1
|
Yang G, Yang S, Li J, Jiang P, Tian X, Wang X, Wei J, Zhang X, Liu J. Low-dose treatment with Epirubicin, a novel histone deacetylase 1 inhibitor, exerts anti-leukemic effects by inducing ferroptosis. Eur J Pharmacol 2024; 985:177058. [PMID: 39413949 DOI: 10.1016/j.ejphar.2024.177058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/18/2024]
Abstract
AIMS Leukemia is hematopoietic stem cell malignant tumor with poor outcomes. Histone deacetylase 1 (HDAC1) is highly expressed in leukemia and current HDAC1 inhibitors have clinical limitations in leukemia therapy. Therefore, novel HDAC1 inhibitor is imperative to being found and its mechanism needs to be further explored. MATERIALS AND METHODS Novel HDAC1 inhibitors were discovered through drug virtual screening. CCK-8, EdU and soft agar assay were used to assess the anti-leukemic effect of the candidate HDAC1 inhibitor. ROS, lipid peroxidation, intracellular Fe2+ and LIP assay were employed to verify cell ferroptosis. Additionally, a xenograft model was performed to explore the efficacy and safety of the candidate HDAC1 inhibitor in vivo. RESULTS HDAC1 might be a promising therapeutic target for leukemia and Epirubicin (Epi) could be used as a potential HDAC1 inhibitor. Low-dose Epi exhibited good anti-leukemic effects by inhibiting cell proliferation, DNA synthesis and colony formation. Low-dose Epi could induce ferroptosis by triggering lipid peroxidation, which was better than that treated with current HDAC1 inhibitors Chidamide or Vorinostat, ROS generation and Fe2+ overload in leukemia cells. Mechanistically, low-dose Epi induced ferroptosis by targeting amino acid metabolism and iron metabolism. Similar results were found in a xenograft model in NOG mice with a good safety profile. CONCLUSION Our study demonstrated that Epi might be used as a HDAC1 inhibitor. Low-dose Epi could inhibit tumor progression by inducing cell ferroptosis in vitro and in vivo. Thus, Epi administration with lower concentration may be much more favorable and safer in the treatment with leukemia.
Collapse
Affiliation(s)
- Guancui Yang
- State Key Laboratory of Trauma and Chemical Poisoning, Medical Center of Hematology, Military Key Clinical Specialty, Chongqing Key Clinical Specialty, Chongqing Key Laboratory of Hematology and Microenvironment, Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China; Department of Hematology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637002, China
| | - Shijie Yang
- State Key Laboratory of Trauma and Chemical Poisoning, Medical Center of Hematology, Military Key Clinical Specialty, Chongqing Key Clinical Specialty, Chongqing Key Laboratory of Hematology and Microenvironment, Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China
| | - Jiarun Li
- State Key Laboratory of Trauma and Chemical Poisoning, Medical Center of Hematology, Military Key Clinical Specialty, Chongqing Key Clinical Specialty, Chongqing Key Laboratory of Hematology and Microenvironment, Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China
| | - Peijie Jiang
- State Key Laboratory of Trauma and Chemical Poisoning, Medical Center of Hematology, Military Key Clinical Specialty, Chongqing Key Clinical Specialty, Chongqing Key Laboratory of Hematology and Microenvironment, Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China; Department of Hematology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637002, China
| | - Xiaolong Tian
- State Key Laboratory of Trauma and Chemical Poisoning, Medical Center of Hematology, Military Key Clinical Specialty, Chongqing Key Clinical Specialty, Chongqing Key Laboratory of Hematology and Microenvironment, Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China
| | - Xiaoqi Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Medical Center of Hematology, Military Key Clinical Specialty, Chongqing Key Clinical Specialty, Chongqing Key Laboratory of Hematology and Microenvironment, Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China
| | - Jin Wei
- Department of Hematology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637002, China
| | - Xi Zhang
- State Key Laboratory of Trauma and Chemical Poisoning, Medical Center of Hematology, Military Key Clinical Specialty, Chongqing Key Clinical Specialty, Chongqing Key Laboratory of Hematology and Microenvironment, Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China; Jinfeng Laboratory, Chongqing, 401329, China.
| | - Jinyi Liu
- State Key Laboratory of Trauma and Chemical Poisoning, Medical Center of Hematology, Military Key Clinical Specialty, Chongqing Key Clinical Specialty, Chongqing Key Laboratory of Hematology and Microenvironment, Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China.
| |
Collapse
|
2
|
Fischer A, Albert TK, Moreno N, Interlandi M, Mormann J, Glaser S, Patil P, de Faria FW, Richter M, Verma A, Balbach ST, Wagener R, Bens S, Dahlum S, Göbel C, Münter D, Inserte C, Graf M, Kremer E, Melcher V, Di Stefano G, Santi R, Chan A, Dogan A, Bush J, Hasselblatt M, Cheng S, Spetalen S, Fosså A, Hartmann W, Herbrüggen H, Robert S, Oyen F, Dugas M, Walter C, Sandmann S, Varghese J, Rossig C, Schüller U, Tzankov A, Pedersen MB, d'Amore FA, Mellgren K, Kontny U, Kancherla V, Veloza L, Missiaglia E, Fataccioli V, Gaulard P, Burkhardt B, Soehnlein O, Klapper W, de Leval L, Siebert R, Kerl K. Lack of SMARCB1 expression characterizes a subset of human and murine peripheral T-cell lymphomas. Nat Commun 2024; 15:8571. [PMID: 39362842 PMCID: PMC11452211 DOI: 10.1038/s41467-024-52826-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 09/23/2024] [Indexed: 10/05/2024] Open
Abstract
Peripheral T-cell lymphoma, not otherwise specified (PTCL-NOS) is a heterogeneous group of malignancies with poor outcome. Here, we identify a subgroup, PTCL-NOSSMARCB1-, which is characterized by the lack of the SMARCB1 protein and occurs more frequently in young patients. Human and murine PTCL-NOSSMARCB1- show similar DNA methylation profiles, with hypermethylation of T-cell-related genes and hypomethylation of genes involved in myeloid development. Single-cell analyses of human and murine tumors revealed a rich and complex network of interactions between tumor cells and an immunosuppressive and exhausted tumor microenvironment (TME). In a drug screen, we identified histone deacetylase inhibitors (HDACi) as a class of drugs effective against PTCL-NOSSmarcb1-. In vivo treatment of mouse tumors with SAHA, a pan-HDACi, triggered remodeling of the TME, promoting replenishment of lymphoid compartments and reversal of the exhaustion phenotype. These results provide a rationale for further exploration of HDACi combination therapies targeting PTCL-NOSSMARCB1- within the TME.
Collapse
MESH Headings
- Animals
- SMARCB1 Protein/genetics
- SMARCB1 Protein/metabolism
- Humans
- Lymphoma, T-Cell, Peripheral/genetics
- Lymphoma, T-Cell, Peripheral/drug therapy
- Lymphoma, T-Cell, Peripheral/metabolism
- Lymphoma, T-Cell, Peripheral/pathology
- Mice
- Histone Deacetylase Inhibitors/pharmacology
- Tumor Microenvironment/genetics
- Tumor Microenvironment/drug effects
- DNA Methylation
- Gene Expression Regulation, Neoplastic
- Female
- Cell Line, Tumor
- Male
- Vorinostat/pharmacology
- Single-Cell Analysis
Collapse
Affiliation(s)
- Anja Fischer
- Institute of Human Genetics, Ulm University Medical Center, Ulm, Germany
| | - Thomas K Albert
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany
| | - Natalia Moreno
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany
| | - Marta Interlandi
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany
- Institute of Medical Informatics, University of Münster, 48149, Münster, Germany
| | - Jana Mormann
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany
| | - Selina Glaser
- Institute of Human Genetics, Ulm University Medical Center, Ulm, Germany
| | - Paurnima Patil
- Institute of Human Genetics, Ulm University Medical Center, Ulm, Germany
| | - Flavia W de Faria
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany
| | - Mathis Richter
- Institute for Experimental Pathology, Center for Molecular Biology of Inflammation, University of Münster, Münster, Germany
| | - Archana Verma
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany
| | - Sebastian T Balbach
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany
| | - Rabea Wagener
- Institute of Human Genetics, Ulm University Medical Center, Ulm, Germany
| | - Susanne Bens
- Institute of Human Genetics, Ulm University Medical Center, Ulm, Germany
| | - Sonja Dahlum
- Institute of Human Genetics, Ulm University Medical Center, Ulm, Germany
| | - Carolin Göbel
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg, Eppendorf (UKE), 20251, Hamburg, Germany
- Research Institute Children's Cancer Center, 20251, Hamburg, Germany
| | - Daniel Münter
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany
| | - Clara Inserte
- Institute of Medical Informatics, University of Münster, 48149, Münster, Germany
| | - Monika Graf
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany
| | - Eva Kremer
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany
| | - Viktoria Melcher
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany
| | - Gioia Di Stefano
- Pathological Anatomy Section, Careggi University Hospital, Florence, Italy
| | - Raffaella Santi
- Pathological Anatomy Section, Careggi University Hospital, Florence, Italy
| | - Alexander Chan
- Department of Pathology, Hematopathology Service, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Ahmet Dogan
- Department of Pathology, Hematopathology Service, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Jonathan Bush
- Division of Anatomical Pathology, British Columbia Children's Hospital and Women's Hospital and Health Center, Vancouver, BC, Canada
| | - Martin Hasselblatt
- Institute of Neuropathology, University Hospital Münster, 48149, Münster, Germany
| | - Sylvia Cheng
- Division of Pediatric Hematology/Oncology/BMT, Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Signe Spetalen
- Department of Pathology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Alexander Fosså
- Department of Oncology, Oslo University Hospital-Norwegian Radium Hospital, Oslo, Norway
| | - Wolfgang Hartmann
- Division of Translational Pathology, Gerhard-Domagk-Institut für Pathologie, Universitätsklinikum Münster, Albert-Schweitzer-Campus 1, Gebäude D17, 48149, Münster, Germany
| | - Heidi Herbrüggen
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany
| | - Stella Robert
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, Münster, Germany
| | - Florian Oyen
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg, Eppendorf (UKE), 20251, Hamburg, Germany
| | - Martin Dugas
- Institute of Medical Informatics, University of Münster, 48149, Münster, Germany
- Institute of Medical Informatics, Heidelberg University Hospital, Heidelberg, Germany
| | - Carolin Walter
- Institute of Medical Informatics, University of Münster, 48149, Münster, Germany
| | - Sarah Sandmann
- Institute of Medical Informatics, University of Münster, 48149, Münster, Germany
| | - Julian Varghese
- Institute of Medical Informatics, University of Münster, 48149, Münster, Germany
| | - Claudia Rossig
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany
| | - Ulrich Schüller
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg, Eppendorf (UKE), 20251, Hamburg, Germany
- Research Institute Children's Cancer Center, 20251, Hamburg, Germany
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), 20251, Hamburg, Germany
| | - Alexandar Tzankov
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Martin B Pedersen
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
| | - Francesco A d'Amore
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Karin Mellgren
- Department of Pediatric Oncology and Hematology, Sahlgrenska University Hospital, The Queen Silvia Children's Hospital, Gothenburg, Sweden
| | - Udo Kontny
- Section of Pediatric Hematology, Oncology, and Stem Cell Transplantation, Department of Pediatric and Adolescent Medicine, RWTH Aachen University Hospital, Aachen, Germany
| | - Venkatesh Kancherla
- Institute of Pathology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital, Lausanne, Switzerland
| | - Luis Veloza
- Institute of Pathology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital, Lausanne, Switzerland
| | - Edoardo Missiaglia
- Institute of Pathology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital, Lausanne, Switzerland
| | - Virginie Fataccioli
- INSERM U955, Université Paris-Est, Créteil, France
- Département de Pathologie, Hôpitaux Universitaires Henri Mondor, AP-HP, INSERM U955, Université Paris Est Créteil, Créteil, France
| | - Philippe Gaulard
- Département de Pathologie, Hôpitaux Universitaires Henri Mondor, AP-HP, INSERM U955, Université Paris Est Créteil, Créteil, France
| | - Birgit Burkhardt
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany
| | - Oliver Soehnlein
- Institute for Experimental Pathology, Center for Molecular Biology of Inflammation, University of Münster, Münster, Germany
| | - Wolfram Klapper
- Department of Pathology, Haematopathology Section and Lymph Node Registry, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Laurence de Leval
- Institute of Pathology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital, Lausanne, Switzerland
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University Medical Center, Ulm, Germany
| | - Kornelius Kerl
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany.
| |
Collapse
|
4
|
Zong X, Yang Z, Zhou J, Jin Z, Wu D. Clinical trial: Chidamide plus CHOP improve the survival of newly diagnosed angioimmunoblastic T-cell lymphoma. Front Immunol 2024; 15:1430648. [PMID: 39229263 PMCID: PMC11368836 DOI: 10.3389/fimmu.2024.1430648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/25/2024] [Indexed: 09/05/2024] Open
Abstract
Background Angioimmunoblastic T-cell lymphoma (AITL) is known for its unfavorable survival prognosis. Chidamide has shown efficacy in relapsed/refractory AITL, but its efficacy in newly diagnosed AITL is uncertain. Objective This retrospective research aimed to evaluate the effectiveness and safety of chidamide when used with doxorubicin, cyclophosphamide, prednisone, and vincristine (CHOP) in comparison to CHOP by itself for individuals newly diagnosed with AITL, and to examine the impact of transplantation. Method This was an analysis that compared outcomes among patients who received chidamide + CHOP on a clinical trial vs. historical controls who received CHOP alone, enrolling a total of sixty-six treatment-naive AITL patients between April 2014 and November 2022. Among them, thirty-three received chidamide in addition to CHOP (chidamide group), while thirty-three received CHOP alone (control group). The clinical characteristics were balanced between the two groups. All patients were scheduled to undergo up to six courses of treatment before transplantation. Results The chidamide group had a significantly longer median overall survival (OS) compared to the control group, with a median OS that was not reached, as opposed to 20 months in the control group (p = 0.002). In the control group, the median progression-free survival (PFS) was 11 months, while in the chidamide group, it was 22 months (p = 0.080). In the high-risk group (IPI ≥ 3), the chidamide group demonstrated notably superior complete response (CR) and overall response rate (ORR) compared to the control cohort (p = 0.002, p = 0.034). The PFS and OS in the chidamide group were not reached, and there were significant differences compared to the control group (p = 0.007, p = 0.003). The median OS of the transplanted group was longer than the non-transplanted group (p = 0.004). On multivariate analysis, chidamide group reduced the hazards of death in the total cohort. Conclusion As the study was non-random and retrospective, Chidamide combined with chemotherapy should be tested in randomized trials given its potential to improve prognosis in treatment-naive AITL patients. Furthermore, autologous hematopoietic stem cell transplantation (auto-HSCT) has demonstrated enhanced overall survival in individuals with AITL. Clinical trial registration https://clinicaltrials.gov/, NCT03268889.
Collapse
Affiliation(s)
- Xiangping Zong
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhen Yang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jin Zhou
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhengming Jin
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Depei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| |
Collapse
|