1
|
Khorkova O, Stahl J, Joji A, Volmar CH, Zeier Z, Wahlestedt C. Long non-coding RNA-targeting therapeutics: discovery and development update. Expert Opin Drug Discov 2023; 18:1011-1029. [PMID: 37466388 DOI: 10.1080/17460441.2023.2236552] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 07/20/2023]
Abstract
INTRODUCTION lncRNAs are major players in regulatory networks orchestrating multiple cellular functions, such as 3D chromosomal interactions, epigenetic modifications, gene expression and others. Due to progress in the development of nucleic acid-based therapeutics, lncRNAs potentially represent easily accessible therapeutic targets. AREAS COVERED Currently, significant efforts are directed at studies that can tap the enormous therapeutic potential of lncRNAs. This review describes recent developments in this field, particularly focusing on clinical applications. EXPERT OPINION Extensive druggable target range of lncRNA combined with high specificity and accelerated development process of nucleic acid-based therapeutics open new prospects for treatment in areas of extreme unmet medical need, such as genetic diseases, aggressive cancers, protein deficiencies, and subsets of common diseases caused by known mutations. Although currently wide acceptance of lncRNA-targeting nucleic acid-based therapeutics is impeded by the need for parenteral or direct-to-CNS administration, development of less invasive techniques and orally available/BBB-penetrant nucleic acid-based therapeutics is showing early successes. Recently, mRNA-based COVID-19 vaccines have demonstrated clinical safety of all aspects of nucleic acid-based therapeutic technology, including multiple chemical modifications of nucleic acids and nanoparticle delivery. These trends position lncRNA-targeting drugs as significant players in the future of drug development, especially in the area of personalized medicine.
Collapse
Affiliation(s)
- Olga Khorkova
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, USA
| | - Jack Stahl
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, USA
| | - Aswathy Joji
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, USA
| | - Claude-Henry Volmar
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, USA
| | - Zane Zeier
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, USA
| | - Claes Wahlestedt
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, USA
| |
Collapse
|
2
|
Cheung WA, Johnson AF, Rowell WJ, Farrow E, Hall R, Cohen ASA, Means JC, Zion TN, Portik DM, Saunders CT, Koseva B, Bi C, Truong TK, Schwendinger-Schreck C, Yoo B, Johnston JJ, Gibson M, Evrony G, Rizzo WB, Thiffault I, Younger ST, Curran T, Wenger AM, Grundberg E, Pastinen T. Direct haplotype-resolved 5-base HiFi sequencing for genome-wide profiling of hypermethylation outliers in a rare disease cohort. Nat Commun 2023; 14:3090. [PMID: 37248219 DOI: 10.1038/s41467-023-38782-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 05/15/2023] [Indexed: 05/31/2023] Open
Abstract
Long-read HiFi genome sequencing allows for accurate detection and direct phasing of single nucleotide variants, indels, and structural variants. Recent algorithmic development enables simultaneous detection of CpG methylation for analysis of regulatory element activity directly in HiFi reads. We present a comprehensive haplotype resolved 5-base HiFi genome sequencing dataset from a rare disease cohort of 276 samples in 152 families to identify rare (~0.5%) hypermethylation events. We find that 80% of these events are allele-specific and predicted to cause loss of regulatory element activity. We demonstrate heritability of extreme hypermethylation including rare cis variants associated with short (~200 bp) and large hypermethylation events (>1 kb), respectively. We identify repeat expansions in proximal promoters predicting allelic gene silencing via hypermethylation and demonstrate allelic transcriptional events downstream. On average 30-40 rare hypermethylation tiles overlap rare disease genes per patient, providing indications for variation prioritization including a previously undiagnosed pathogenic allele in DIP2B causing global developmental delay. We propose that use of HiFi genome sequencing in unsolved rare disease cases will allow detection of unconventional diseases alleles due to loss of regulatory element activity.
Collapse
Affiliation(s)
- Warren A Cheung
- Department of Pediatrics, Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Adam F Johnson
- Department of Pediatrics, Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, USA
| | | | - Emily Farrow
- Department of Pediatrics, Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, USA
- Department of Pediatrics, School of Medicine, University of Missouri Kansas City, Kansas City, MO, USA
| | | | - Ana S A Cohen
- Department of Pediatrics, School of Medicine, University of Missouri Kansas City, Kansas City, MO, USA
- Department of Pathology and Laboratory Medicine, Children's Mercy Kansas City, Kansas City, MO, USA
| | - John C Means
- Department of Pediatrics, Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Tricia N Zion
- Department of Pediatrics, Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, USA
| | | | | | - Boryana Koseva
- Department of Pediatrics, Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Chengpeng Bi
- Department of Pediatrics, Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Tina K Truong
- Center for Human Genetics and Genomics, Department of Pediatrics, Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Carl Schwendinger-Schreck
- Department of Pediatrics, Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Byunggil Yoo
- Department of Pediatrics, Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Jeffrey J Johnston
- Department of Pediatrics, Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Margaret Gibson
- Department of Pediatrics, Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Gilad Evrony
- Center for Human Genetics and Genomics, Department of Pediatrics, Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA
| | - William B Rizzo
- Child Health Research Institute, Department of Pediatrics, Nebraska Medical Center, Omaha, NE, USA
| | - Isabelle Thiffault
- Department of Pediatrics, School of Medicine, University of Missouri Kansas City, Kansas City, MO, USA
- Department of Pathology and Laboratory Medicine, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Scott T Younger
- Department of Pediatrics, Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, USA
- Department of Pediatrics, School of Medicine, University of Missouri Kansas City, Kansas City, MO, USA
| | - Tom Curran
- Children's Mercy Research Institute, Kansas City, MO, USA
| | | | - Elin Grundberg
- Department of Pediatrics, Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, USA.
- Department of Pediatrics, School of Medicine, University of Missouri Kansas City, Kansas City, MO, USA.
| | - Tomi Pastinen
- Department of Pediatrics, Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, USA.
- Department of Pediatrics, School of Medicine, University of Missouri Kansas City, Kansas City, MO, USA.
| |
Collapse
|
3
|
Du M, Wu S, Su C, Wang X, Li B, Lin Y, Yuan S, Chen Y, Zhu C, Wei H. Serum Vitamin B12 is a Promising Auxiliary Index for the Diagnosis of Methylmalonic Acidemia in Children: A Single Center Study in China. Clin Chim Acta 2023; 546:117409. [PMID: 37217112 DOI: 10.1016/j.cca.2023.117409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/25/2023] [Accepted: 05/19/2023] [Indexed: 05/24/2023]
Abstract
BACKGROUND AND AIMS Vitamin B12 (cobalamin, VitB12) is an essential coenzyme of methylmalonyl-CoA mutase and methionine synthase. Variations in VitB12 metabolism, absorption, transport, or intake may cause changes in methylmalonic acidemia (MMA) biomarkers. We aimed to investigate whether serum Vitamin B12 levels could be used in the early detection of MMA. MATERIALS AND METHODS We included 241 children with MMA and 241 healthy matched controls. We measured serum VitB12 levels by an enzyme immunoassay and investigated the relationship between abnormal VitB12 levels and hematologic parameters as potential risk factors for MMA symptoms. RESULTS Compared with controls, the serum levels of VitB12 were increased in the MMA group (p < 0.001). Serum VitB12 distinguished patients with MMA from healthy children (p < 0.001). Serum VitB12 combined with homocysteine and ammonia identified cblC and mut type MMA, respectively (p < 0.001). Homocysteine, folate, ammonia, NLR, and red blood cells contributed to serum VitB12 in cblC type MMA (p < 0.001); homocysteine, ammonia, and red blood cells, contributed in mut type MMA (p < 0.001); and elevated VitB12 was an independent predictor of MMA clinical onset (p < 0.001). CONCLUSION Serum VitB12 can be used as an early diagnostic biomarker for MMA in children.
Collapse
Affiliation(s)
- Mengmeng Du
- Children's Hospital Affiliated to Zhengzhou University, Department of Endocrinology, Genetics and Metabolism, Henan Children's Hospital, Zhengz- hou Children's Hospital, Zhengzhou, China; Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Third Affiliated Hospital and Institute of Neuroscience, Zhengzhou University, Zhengzhou, China.
| | - Shengnan Wu
- Children's Hospital Affiliated to Zhengzhou University, Department of Endocrinology, Genetics and Metabolism, Henan Children's Hospital, Zhengz- hou Children's Hospital, Zhengzhou, China.
| | - Chang Su
- Department of Endocrinology, Genetic and Metabolism, Beijing Children's Hospital, Capital Medical University, Beijing, China.
| | - Xiaohong Wang
- Children's Hospital Affiliated to Zhengzhou University, Department of Endocrinology, Genetics and Metabolism, Henan Children's Hospital, Zhengz- hou Children's Hospital, Zhengzhou, China.
| | - Bingbing Li
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Third Affiliated Hospital and Institute of Neuroscience, Zhengzhou University, Zhengzhou, China.
| | - Yifan Lin
- Children's Hospital Affiliated to Zhengzhou University, Department of Endocrinology, Genetics and Metabolism, Henan Children's Hospital, Zhengz- hou Children's Hospital, Zhengzhou, China.
| | - Shuxian Yuan
- Children's Hospital Affiliated to Zhengzhou University, Department of Endocrinology, Genetics and Metabolism, Henan Children's Hospital, Zhengz- hou Children's Hospital, Zhengzhou, China.
| | - Yongxing Chen
- Children's Hospital Affiliated to Zhengzhou University, Department of Endocrinology, Genetics and Metabolism, Henan Children's Hospital, Zhengz- hou Children's Hospital, Zhengzhou, China.
| | - Changlian Zhu
- Children's Hospital Affiliated to Zhengzhou University, Department of Endocrinology, Genetics and Metabolism, Henan Children's Hospital, Zhengz- hou Children's Hospital, Zhengzhou, China; Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, Sweden.
| | - Haiyan Wei
- Children's Hospital Affiliated to Zhengzhou University, Department of Endocrinology, Genetics and Metabolism, Henan Children's Hospital, Zhengz- hou Children's Hospital, Zhengzhou, China.
| |
Collapse
|
4
|
Cruz-Rodríguez J, Díaz-López A, Canals-Sans J, Arija V. Maternal Vitamin B12 Status during Pregnancy and Early Infant Neurodevelopment: The ECLIPSES Study. Nutrients 2023; 15:nu15061529. [PMID: 36986259 PMCID: PMC10051123 DOI: 10.3390/nu15061529] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/14/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
In this prospective cohort study of 434 mother-infant pairs from the ECLIPSES study, we examine the association between maternal vitamin B12 status at the beginning and end of pregnancy and the neurodevelopmental outcomes of infants 40 days after birth in a pregnant population from a Mediterranean region of northern Spain. Maternal vitamin B12 concentrations were determined in the first and third trimesters, and sociodemographic, nutritional, and psychological data were collected. At 40 days postpartum, the Bayley Scales of Infant Development-III (BSID-III, cognitive, language, and motor skills) were administered to the infants and several obstetrical data were recorded. In the multivariable models, medium maternal first-trimester vitamin B12 levels (312 to 408 pg/mL, tertile 2) were associated with better neonatal performance in the motor, gross motor, language, and cognitive skills with respect to tertile 1 (<312 pg/mL). The probability of obtaining a neonatal motor, gross motor, and receptive language score >75th percentile was significantly higher also in the tertile 2 group. In summary, good maternal vitamin B12 status in the early stage of pregnancy appears to be associated with better infant motor, language, and cognitive performance at 40 days postpartum.
Collapse
Affiliation(s)
- Josué Cruz-Rodríguez
- Nutrition and Mental Health Research Group (NUTRISAM), Universitat Rovira i Virgili (URV), 43201 Tarragona, Spain
| | - Andrés Díaz-López
- Nutrition and Mental Health Research Group (NUTRISAM), Universitat Rovira i Virgili (URV), 43201 Tarragona, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), 43005 Tarragona, Spain
| | - Josefa Canals-Sans
- Nutrition and Mental Health Research Group (NUTRISAM), Universitat Rovira i Virgili (URV), 43201 Tarragona, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), 43005 Tarragona, Spain
- Centre de Recerca en Avaluació i Mesura de la Conducta (CRAMC), Department of Psychology, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Victoria Arija
- Nutrition and Mental Health Research Group (NUTRISAM), Universitat Rovira i Virgili (URV), 43201 Tarragona, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), 43005 Tarragona, Spain
- Institut d'Investigació en Atenció Primària IDIAP Jordi Gol, Institut Català de la Salut (ICS), 08007 Barcelona, Spain
- Collaborative Research Group on Lifestyles, Nutrition and Smoking (CENIT), IDIAP Jordi Gol, 43202 Reus, Spain
| |
Collapse
|
5
|
Ryan A, Twomey PJ. Homocystinuria: a commentary. J Clin Pathol 2023; 76:153-155. [PMID: 36460459 DOI: 10.1136/jcp-2022-208606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/15/2022] [Indexed: 12/03/2022]
Affiliation(s)
- Aidan Ryan
- Chemical Pathology, Cork University Hospital Biochemistry Laboratory, Cork, Ireland .,Pathology, University College Cork College of Medicine and Health, Cork, Ireland
| | - Patrick J Twomey
- Clinical Chemistry, St Vincent's University Hospital, Dublin, Ireland.,University College Dublin School of Medicine and Medical Science, Dublin, Ireland
| |
Collapse
|
6
|
Khorkova O, Stahl J, Joji A, Volmar CH, Zeier Z, Wahlestedt C. Natural antisense transcripts as drug targets. Front Mol Biosci 2022; 9:978375. [PMID: 36250017 PMCID: PMC9563854 DOI: 10.3389/fmolb.2022.978375] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
The recent discovery of vast non-coding RNA-based regulatory networks that can be easily modulated by nucleic acid-based drugs has opened numerous new therapeutic possibilities. Long non-coding RNA, and natural antisense transcripts (NATs) in particular, play a significant role in networks that involve a wide variety of disease-relevant biological mechanisms such as transcription, splicing, translation, mRNA degradation and others. Currently, significant efforts are dedicated to harnessing these newly emerging NAT-mediated biological mechanisms for therapeutic purposes. This review will highlight the recent clinical and pre-clinical developments in this field and survey the advances in nucleic acid-based drug technologies that make these developments possible.
Collapse
Affiliation(s)
- Olga Khorkova
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, United States
| | - Jack Stahl
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, United States
| | - Aswathy Joji
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, United States
- Department of Chemistry, University of Miami, Miami, FL, United States
| | - Claude-Henry Volmar
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, United States
| | - Zane Zeier
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, United States
| | - Claes Wahlestedt
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, United States
- Department of Chemistry, University of Miami, Miami, FL, United States
- *Correspondence: Claes Wahlestedt,
| |
Collapse
|
7
|
Esser AJ, Mukherjee S, Dereven‘kov IA, Makarov SV, Jacobsen DW, Spiekerkoetter U, Hannibal L. Versatile Enzymology and Heterogeneous Phenotypes in Cobalamin Complementation Type C Disease. iScience 2022; 25:104981. [PMID: 36105582 PMCID: PMC9464900 DOI: 10.1016/j.isci.2022.104981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Nutritional deficiency and genetic errors that impair the transport, absorption, and utilization of vitamin B12 (B12) lead to hematological and neurological manifestations. The cblC disease (cobalamin complementation type C) is an autosomal recessive disorder caused by mutations and epi-mutations in the MMACHC gene and the most common inborn error of B12 metabolism. Pathogenic mutations in MMACHC disrupt enzymatic processing of B12, an indispensable step before micronutrient utilization by the two B12-dependent enzymes methionine synthase (MS) and methylmalonyl-CoA mutase (MUT). As a result, patients with cblC disease exhibit plasma elevation of homocysteine (Hcy, substrate of MS) and methylmalonic acid (MMA, degradation product of methylmalonyl-CoA, substrate of MUT). The cblC disorder manifests early in childhood or in late adulthood with heterogeneous multi-organ involvement. This review covers current knowledge on the cblC disease, structure–function relationships of the MMACHC protein, the genotypic and phenotypic spectra in humans, experimental disease models, and promising therapies.
Collapse
|
8
|
Guéant JL, Feillet F. Inherited metabolic disorders beyond the new generation sequencing era: the need for in-depth cellular and molecular phenotyping. Hum Genet 2022; 141:1235-1237. [PMID: 35754062 DOI: 10.1007/s00439-022-02467-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Jean-Louis Guéant
- INSERM, UMR_S1256, NGERE - Nutrition, Genetics, and Environmental Risk Exposure and Reference Centre of Inborn Metabolism Diseases, University of Lorraine, Avenue de la Forêt de Haye, Vandoeuvre-Lès-Nancy, 54500, Nancy, France. .,Reference Centre of Inborn Metabolism Diseases and Department of Molecular Medicine, University Hospital Center, 54500, Nancy, France.
| | - François Feillet
- INSERM, UMR_S1256, NGERE - Nutrition, Genetics, and Environmental Risk Exposure and Reference Centre of Inborn Metabolism Diseases, University of Lorraine, Avenue de la Forêt de Haye, Vandoeuvre-Lès-Nancy, 54500, Nancy, France.,Reference Centre of Inborn Metabolism Diseases and Department of Molecular Medicine, University Hospital Center, 54500, Nancy, France
| |
Collapse
|
9
|
Wiedemann A, Oussalah A, Lamireau N, Théron M, Julien M, Mergnac JP, Augay B, Deniaud P, Alix T, Frayssinoux M, Feillet F, Guéant JL. Clinical, phenotypic and genetic landscape of case reports with genetically proven inherited disorders of vitamin B 12 metabolism: A meta-analysis. Cell Rep Med 2022; 3:100670. [PMID: 35764087 PMCID: PMC9381384 DOI: 10.1016/j.xcrm.2022.100670] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 11/22/2021] [Accepted: 06/02/2022] [Indexed: 10/31/2022]
Abstract
Inherited disorders of B12 metabolism produce a broad spectrum of manifestations, with limited knowledge of the influence of age and the function of related genes. We report a meta-analysis on 824 patients with a genetically proven diagnosis of an inherited disorder of vitamin B12 metabolism. Gene clusters and age categories are associated with patients' manifestations. The "cytoplasmic transport" cluster is associated with neurological and ophthalmological manifestations, the "mitochondrion" cluster with hypotonia, acute metabolic decompensation, and death, and the "B12 availability" and "remethylation" clusters with anemia and cytopenia. Hypotonia, EEG abnormalities, nystagmus, and strabismus are predominant in the younger patients, while neurological manifestations, such as walking difficulties, peripheral neuropathy, pyramidal syndrome, cerebral atrophy, psychiatric disorders, and thromboembolic manifestations, are predominant in the older patients. These results should prompt systematic checking of markers of vitamin B12 status, including homocysteine and methylmalonic acid, when usual causes of these manifestations are discarded in adult patients.
Collapse
Affiliation(s)
- Arnaud Wiedemann
- Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Faculty of Medicine of Nancy, University of Lorraine, INSERM UMR_S 1256, 54000 Nancy, France; Department of Pediatrics, University Hospital of Nancy, 54000 Nancy, France; Reference Center for Inborn Errors of Metabolism (ORPHA67872), University Hospital of Nancy, 54000 Nancy, France
| | - Abderrahim Oussalah
- Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Faculty of Medicine of Nancy, University of Lorraine, INSERM UMR_S 1256, 54000 Nancy, France; Reference Center for Inborn Errors of Metabolism (ORPHA67872), University Hospital of Nancy, 54000 Nancy, France; Department of Molecular Medicine, Division of Biochemistry, Molecular Biology, Nutrition, and Metabolism, University Hospital of Nancy, 54000 Nancy, France
| | - Nathalie Lamireau
- Department of Pediatrics, University Hospital of Nancy, 54000 Nancy, France
| | - Maurane Théron
- Department of Pediatrics, University Hospital of Nancy, 54000 Nancy, France
| | - Melissa Julien
- Department of Molecular Medicine, Division of Biochemistry, Molecular Biology, Nutrition, and Metabolism, University Hospital of Nancy, 54000 Nancy, France
| | | | - Baptiste Augay
- Department of Pediatrics, University Hospital of Nancy, 54000 Nancy, France
| | - Pauline Deniaud
- Department of Pediatrics, University Hospital of Nancy, 54000 Nancy, France
| | - Tom Alix
- Department of Molecular Medicine, Division of Biochemistry, Molecular Biology, Nutrition, and Metabolism, University Hospital of Nancy, 54000 Nancy, France
| | - Marine Frayssinoux
- Department of Molecular Medicine, Division of Biochemistry, Molecular Biology, Nutrition, and Metabolism, University Hospital of Nancy, 54000 Nancy, France
| | - François Feillet
- Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Faculty of Medicine of Nancy, University of Lorraine, INSERM UMR_S 1256, 54000 Nancy, France; Department of Pediatrics, University Hospital of Nancy, 54000 Nancy, France; Reference Center for Inborn Errors of Metabolism (ORPHA67872), University Hospital of Nancy, 54000 Nancy, France
| | - Jean-Louis Guéant
- Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Faculty of Medicine of Nancy, University of Lorraine, INSERM UMR_S 1256, 54000 Nancy, France; Reference Center for Inborn Errors of Metabolism (ORPHA67872), University Hospital of Nancy, 54000 Nancy, France; Department of Molecular Medicine, Division of Biochemistry, Molecular Biology, Nutrition, and Metabolism, University Hospital of Nancy, 54000 Nancy, France.
| |
Collapse
|