1
|
Miniuk M, Reszeć-Giełażyn J, Bortnik P, Borsukiewicz A, Mroczek A. Novel Predictive Biomarkers in the Head and Neck Squamous Cell Carcinoma (HNSCC). J Clin Med 2024; 13:5876. [PMID: 39407936 PMCID: PMC11477133 DOI: 10.3390/jcm13195876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/14/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide, characterized by high aggressiveness and frequent metastasis to regional lymph nodes. Despite advances in therapy, including checkpoint inhibitor immunotherapy, surgery, radiotherapy, and chemotherapy, survival rates for patients with advanced HNSCC remain unsatisfactory. This article presents the latest research on predictive biomarkers such as PD-L1, PD-1, CTLA-4, p53, and HPV, which may enhance treatment efficacy and improve clinical outcomes for patients. The clinical value of these biomarkers, their limitations, and their potential application in HNSCC therapy are emphasized. Special attention is given to immunotherapy, which shows promising results in treating this type of cancer through the modulation of the immune response. The review's findings highlight the need for further research on new biomarkers to develop more personalized and effective therapeutic strategies for HNSCC patients.
Collapse
Affiliation(s)
- Magdalena Miniuk
- Department of Medical Pathomorphology, Medical University of Bialystok, 15-269 Bialystok, Poland;
- Department of Maxillofacial and Plastic Surgery, Medical University of Bialystok, 15-276 Bialystok, Poland; (P.B.)
| | - Joanna Reszeć-Giełażyn
- Department of Medical Pathomorphology, Medical University of Bialystok, 15-269 Bialystok, Poland;
| | - Piotr Bortnik
- Department of Maxillofacial and Plastic Surgery, Medical University of Bialystok, 15-276 Bialystok, Poland; (P.B.)
| | - Agata Borsukiewicz
- Department of Maxillofacial and Plastic Surgery, Medical University of Bialystok, 15-276 Bialystok, Poland; (P.B.)
| | - Aleksandra Mroczek
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, 15-089 Bialystok, Poland;
| |
Collapse
|
2
|
Wang Q, Yin X, Wang S, Lu H. Inflammatory markers as prognostic markers in patients with head and neck squamous cell carcinoma treated with immune checkpoint inhibitors: a systematic review and meta-analysis. Front Oncol 2024; 14:1429559. [PMID: 39132507 PMCID: PMC11310145 DOI: 10.3389/fonc.2024.1429559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/15/2024] [Indexed: 08/13/2024] Open
Abstract
Background Various inflammatory markers, including neutrophil-to-lymphocyte ratio (NLR), monocyte-to-lymphocyte ratio (MLR), platelet-to-lymphocyte ratio (PLR), and C-reactive protein-to-albumin ratio (CAR), have been linked to the effectiveness of immunotherapy in multiple types of malignancies. We investigated how these inflammatory markers affect the prognosis of patients with head and neck squamous cell carcinoma (HNSCC) receiving immunotherapy. Methods The databases PubMed, Embase, and Cochrane were systematically searched up until March 26, 2024, to identify relevant literature. Hazard ratios (HR) and corresponding 95% confidence intervals (CI) were extracted from the eligible studies. Data analysis was conducted using Review Manager and STATA 17.0 software to assess the impact of each indicator on prognosis. Subgroup analysis was performed to explore potential sources of heterogeneity in the data. Results The analysis included sixteen studies with 1316 patients. A higher baseline NLR was significantly associated with poorer overall survival (OS) (pooled HR: 1.55, 95%CI: 1.14-2.11, P=0.006) and progression-free survival (PFS) (pooled HR: 1.59, 95% CI: 1.21-2.10, P<0.05). Furthermore, a high NLR after immunotherapy was strongly correlated with poor OS (pooled HR: 5.43, 95% CI: 3.63-8.12, P<0.01). Additionally, higher baseline C-reactive CAR was significantly associated with worse OS (pooled HR: 2.58, 95% CI: 1.96-3.40, P<0.01). Conclusion The inflammatory markers NLR and CAR serve as effective prognostic biomarkers for immunotherapy in patients with HNSCC. However, the practical application of clinical detection requires further validation through large-scale prospective studies to confirm these findings and explore the underlying mechanisms.
Collapse
Affiliation(s)
- Quan Wang
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiangzhi Yin
- Department of Orthopaedics, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shengxia Wang
- Department of Rehabilitation Traditional Chinese Medicine, Laizhou People’s Hospital, Yantai, China
| | - Haijun Lu
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
3
|
Yin N, Li X, Zhang X, Xue S, Cao Y, Niedermann G, Lu Y, Xue J. Development of pharmacological immunoregulatory anti-cancer therapeutics: current mechanistic studies and clinical opportunities. Signal Transduct Target Ther 2024; 9:126. [PMID: 38773064 PMCID: PMC11109181 DOI: 10.1038/s41392-024-01826-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 05/23/2024] Open
Abstract
Immunotherapy represented by anti-PD-(L)1 and anti-CTLA-4 inhibitors has revolutionized cancer treatment, but challenges related to resistance and toxicity still remain. Due to the advancement of immuno-oncology, an increasing number of novel immunoregulatory targets and mechanisms are being revealed, with relevant therapies promising to improve clinical immunotherapy in the foreseeable future. Therefore, comprehending the larger picture is important. In this review, we analyze and summarize the current landscape of preclinical and translational mechanistic research, drug development, and clinical trials that brought about next-generation pharmacological immunoregulatory anti-cancer agents and drug candidates beyond classical immune checkpoint inhibitors. Along with further clarification of cancer immunobiology and advances in antibody engineering, agents targeting additional inhibitory immune checkpoints, including LAG-3, TIM-3, TIGIT, CD47, and B7 family members are becoming an important part of cancer immunotherapy research and discovery, as are structurally and functionally optimized novel anti-PD-(L)1 and anti-CTLA-4 agents and agonists of co-stimulatory molecules of T cells. Exemplified by bispecific T cell engagers, newly emerging bi-specific and multi-specific antibodies targeting immunoregulatory molecules can provide considerable clinical benefits. Next-generation agents also include immune epigenetic drugs and cytokine-based therapeutics. Cell therapies, cancer vaccines, and oncolytic viruses are not covered in this review. This comprehensive review might aid in further development and the fastest possible clinical adoption of effective immuno-oncology modalities for the benefit of patients.
Collapse
Affiliation(s)
- Nanhao Yin
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China
| | - Xintong Li
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China
| | - Xuanwei Zhang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China
| | - Shaolong Xue
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, No. 20, Section 3, South Renmin Road, Chengdu, 610041, Sichuan, PR China
| | - Yu Cao
- Department of Emergency Medicine, Laboratory of Emergency Medicine, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China
- Institute of Disaster Medicine & Institute of Emergency Medicine, Sichuan University, No. 17, Gaopeng Avenue, Chengdu, 610041, Sichuan, PR China
| | - Gabriele Niedermann
- Department of Radiation Oncology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK) Partner Site DKTK-Freiburg, Robert-Koch-Strasse 3, 79106, Freiburg, Germany.
| | - You Lu
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China.
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, No. 2222, Xinchuan Road, Chengdu, 610041, Sichuan, PR China.
| | - Jianxin Xue
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China.
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, No. 2222, Xinchuan Road, Chengdu, 610041, Sichuan, PR China.
| |
Collapse
|
4
|
Xing Z, Xu Y, Xu X, Yang K, Qin S, Jiao Y, Wang L. Identification and validation of a novel risk model based on cuproptosis‑associated m6A for head and neck squamous cell carcinoma. BMC Med Genomics 2024; 17:137. [PMID: 38778403 PMCID: PMC11110395 DOI: 10.1186/s12920-024-01916-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) is a prevalent cancer with a poor survival rate due to anatomical limitations of the head and a lack of reliable biomarkers. Cuproptosis represents a novel cellular regulated death pathway, and N6-methyladenosine (m6A) is the most common internal RNA modification in mRNA. They are intricately connected to tumor formation, progression, and prognosis. This study aimed to construct a risk model for HNSCC using a set of mRNAs associated with m6A regulators and cuproptosis genes (mcrmRNA). METHODS RNA-seq and clinical data of HNSCC patients from The Cancer Genome Atlas (TCGA) database were analyzed to develop a risk model through the least absolute shrinkage and selection operator (LASSO) analysis. Survival analysis and receiver operating characteristic (ROC) analysis were performed for the high- and low-risk groups. Additionally, the model was validated using the GSE41613 dataset from the Gene Expression Omnibus (GEO) database. GSEA and CIBERSORT were applied to investigate the immune microenvironment of HNSCC. RESULTS A risk model consisting of 32 mcrmRNA was developed using the LASSO analysis. The risk score of patients was confirmed to be an independent prognostic indicator by multivariate Cox analysis. The high-risk group exhibited a higher tumor mutation burden. Additionally, CIBERSORT analysis indicated varying levels of immune cell infiltration between the two groups. Significant disparities in drug sensitivity to common medications were also observed. Enrichment analysis further unveiled significant differences in metabolic pathways and RNA processing between the two groups. CONCLUSIONS Our risk model can predict outcomes for HNSCC patients and offers valuable insights for personalized therapeutic approaches.
Collapse
Affiliation(s)
- Zhongxu Xing
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 21500, China
| | - Yijun Xu
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 21500, China
| | - Xiaoyan Xu
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 21500, China
| | - Kaiwen Yang
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 21500, China
| | - Songbing Qin
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 21500, China
| | - Yang Jiao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China.
| | - Lili Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 21500, China.
| |
Collapse
|
5
|
Wang CW, Biswas PK, Islam A, Chen MK, Chueh PJ. The Use of Immune Regulation in Treating Head and Neck Squamous Cell Carcinoma (HNSCC). Cells 2024; 13:413. [PMID: 38474377 DOI: 10.3390/cells13050413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Immunotherapy has emerged as a promising new treatment modality for head and neck cancer, offering the potential for targeted and effective cancer management. Squamous cell carcinomas pose significant challenges due to their aggressive nature and limited treatment options. Conventional therapies such as surgery, radiation, and chemotherapy often have limited success rates and can have significant side effects. Immunotherapy harnesses the power of the immune system to recognize and eliminate cancer cells, and thus represents a novel approach with the potential to improve patient outcomes. In the management of head and neck squamous cell carcinoma (HNSCC), important contributions are made by immunotherapies, including adaptive cell therapy (ACT) and immune checkpoint inhibitor therapy. In this review, we are focusing on the latter. Immune checkpoint inhibitors target proteins such as programmed cell death protein 1 (PD-1) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) to enhance the immune response against cancer cells. The CTLA-4 inhibitors, such as ipilimumab and tremelimumab, have been approved for early-stage clinical trials and have shown promising outcomes in terms of tumor regression and durable responses in patients with advanced HNSCC. Thus, immune checkpoint inhibitor therapy holds promise in overcoming the limitations of conventional therapies. However, further research is needed to optimize treatment regimens, identify predictive biomarkers, and overcome potential resistance mechanisms. With ongoing advancements in immunotherapy, the future holds great potential for transforming the landscape of oral tumor treatment and providing new hope for patients.
Collapse
Affiliation(s)
- Che-Wei Wang
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 40227, Taiwan
- Department of Otorhinolaryngology-Head and Neck Surgery, Changhua Christian Hospital, Changhua 50006, Taiwan
| | - Pulak Kumar Biswas
- Institute of Molecular Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Atikul Islam
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 40227, Taiwan
| | - Mu-Kuan Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Changhua Christian Hospital, Changhua 50006, Taiwan
| | - Pin Ju Chueh
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 40227, Taiwan
| |
Collapse
|
6
|
Yang X, Cai Z, Wang C, Jiang C, Li J, Chen F, Li W. Integrated multiomic analysis reveals disulfidptosis subtypes in glioblastoma: implications for immunotherapy, targeted therapy, and chemotherapy. Front Immunol 2024; 15:1362543. [PMID: 38504986 PMCID: PMC10950096 DOI: 10.3389/fimmu.2024.1362543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/09/2024] [Indexed: 03/21/2024] Open
Abstract
Introduction Glioblastoma (GBM) presents significant challenges due to its malignancy and limited treatment options. Precision treatment requires subtyping patients based on prognosis. Disulfidptosis, a novel cell death mechanism, is linked to aberrant glucose metabolism and disulfide stress, particularly in tumors expressing high levels of SLC7A11. The exploration of disulfidptosis may provide a new perspective for precise diagnosis and treatment of glioblastoma. Methods Transcriptome sequencing was conducted on samples from GBM patients treated at Tiantan Hospital (January 2022 - December 2023). Data from CGGA and TCGA databases were collected. Consensus clustering based on disulfidptosis features categorized GBM patients into two subtypes (DRGclusters). Tumor immune microenvironment, response to immunotherapy, and drug sensitivity were analyzed. An 8-gene disulfidptosis-based subtype predictor was developed using LASSO machine learning algorithm and validated on CGGA dataset. Results Patients in DRGcluster A exhibited improved overall survival (OS) compared to DRGcluster B. DRGcluster subtypes showed differences in tumor immune microenvironment and response to immunotherapy. The predictor effectively stratified patients into high and low-risk groups. Significant differences in IC50 values for chemotherapy and targeted therapy were observed between risk groups. Discussion Disulfidptosis-based classification offers promise as a prognostic predictor for GBM. It provides insights into tumor immune microenvironment and response to therapy. The predictor aids in patient stratification and personalized treatment selection, potentially improving outcomes for GBM patients.
Collapse
Affiliation(s)
- Xue Yang
- Department of Neuro-oncology Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zehao Cai
- Department of Neuro-oncology Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ce Wang
- Department of Neuro-oncology Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chenggang Jiang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jianguang Li
- Department of Neurosurgery, Aerospace Center Hospital, Beijing, China
| | - Feng Chen
- Department of Neuro-oncology Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wenbin Li
- Department of Neuro-oncology Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
7
|
Mondello A, Dal Bo M, Toffoli G, Polano M. Machine learning in onco-pharmacogenomics: a path to precision medicine with many challenges. Front Pharmacol 2024; 14:1260276. [PMID: 38264526 PMCID: PMC10803549 DOI: 10.3389/fphar.2023.1260276] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/26/2023] [Indexed: 01/25/2024] Open
Abstract
Over the past two decades, Next-Generation Sequencing (NGS) has revolutionized the approach to cancer research. Applications of NGS include the identification of tumor specific alterations that can influence tumor pathobiology and also impact diagnosis, prognosis and therapeutic options. Pharmacogenomics (PGx) studies the role of inheritance of individual genetic patterns in drug response and has taken advantage of NGS technology as it provides access to high-throughput data that can, however, be difficult to manage. Machine learning (ML) has recently been used in the life sciences to discover hidden patterns from complex NGS data and to solve various PGx problems. In this review, we provide a comprehensive overview of the NGS approaches that can be employed and the different PGx studies implicating the use of NGS data. We also provide an excursus of the ML algorithms that can exert a role as fundamental strategies in the PGx field to improve personalized medicine in cancer.
Collapse
Affiliation(s)
| | | | | | - Maurizio Polano
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Aviano, Italy
| |
Collapse
|
8
|
Becker AS, Kluge C, Schofeld C, Zimpfer AH, Schneider B, Strüder D, Redwanz C, Ribbat-Idel J, Idel C, Maletzki C. Identifying Predictive Biomarkers for Head and Neck Squamous Cell Carcinoma Response. Cancers (Basel) 2023; 15:5597. [PMID: 38067301 PMCID: PMC10705351 DOI: 10.3390/cancers15235597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 10/27/2024] Open
Abstract
The 5-year survival rate for head and neck squamous cell carcinoma (HNSCC) is approximately 65%. In addition to radio-chemotherapy, immunotherapy is an approach in the treatment of advanced HNSCC. A better understanding of the immune context would allow personalized treatment by identifying patients who are best suited for different treatment options. In our discovery cohort, we evaluated the expression profiles of CMTM6, PD-L1, CTLA-4, and FOXP3 in 177 HNSCCs from Caucasian patients of all tumor stages and different treatment regimens, correlating marker expression in tumor and immune cells with outcomes. Patients with CMTM6high-expressing tumors had a longer overall survival regardless of treatment. This prognostic benefit of CMTM6 in HNSCC was validated in an independent cohort. Focusing on the in the discovery cohort (n = 177), a good predictive effect of CMTM6high expression was seen in patients receiving radiotherapy (p = 0.07; log rank), but not in others. CMTM6 correlated with PD-L1, CTLA-4 and FOXP3 positivity, with patients possessing CMTM6high/FOXP3high tumors showing the longest survival regardless of treatment. In chemotherapy-treated patients, PD-L1 positivity was associated with longer progression-free survival (p < 0.05). In the 27 patients who received immunotherapy, gene expression analysis revealed lower levels of CTLA-4 and FOXP3 with either partial or complete response to this treatment, while no effect was observed for CMTM6 or PD-L1. The combination of these immunomodulatory markers seems to be an interesting prognostic and predictive signature for HNSCC patients with the ability to optimize individualized treatments.
Collapse
Affiliation(s)
- Anne-Sophie Becker
- Institute of Pathology, Rostock University Medical Center, 18057 Rostock, Germany; (C.K.); (C.S.); (A.H.Z.); (B.S.)
| | - Cornelius Kluge
- Institute of Pathology, Rostock University Medical Center, 18057 Rostock, Germany; (C.K.); (C.S.); (A.H.Z.); (B.S.)
| | - Carsten Schofeld
- Institute of Pathology, Rostock University Medical Center, 18057 Rostock, Germany; (C.K.); (C.S.); (A.H.Z.); (B.S.)
| | - Annette Helene Zimpfer
- Institute of Pathology, Rostock University Medical Center, 18057 Rostock, Germany; (C.K.); (C.S.); (A.H.Z.); (B.S.)
| | - Björn Schneider
- Institute of Pathology, Rostock University Medical Center, 18057 Rostock, Germany; (C.K.); (C.S.); (A.H.Z.); (B.S.)
| | - Daniel Strüder
- Department of Otorhinolaryngology, Head and Neck Surgery “Otto Koerner”, Rostock University Medical Center, 18057 Rostock, Germany;
| | - Caterina Redwanz
- Department of Internal Medicine B, Cardiology, University Medicine Greifswald, 17475 Greifswald, Germany;
| | - Julika Ribbat-Idel
- Institute of Pathology, University of Luebeck, University Hospital Schleswig-Holstein, Campus Luebeck, 23538 Luebeck, Germany;
| | - Christian Idel
- Department of Oto-Rhino-Laryngology & Head and Neck Surgery, University of Lubeck, University Hospital Schleswig-Holstein, Campus Luebeck, 23538 Luebeck, Germany;
| | - Claudia Maletzki
- Department of Internal Medicine, Medical Clinic III—Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, 18057 Rostock, Germany;
| |
Collapse
|
9
|
Wang Z, Sun P, Li Z, Xiao S. Clinical Advances and Future Directions of Oncolytic Virotherapy for Head and Neck Cancer. Cancers (Basel) 2023; 15:5291. [PMID: 37958464 PMCID: PMC10650136 DOI: 10.3390/cancers15215291] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023] Open
Abstract
Oncolytic viruses (OVs), without harming normal tissues, selectively infect and replicate within tumor cells, to release immune molecules and tumor antigens, achieving immune-mediated destruction of tumors and making them one of the most promising immunotherapies for cancer. Many clinical studies have demonstrated that OVs can provide clinical benefits for patients with different types of tumors, at various stages, including metastatic and previously untreatable cases. When OVs are used in combination with chemotherapy, radiotherapy, immunotherapy, and other treatments, they can synergistically enhance the therapeutic effects. The concept of oncolytic virotherapy (OVT) was proposed in the early 20th century. With advancements in genetic engineering, genetically modified viruses can further enhance the efficacy of cancer immunotherapy. In recent years, global research on OV treatment of malignant tumors has increased dramatically. This article comprehensively reviews the findings from relevant research and clinical trials, providing an overview of the development of OVT and its application in the clinical treatment of head and neck cancer. The aim is to offer insights for future clinical and fundamental research on OVT.
Collapse
Affiliation(s)
- Zhan Wang
- Department of Stomatology, Wenzhou Medical University Renji College, Wenzhou 325000, China
| | - Peng Sun
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325000, China; (P.S.); (Z.L.)
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo 315000, China
| | - Zhiyong Li
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325000, China; (P.S.); (Z.L.)
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo 315000, China
| | - Shaowen Xiao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| |
Collapse
|