Institute Children’s Cancer Center Hamburg, Hamburg, Germany
| | - Katrin Lamszus
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Manfred Westphal
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lasse Dührsen
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Franz L Ricklefs
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
14
|
Drexler R, Khatri R, Sauvigny T, Mohme M, Maire CL, Ryba A, Zghaibeh Y, Dührsen L, Salviano-Silva A, Lamszus K, Westphal M, Gempt J, Wefers AK, Neumann J, Bode H, Hausmann F, Huber TB, Bonn S, Jütten K, Delev D, Weber KJ, Harter PN, Onken J, Vajkoczy P, Capper D, Wiestler B, Weller M, Snijder B, Buck A, Weiss T, Keough MB, Ni L, Monje M, Silverbush D, Hovestadt V, Suvà ML, Krishna S, Hervey-Jumper SL, Schüller U, Heiland DH, Hänzelmann S, Ricklefs FL. Epigenetic neural glioblastoma enhances synaptic integration and predicts therapeutic vulnerability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.04.552017. [PMID: 37609137 PMCID: PMC10441357 DOI: 10.1101/2023.08.04.552017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Neural-tumor interactions drive glioma growth as evidenced in preclinical models, but clinical validation is nascent. We present an epigenetically defined neural signature of glioblastoma that independently affects patients' survival. We use reference signatures of neural cells to deconvolve tumor DNA and classify samples into low- or high-neural tumors. High-neural glioblastomas exhibit hypomethylated CpG sites and upregulation of genes associated with synaptic integration. Single-cell transcriptomic analysis reveals high abundance of stem cell-like malignant cells classified as oligodendrocyte precursor and neural precursor cell-like in high-neural glioblastoma. High-neural glioblastoma cells engender neuron-to-glioma synapse formation in vitro and in vivo and show an unfavorable survival after xenografting. In patients, a high-neural signature associates with decreased survival as well as increased functional connectivity and can be detected via DNA analytes and brain-derived neurotrophic factor in plasma. Our study presents an epigenetically defined malignant neural signature in high-grade gliomas that is prognostically relevant.
Collapse
Affiliation(s)
- Richard Drexler
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Neurology, Stanford University, Stanford, CA, 94305, USA
| | - Robin Khatri
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Sauvigny
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Malte Mohme
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Cecile L. Maire
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alice Ryba
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yahya Zghaibeh
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lasse Dührsen
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Amanda Salviano-Silva
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katrin Lamszus
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Manfred Westphal
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jens Gempt
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Annika K. Wefers
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julia Neumann
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Pediatric Hematology and Oncology, Research Institute Children’s Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children’s Cancer Center Hamburg, Hamburg, Germany
| | - Helena Bode
- Research Institute Children’s Cancer Center Hamburg, Hamburg, Germany
| | - Fabian Hausmann
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias B. Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Bonn
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kerstin Jütten
- Department of Neurosurgery, University Hospital Aachen, Aachen, Germany
| | - Daniel Delev
- Department of Neurosurgery, University Hospital Aachen, Aachen, Germany
| | - Katharina J. Weber
- Neurological Institute (Edinger Institute), University Hospital Frankfurt, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- University Cancer Center (UCT) Frankfurt, Frankfurt am Main, Germany
| | - Patrick N. Harter
- Neurological Institute (Edinger Institute), University Hospital Frankfurt, Frankfurt am Main, Germany
- Institute of Neuropathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Julia Onken
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - David Capper
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Benedikt Wiestler
- Department of Neuroradiology, Klinikum rechts der Isar, School of Medicine, Technical University Munich, Munich
| | - Michael Weller
- Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich, Switzerland. Department of Neurology, University of Zürich, Switzerland
| | - Berend Snijder
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Alicia Buck
- Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich, Switzerland. Department of Neurology, University of Zürich, Switzerland
| | - Tobias Weiss
- Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich, Switzerland. Department of Neurology, University of Zürich, Switzerland
| | - Michael B. Keough
- Department of Neurology, Stanford University, Stanford, CA, 94305, USA
| | - Lijun Ni
- Department of Neurology, Stanford University, Stanford, CA, 94305, USA
| | - Michelle Monje
- Department of Neurology, Stanford University, Stanford, CA, 94305, USA
| | | | | | - Mario L. Suvà
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Saritha Krishna
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Shawn L. Hervey-Jumper
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Ulrich Schüller
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Pediatric Hematology and Oncology, Research Institute Children’s Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children’s Cancer Center Hamburg, Hamburg, Germany
| | - Dieter H. Heiland
- Department of Neurosurgery, Medical Center University of Freiburg, Freiburg, Germany
| | - Sonja Hänzelmann
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Franz L. Ricklefs
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
15
|
Kueng N, Sidler D, Banz V, Largiadèr CR, Ng CKY, Amstutz U. Investigation of Different Library Preparation and Tissue of Origin Deconvolution Methods for Urine and Plasma cfDNA Methylome Analysis. Diagnostics (Basel) 2023; 13:2505. [PMID: 37568867 PMCID: PMC10417284 DOI: 10.3390/diagnostics13152505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Methylation sequencing is a promising approach to infer the tissue of origin of cell-free DNA (cfDNA). In this study, a single- and a double-stranded library preparation approach were evaluated with respect to their technical biases when applied on cfDNA from plasma and urine. Additionally, tissue of origin (TOO) proportions were evaluated using two deconvolution methods. Sequencing cfDNA from urine using the double-stranded method resulted in a substantial within-read methylation bias and a lower global methylation (56.0% vs. 75.8%, p ≤ 0.0001) compared to plasma cfDNA, both of which were not observed with the single-stranded approach. Individual CpG site-based TOO deconvolution resulted in a significantly increased proportion of undetermined TOO with the double-stranded method (urine: 32.3% vs. 1.9%; plasma: 5.9% vs. 0.04%; p ≤ 0.0001), but no major differences in proportions of individual cell types. In contrast, fragment-level deconvolution led to multiple cell types, with significantly different TOO proportions between the two methods. This study thus outlines potential limitations of double-stranded library preparation for methylation analysis of cfDNA especially for urinary cfDNA. While the double-stranded method allows jagged end analysis in addition to TOO analysis, it leads to significant methylation bias in urinary cfDNA, which single-stranded methods can overcome.
Collapse
Affiliation(s)
- Nicholas Kueng
- Department of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Daniel Sidler
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Vanessa Banz
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Carlo R. Largiadèr
- Department of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Charlotte K. Y. Ng
- Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
| | - Ursula Amstutz
- Department of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| |
Collapse
|
16
|
Fridlich O, Peretz A, Fox-Fisher I, Pyanzin S, Dadon Z, Shcolnik E, Sadeh R, Fialkoff G, Sharkia I, Moss J, Arpinati L, Nice S, Nogiec CD, Ahuno ST, Li R, Taborda E, Dunkelbarger S, Fridlender ZG, Polak P, Kaplan T, Friedman N, Glaser B, Shemer R, Constantini N, Dor Y. Elevated cfDNA after exercise is derived primarily from mature polymorphonuclear neutrophils, with a minor contribution of cardiomyocytes. Cell Rep Med 2023:101074. [PMID: 37290439 DOI: 10.1016/j.xcrm.2023.101074] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 08/25/2022] [Accepted: 05/15/2023] [Indexed: 06/10/2023]
Abstract
Strenuous physical exercise causes a massive elevation in the concentration of circulating cell-free DNA (cfDNA), which correlates with effort intensity and duration. The cellular sources and physiological drivers of this phenomenon are unknown. Using methylation patterns of cfDNA and associated histones, we show that cfDNA in exercise originates mostly in extramedullary polymorphonuclear neutrophils. Strikingly, cardiomyocyte cfDNA concentration increases after a marathon, consistent with elevated troponin levels and indicating low-level, delayed cardiac cell death. Physical impact, low oxygen levels, and elevated core body temperature contribute to neutrophil cfDNA release, while muscle contraction, increased heart rate, β-adrenergic signaling, or steroid treatment fail to cause elevation of cfDNA. Physical training reduces neutrophil cfDNA release after a standard exercise, revealing an inverse relationship between exercise-induced cfDNA release and training level. We speculate that the release of cfDNA from neutrophils in exercise relates to the activation of neutrophils in the context of exercise-induced muscle damage.
Collapse
Affiliation(s)
- Ori Fridlich
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Ayelet Peretz
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Ilana Fox-Fisher
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Sheina Pyanzin
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Ziv Dadon
- Jesselson Integrated Heart Center, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Eilon Shcolnik
- Jesselson Integrated Heart Center, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Ronen Sadeh
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Israel; The Lautenberg Center for Immunology and Cancer Research, The Institute for Medical Research Israel-Canada, Hebrew University of Jerusalem, Israel
| | - Gavriel Fialkoff
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Israel; The Lautenberg Center for Immunology and Cancer Research, The Institute for Medical Research Israel-Canada, Hebrew University of Jerusalem, Israel
| | - Israa Sharkia
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Israel; The Lautenberg Center for Immunology and Cancer Research, The Institute for Medical Research Israel-Canada, Hebrew University of Jerusalem, Israel
| | - Joshua Moss
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Ludovica Arpinati
- Institute of Pulmonary Medicine, Hadassah Medical Center and Hebrew University of Jerusalem, Israel
| | - Shachar Nice
- Heidi Rothberg Sport Medicine Center, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Christopher D Nogiec
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
| | - Samuel Terkper Ahuno
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rui Li
- Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
| | - Eddie Taborda
- Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
| | - Sonia Dunkelbarger
- Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
| | - Zvi G Fridlender
- Institute of Pulmonary Medicine, Hadassah Medical Center and Hebrew University of Jerusalem, Israel
| | - Paz Polak
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tommy Kaplan
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Israel
| | - Nir Friedman
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Israel; The Lautenberg Center for Immunology and Cancer Research, The Institute for Medical Research Israel-Canada, Hebrew University of Jerusalem, Israel
| | - Benjamin Glaser
- Department of Endocrinology and Metabolism, Hadassah Medical Center and Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem, Israel
| | - Ruth Shemer
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Naama Constantini
- Heidi Rothberg Sport Medicine Center, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Yuval Dor
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel.
| |
Collapse
|
17
|
Hernández-Álvarez D, Rosado-Pérez J, Gavia-García G, Arista-Ugalde TL, Aguiñiga-Sánchez I, Santiago-Osorio E, Mendoza-Núñez VM. Aging, Physical Exercise, Telomeres, and Sarcopenia: A Narrative Review. Biomedicines 2023; 11:598. [PMID: 36831134 PMCID: PMC9952920 DOI: 10.3390/biomedicines11020598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
Human aging is a gradual and adaptive process characterized by a decrease in the homeostatic response, leading to biochemical and molecular changes that are driven by hallmarks of aging, such as oxidative stress (OxS), chronic inflammation, and telomere shortening. One of the diseases associated with the hallmarks of aging, which has a great impact on functionality and quality of life, is sarcopenia. However, the relationship between telomere length, sarcopenia, and age-related mortality has not been extensively studied. Moderate physical exercise has been shown to have a positive effect on sarcopenia, decreasing OxS and inflammation, and inducing protective effects on telomeric DNA. This results in decreased DNA strand breaks, reduced OxS and IA, and activation of repair pathways. Higher levels of physical activity are associated with an apparent increase in telomere length. This review aims to present the current state of the art of knowledge on the effect of physical exercise on telomeric maintenance and activation of repair mechanisms in sarcopenia.
Collapse
Affiliation(s)
- David Hernández-Álvarez
- Research Unit on Gerontology, FES Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico
| | - Juana Rosado-Pérez
- Research Unit on Gerontology, FES Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico
| | - Graciela Gavia-García
- Research Unit on Gerontology, FES Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico
| | - Taide Laurita Arista-Ugalde
- Research Unit on Gerontology, FES Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico
| | - Itzen Aguiñiga-Sánchez
- Hematopoiesis and Leukemia Laboratory, Research Unit on Cell Differentiation and Cancer, FES Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico
| | - Edelmiro Santiago-Osorio
- Hematopoiesis and Leukemia Laboratory, Research Unit on Cell Differentiation and Cancer, FES Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico
| | - Víctor Manuel Mendoza-Núñez
- Research Unit on Gerontology, FES Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico
| |
Collapse
|
18
|
Kinetics of Plasma Cell-Free DNA under a Highly Standardized and Controlled Stress Induction. Cells 2023; 12:cells12040564. [PMID: 36831231 PMCID: PMC9954572 DOI: 10.3390/cells12040564] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Psychological stress affects the immune system and activates peripheral inflammatory pathways. Circulating cell-free DNA (cfDNA) is associated with systemic inflammation, and recent research indicates that cfDNA is an inflammatory marker that is sensitive to psychological stress in humans. The present study investigated the effects of acute stress on the kinetics of cfDNA in a within-subjects design. Twenty-nine males (mean age: 24.34 ± 4.08 years) underwent both the Trier Social Stress Test (TSST) and a resting condition. Blood samples were collected at two time points before and at 9 time points up to 105 min after both conditions. The cfDNA immediately increased 2-fold after the TSST and returned to baseline levels after 30 min after the test, showing that a brief psychological stressor was sufficient to evoke a robust and rapid increase in cfDNA levels. No associations were detected between perceived stress, whereas subjects with higher basal cfDNA levels showed higher increases. The rapid cfDNA regulation might be attributed to the transient activation of immune cells caused by neuroendocrine-immune activation. Further research is required to evaluate the reliability of cfDNA as a marker of neuroendocrine-immune activation, which could be used for diagnostics purposes or monitoring of treatment progression.
Collapse
|
19
|
An Y, Zhao X, Zhang Z, Xia Z, Yang M, Ma L, Zhao Y, Xu G, Du S, Wu X, Zhang S, Hong X, Jin X, Sun K. DNA methylation analysis explores the molecular basis of plasma cell-free DNA fragmentation. Nat Commun 2023; 14:287. [PMID: 36653380 PMCID: PMC9849216 DOI: 10.1038/s41467-023-35959-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 01/10/2023] [Indexed: 01/19/2023] Open
Abstract
Plasma cell-free DNA (cfDNA) are small molecules generated through a non-random fragmentation procedure. Despite commendable translational values in cancer liquid biopsy, however, the biology of cfDNA, especially the principles of cfDNA fragmentation, remains largely elusive. Through orientation-aware analyses of cfDNA fragmentation patterns against the nucleosome structure and integration with multidimensional functional genomics data, here we report a DNA methylation - nuclease preference - cutting end - size distribution axis, demonstrating the role of DNA methylation as a functional molecular regulator of cfDNA fragmentation. Hence, low-level DNA methylation could increase nucleosome accessibility and alter the cutting activities of nucleases during DNA fragmentation, which further leads to variation in cutting sites and size distribution of cfDNA. We further develop a cfDNA ending preference-based metric for cancer diagnosis, whose performance has been validated by multiple pan-cancer datasets. Our work sheds light on the molecular basis of cfDNA fragmentation towards broader applications in cancer liquid biopsy.
Collapse
Affiliation(s)
- Yunyun An
- Institute of Cancer Research, Shenzhen Bay Laboratory, 518132, Shenzhen, China
| | - Xin Zhao
- Hepato-Biliary Surgery Division, Shenzhen Third People's Hospital, The Second Affiliated Hospital, Southern University of Science and Technology, 518100, Shenzhen, China
| | - Ziteng Zhang
- Hepato-Biliary Surgery Division, Shenzhen Third People's Hospital, The Second Affiliated Hospital, Southern University of Science and Technology, 518100, Shenzhen, China
| | - Zhaohua Xia
- Thoracic Surgical Department, Shenzhen Third People's Hospital, The Second Affiliated Hospital, Southern University of Science and Technology, 518100, Shenzhen, China
| | - Mengqi Yang
- Institute of Cancer Research, Shenzhen Bay Laboratory, 518132, Shenzhen, China
| | - Li Ma
- Institute of Cancer Research, Shenzhen Bay Laboratory, 518132, Shenzhen, China
| | - Yu Zhao
- Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, 518107, Shenzhen, China
| | - Gang Xu
- Department of Liver Surgery and Liver Transplant Center, West China Hospital of Sichuan University, 610041, Chengdu, China
| | - Shunda Du
- Department of Liver Surgery, Peking Union Medical College Hospital, PUMC and Chinese Academy of Medical Sciences, 100730, Beijing, Dongcheng, China
| | - Xiang'an Wu
- Department of Liver Surgery, Peking Union Medical College Hospital, PUMC and Chinese Academy of Medical Sciences, 100730, Beijing, Dongcheng, China
| | - Shuowen Zhang
- Department of Liver Surgery, Peking Union Medical College Hospital, PUMC and Chinese Academy of Medical Sciences, 100730, Beijing, Dongcheng, China
| | - Xin Hong
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Xin Jin
- BGI-Shenzhen, 518083, Shenzhen, China.
- School of Medicine, South China University of Technology, 510006, Guangzhou, Guangdong, China.
| | - Kun Sun
- Institute of Cancer Research, Shenzhen Bay Laboratory, 518132, Shenzhen, China.
| |
Collapse
|
20
|
Bao H, Chen X, Xiao Q, Yang S, Wu S, Wang X, Wu X, Ding K, Shao Y. Associations of genome-wide cell-free DNA fragmentation profiles with blood biochemical and hematological parameters in healthy individuals. Genomics 2022; 114:110504. [PMID: 36257481 DOI: 10.1016/j.ygeno.2022.110504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/28/2022] [Accepted: 10/13/2022] [Indexed: 01/15/2023]
Abstract
Cell-free DNA (cfDNA), as a non-invasive approach, has been introduced in a wide range of applications, including cancer diagnosis/ monitoring, prenatal testing, and transplantation monitoring. Yet, studies of cfDNA fragmentomics in physiological conditions are lacking. In this study, we aim to explore the correlation of fragmentation patterns of cfDNA with blood biochemical and hematological parameters in healthy individuals. We addressed the impact of physiological variables and abnormal blood biochemical and hematological parameters on cfDNA fragment size distribution. We also figured and validated that hematological inflammation markers, including leukocyte, lymphocyte, neutrophil, and platelet distribution width as well as aspartate transaminase levels were significantly correlated with the genome-wide cfDNA fragmentation pattern. Our findings suggest that cfDNA fragmentation profiles were associated with physiological parameters related to cardiovascular risk factors, inflammatory response and hepatocyte injury, which may provide insights for further research on the potential role of cfDNA fragmentation in diagnosis and monitor of several disease.
Collapse
Affiliation(s)
- Hua Bao
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, China
| | - Xiaoxi Chen
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, China
| | - Qian Xiao
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shanshan Yang
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, China
| | - Shuyu Wu
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, China
| | - Xiaonan Wang
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, China
| | - Xue Wu
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, China
| | - Kefeng Ding
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Yang Shao
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, China; School of Public Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
21
|
Bronkhorst AJ, Ungerer V, Oberhofer A, Gabriel S, Polatoglou E, Randeu H, Uhlig C, Pfister H, Mayer Z, Holdenrieder S. New Perspectives on the Importance of Cell-Free DNA Biology. Diagnostics (Basel) 2022; 12:2147. [PMID: 36140548 PMCID: PMC9497998 DOI: 10.3390/diagnostics12092147] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/24/2022] [Accepted: 08/31/2022] [Indexed: 11/28/2022] Open
Abstract
Body fluids are constantly replenished with a population of genetically diverse cell-free DNA (cfDNA) fragments, representing a vast reservoir of information reflecting real-time changes in the host and metagenome. As many body fluids can be collected non-invasively in a one-off and serial fashion, this reservoir can be tapped to develop assays for the diagnosis, prognosis, and monitoring of wide-ranging pathologies, such as solid tumors, fetal genetic abnormalities, rejected organ transplants, infections, and potentially many others. The translation of cfDNA research into useful clinical tests is gaining momentum, with recent progress being driven by rapidly evolving preanalytical and analytical procedures, integrated bioinformatics, and machine learning algorithms. Yet, despite these spectacular advances, cfDNA remains a very challenging analyte due to its immense heterogeneity and fluctuation in vivo. It is increasingly recognized that high-fidelity reconstruction of the information stored in cfDNA, and in turn the development of tests that are fit for clinical roll-out, requires a much deeper understanding of both the physico-chemical features of cfDNA and the biological, physiological, lifestyle, and environmental factors that modulate it. This is a daunting task, but with significant upsides. In this review we showed how expanded knowledge on cfDNA biology and faithful reverse-engineering of cfDNA samples promises to (i) augment the sensitivity and specificity of existing cfDNA assays; (ii) expand the repertoire of disease-specific cfDNA markers, thereby leading to the development of increasingly powerful assays; (iii) reshape personal molecular medicine; and (iv) have an unprecedented impact on genetics research.
Collapse
Affiliation(s)
- Abel J. Bronkhorst
- Munich Biomarker Research Center, Institute for Laboratory Medicine, German Heart Centre, Technical University Munich, Lazarettstraße 36, D-80636 Munich, Germany
| | | | | | | | | | | | | | | | | | - Stefan Holdenrieder
- Munich Biomarker Research Center, Institute for Laboratory Medicine, German Heart Centre, Technical University Munich, Lazarettstraße 36, D-80636 Munich, Germany
| |
Collapse
|
22
|
Eibl RH, Schneemann M. Cell-free DNA as a biomarker in cancer. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2022; 3:195-215. [PMID: 39697490 PMCID: PMC11648514 DOI: 10.20517/evcna.2022.20] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/07/2022] [Accepted: 07/26/2022] [Indexed: 12/20/2024]
Abstract
Translational research of liquid biopsy is just at the edge of routine clinical application: an emerging validity of circulating tumor DNA (ctDNA) tests suggests its use for earlier cancer detection and better monitoring of minimal residual disease (MRD) and resistance development, thus offering earlier guidance for therapy choices with the intent to cure cancer. In this review, we focus on ctDNA as an advanced and standardized validated marker in liquid biopsy. We also discuss what will be needed to reach the new milestone of personalized (precision) medicine to be used as a common standard of care. We summarize recent developments of cell-free DNA (cfDNA) and its clinical use as a biomarker in cancer.
Collapse
Affiliation(s)
- Robert H. Eibl
- c/o M. Schneemann, Department of Internal Medicine, Hospitals of Schaffhausen, 8208 Schaffhausen, Switzerland
| | - Markus Schneemann
- Department of Internal Medicine, Hospitals of Schaffhausen, 8208 Schaffhausen, Switzerland
| |
Collapse
|
23
|
Feasibility of Cell-Free DNA Measurement from the Earlobe during Physiological Exercise Testing. Diagnostics (Basel) 2022; 12:diagnostics12061379. [PMID: 35741187 PMCID: PMC9222055 DOI: 10.3390/diagnostics12061379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 11/30/2022] Open
Abstract
Circulating, cell-free DNA (cfDNA) has been discussed as an upcoming blood-based biomarker in exercise physiology, reflecting important aspects of exercise load. cfDNA blood sampling has evolved from elaborate venous to efficient capillary sampling from the fingertips. In this study, we aimed to evaluate the principal feasibility of cfDNA blood sampling from the earlobe. Therefore, we obtained cfDNA concentrations from the fingertips, earlobe, and the antecubital vein during physiological exercise testing. Significantly higher concentrations were obtained from the earlobe compared to fingertip samples. All of the measurement methods showed good to excellent repeatability (ICCs of 0.85 to 0.93). In addition, the control experiments revealed that repeated sampling from the earlobe but not from the fingertips increased cfDNA at rest. In summary, cfDNA sampling is feasible for all sampling sources. However, at rest, cfDNA collected from the earlobe tend to increase over time in the absence of physical load, potentially limiting this sampling method.
Collapse
|
24
|
Krasic J, Skara L, Bojanac AK, Ulamec M, Jezek D, Kulis T, Sincic N. The utility of cfDNA in TGCT patient management: a systematic review. Ther Adv Med Oncol 2022; 14:17588359221090365. [PMID: 35656387 PMCID: PMC9152191 DOI: 10.1177/17588359221090365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/10/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Testicular germ cell tumors (TGCTs) are the most common young male malignancy with a steadily rising incidence. Standard clinical practice is radical orchidectomy of suspicious lumps followed by histopathological diagnosis and tumor subtyping. This practice can lead to complications and quality of life issues for the patients. Liquid biopsies, especially cell-free DNA (cfDNA), promised to be true surrogates for tissue biopsies, which are considered dangerous to perform in cases of testicular tumors. In this study, we have performed a systematic review on the potential of cfDNA in TGCT patient management, its potential challenges in translation to clinical application and possible approaches in further research. Materials & Methods: The review was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines on EuropePMC and PUBMED electronic databases, with the last update being on October 21, 2021. Due to the high heterogeneity in identified research articles, we have performed an overview of their efficacy. Results: Eight original articles have been identified on cfDNA in TGCT patients published from 2004 to 2021, of which six had more than one TGCT patient enrolled and were included in the final analysis. Three studies investigated cfDNA methylation, one has investigated mutations in cfDNA, two have investigated cfDNA amount, and one has investigated cfDNA integrity in TGCT. The sensitivity of cfDNA for TGCT was found to be higher than in serum tumor markers and lower than miR-371a-3p, with comparable specificity. cfDNA methylation analysis has managed to accurately detect teratoma in TGCT patients. Conclusion: Potential challenges in cfDNA application to TGCT patient management were identified. The challenges relating to the biology of TGCT with its low mutational burden and low cfDNA amounts in blood plasma make next-generation sequencing (NGS) methods especially challenging. We have also proposed possible approaches to help find clinical application, including a focus on cfDNA methylation analysis, and potentially solving the challenge of teratoma detection.
Collapse
Affiliation(s)
- Jure Krasic
- Department of Medical Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
- Group for Research on Epigenetic Biomarkers (Epimark), School of Medicine, University of Zagreb, Zagreb, Croatia
- Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Lucija Skara
- Department of Medical Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
- Group for Research on Epigenetic Biomarkers (Epimark), School of Medicine, University of Zagreb, Zagreb, Croatia
- Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Ana Katusic Bojanac
- Department of Medical Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
- Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Monika Ulamec
- Group for Research on Epigenetic Biomarkers (Epimark), School of Medicine, University of Zagreb, Zagreb, Croatia
- Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, Zagreb, Croatia
- Ljudevit Jurak Clinical Department of Pathology and Cytology, University Clinical Hospital Center Sestre Milosrdnice, Zagreb, Croatia
- Department of Pathology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Davor Jezek
- Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Histology and Embryology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Tomislav Kulis
- Group for Research on Epigenetic Biomarkers (Epimark), School of Medicine, University of Zagreb, Zagreb, Croatia
- Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Urology, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Nino Sincic
- Department of Medical Biology, School of Medicine, University of Zagreb, Šalata 3, Zagreb, 10 000, Croatia
- Group for Research on Epigenetic Biomarkers (Epimark), School of Medicine, University of Zagreb, Šalata 3, Zagreb, 10 000, Croatia
- Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, Šalata 3, Zagreb, 10 000, Croatia
| |
Collapse
|