1
|
Wang Z, Zhang N, Lin P, Xing Y, Yang N. Recent advances in the treatment and delivery system of diabetic retinopathy. Front Endocrinol (Lausanne) 2024; 15:1347864. [PMID: 38425757 PMCID: PMC10902204 DOI: 10.3389/fendo.2024.1347864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/23/2024] [Indexed: 03/02/2024] Open
Abstract
Diabetic retinopathy (DR) is a highly tissue-specific neurovascular complication of type 1 and type 2 diabetes mellitus and is among the leading causes of blindness worldwide. Pathophysiological changes in DR encompass neurodegeneration, inflammation, and oxidative stress. Current treatments for DR, including anti-vascular endothelial growth factor, steroids, laser photocoagulation, and vitrectomy have limitations and adverse reactions, necessitating the exploration of novel treatment strategies. This review aims to summarize the current pathophysiology, therapeutic approaches, and available drug-delivery methods for treating DR, and discuss their respective development potentials. Recent research indicates the efficacy of novel receptor inhibitors and agonists, such as aldose reductase inhibitors, angiotensin-converting enzyme inhibitors, peroxisome proliferator-activated receptor alpha agonists, and novel drugs in delaying DR. Furthermore, with continuous advancements in nanotechnology, a new form of drug delivery has been developed that can address certain limitations of clinical drug therapy, such as low solubility and poor penetration. This review serves as a theoretical foundation for future research on DR treatment. While highlighting promising therapeutic targets, it underscores the need for continuous exploration to enhance our understanding of DR pathogenesis. The limitations of current treatments and the potential for future advancements emphasize the importance of ongoing research in this field.
Collapse
Affiliation(s)
| | | | | | - Yiqiao Xing
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ning Yang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
2
|
Priyadarshini A, Madan R, Das S. Genetics and epigenetics of diabetes and its complications in India. Hum Genet 2024; 143:1-17. [PMID: 37999799 DOI: 10.1007/s00439-023-02616-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/17/2023] [Indexed: 11/25/2023]
Abstract
Diabetes mellitus (DM) has become a significant health concern with an increasing rate of morbidity and mortality worldwide. India ranks second in the number of diabetes cases in the world. The increasing burden of DM can be explained by genetic predisposition of Indians to type 2 diabetes mellitus (T2DM) coupled with rapid urbanization and socio-economic development in the last 3 decades leading to drastic changes in lifestyle. Environment and lifestyle changes contribute to T2DM development by altering epigenetic processes such as DNA methylation, histone post-translational modifications, and long non-coding RNAs, all of which regulate chromatin structure and gene expression. Although the genetic predisposition of Indians to T2DM is well established, how environmental and genetic factors interact and lead to T2DM is not well understood. In this review, we discuss the prevalence of diabetes and its complications across different states in India and how various risk factors contribute to its pathogenesis. The review also highlights the role of genetic predisposition among the Indian population and epigenetic factors involved in the etiology of diabetes. Lastly, we review current treatments and emphasize the knowledge gap with respect to genetic and epigenetic factors in the Indian context. Further understanding of the genetic and epigenetic determinants will help in risk prediction and prevention as well as therapeutic interventions, which will improve the clinical management of diabetes and associated macro- and micro-vascular complications.
Collapse
Affiliation(s)
- Ankita Priyadarshini
- Diabetic Vascular Complications Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, Punjab, 140306, India
| | - Riya Madan
- Diabetic Vascular Complications Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, Punjab, 140306, India
| | - Sadhan Das
- Diabetic Vascular Complications Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, Punjab, 140306, India.
| |
Collapse
|
3
|
Wu YL, Lin ZJ, Li CC, Lin X, Shan SK, Guo B, Zheng MH, Li F, Yuan LQ, Li ZH. Epigenetic regulation in metabolic diseases: mechanisms and advances in clinical study. Signal Transduct Target Ther 2023; 8:98. [PMID: 36864020 PMCID: PMC9981733 DOI: 10.1038/s41392-023-01333-7] [Citation(s) in RCA: 109] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/02/2023] [Accepted: 01/18/2023] [Indexed: 03/04/2023] Open
Abstract
Epigenetics regulates gene expression and has been confirmed to play a critical role in a variety of metabolic diseases, such as diabetes, obesity, non-alcoholic fatty liver disease (NAFLD), osteoporosis, gout, hyperthyroidism, hypothyroidism and others. The term 'epigenetics' was firstly proposed in 1942 and with the development of technologies, the exploration of epigenetics has made great progresses. There are four main epigenetic mechanisms, including DNA methylation, histone modification, chromatin remodelling, and noncoding RNA (ncRNA), which exert different effects on metabolic diseases. Genetic and non-genetic factors, including ageing, diet, and exercise, interact with epigenetics and jointly affect the formation of a phenotype. Understanding epigenetics could be applied to diagnosing and treating metabolic diseases in the clinic, including epigenetic biomarkers, epigenetic drugs, and epigenetic editing. In this review, we introduce the brief history of epigenetics as well as the milestone events since the proposal of the term 'epigenetics'. Moreover, we summarise the research methods of epigenetics and introduce four main general mechanisms of epigenetic modulation. Furthermore, we summarise epigenetic mechanisms in metabolic diseases and introduce the interaction between epigenetics and genetic or non-genetic factors. Finally, we introduce the clinical trials and applications of epigenetics in metabolic diseases.
Collapse
Affiliation(s)
- Yan-Lin Wu
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Zheng-Jun Lin
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Chang-Chun Li
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Xiao Lin
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Su-Kang Shan
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Bei Guo
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Ming-Hui Zheng
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Fuxingzi Li
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Ling-Qing Yuan
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| | - Zhi-Hong Li
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China. .,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
4
|
Moore SM, Christoforidis JB. Advances in Ophthalmic Epigenetics and Implications for Epigenetic Therapies: A Review. Genes (Basel) 2023; 14:417. [PMID: 36833344 PMCID: PMC9957018 DOI: 10.3390/genes14020417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/08/2023] Open
Abstract
The epigenome represents a vast molecular apparatus that writes, reads, and erases chemical modifications to the DNA and histone code without changing the DNA base-pair sequence itself. Recent advances in molecular sequencing technology have revealed that epigenetic chromatin marks directly mediate critical events in retinal development, aging, and degeneration. Epigenetic signaling regulates retinal progenitor (RPC) cell cycle exit during retinal laminar development, giving rise to retinal ganglion cells (RGCs), amacrine cells, horizontal cells, bipolar cells, photoreceptors, and Müller glia. Age-related epigenetic changes such as DNA methylation in the retina and optic nerve are accelerated in pathogenic conditions such as glaucoma and macular degeneration, but reversing these epigenetic marks may represent a novel therapeutic target. Epigenetic writers also integrate environmental signals such as hypoxia, inflammation, and hyperglycemia in complex retinal conditions such as diabetic retinopathy (DR) and choroidal neovascularization (CNV). Histone deacetylase (HDAC) inhibitors protect against apoptosis and photoreceptor degeneration in animal models of retinitis pigmentosa (RP). The epigenome represents an intriguing therapeutic target for age-, genetic-, and neovascular-related retinal diseases, though more work is needed before advancement to clinical trials.
Collapse
Affiliation(s)
- Spencer M. Moore
- Department of Ophthalmology & Vision Science, University of Arizona College of Medicine-Tucson, Tucson, AZ 85711, USA
| | - John B. Christoforidis
- Department of Ophthalmology & Vision Science, University of Arizona College of Medicine-Tucson, Tucson, AZ 85711, USA
- Retina Specialists of Southern Arizonam, Tucson, AZ 85712, USA
| |
Collapse
|