1
|
Barber AJ, Del Genio CL, Swain AB, Pizzi EM, Watson SC, Tapiavala VN, Zanazzi GJ, Gaur AB. Age, sex and Alzheimer's disease: a longitudinal study of 3xTg-AD mice reveals sex-specific disease trajectories and inflammatory responses mirrored in postmortem brains from Alzheimer's patients. Alzheimers Res Ther 2024; 16:134. [PMID: 38909241 PMCID: PMC11193202 DOI: 10.1186/s13195-024-01492-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/06/2024] [Indexed: 06/24/2024]
Abstract
BACKGROUND Aging and sex are major risk factors for developing late-onset Alzheimer's disease. Compared to men, women experience worse neuropathological burden and cognitive decline despite living longer with the disease. Similarly, male 3xTg-AD mice, developed to model Alzheimer's disease, no longer consistently exhibit standard Alzheimer's neuropathology yet experience higher rates of mortality - providing a unique opportunity to further elucidate this dichotomy. We hypothesized that sex differences in the biological aging process yield distinct pathological and molecular Alzheimer's disease signatures in males and females, which could be harnessed for therapeutic and biomarker development. METHODS We aged male and female, 3xTg-AD and B6129 control mice across their respective lifespans (n = 3-8 mice per sex, strain, and age group) and longitudinally assessed neuropathological hallmarks of Alzheimer's disease, markers of hepatic inflammation, splenic mass and morphology, as well as plasma cytokine levels. We conducted RNA sequencing analysis on bulk brain tissue and examined differentially expressed genes (DEGs) between 3xTg-AD and B6129 samples and across ages in each sex. We also examined DEGs between clinical Alzheimer's and control parahippocampal gyrus brain tissue samples from the Mount Sinai Brain Bank study in each sex. RESULTS 3xTg-AD females significantly outlived 3xTg-AD males and exhibited progressive Alzheimer's neuropathology, while 3xTg-AD males demonstrated progressive hepatic inflammation, splenomegaly, circulating inflammatory proteins, and minimal Alzheimer's neuropathological hallmarks. Instead, 3xTg-AD males experienced an accelerated upregulation of immune-related gene expression in the brain relative to females. Our clinical investigations revealed that individuals with Alzheimer's disease develop similar sex-specific alterations in neuronal and immune function. In diseased males of both species, we observed greater upregulation of complement-related gene expression, and lipopolysaccharide was predicted as the top upstream regulator of DEGs. CONCLUSIONS Our data demonstrate that chronic inflammation and complement activation are associated with increased mortality, indicating that age-related changes in immune response contribute to sex differences in Alzheimer's disease trajectories. We provide evidence that aging and transgene-driven disease progression trigger a widespread inflammatory response in 3xTg-AD males, which mimics the impact of lipopolysaccharide stimulation despite the absence of infection.
Collapse
Affiliation(s)
- Alicia J Barber
- Department of Neurology, Geisel School of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Carmen L Del Genio
- Department of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | | | - Elizabeth M Pizzi
- The Jackson Laboratory, Bar Harbor, ME, USA
- Neuroscience Program, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA
| | | | | | - George J Zanazzi
- Department of Pathology, Geisel School of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Arti B Gaur
- Department of Neurology, Geisel School of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA.
- Integrative Neuroscience at Dartmouth, Dartmouth College, Hanover, NH, USA.
| |
Collapse
|
2
|
Xiong L, Tian Y, Xu X, Wang H, Li W, Zhai C. Immunopotentiating effects of herb-partitioned moxibustion on the spleens of cyclophosphamide-induced immunosuppressed rats. Chin Med 2024; 19:28. [PMID: 38369521 PMCID: PMC10875891 DOI: 10.1186/s13020-024-00898-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/31/2024] [Indexed: 02/20/2024] Open
Abstract
BACKGROUND To investigate the effec of the herb-partitioned moxibustion on T-lymphocyte activity in immunosuppressed rats through differential modulation of the immune checkpoint molecules CD28 and CTLA-4. METHODS Forty-eight Sprague‒Dawley rats were randomly divided into the normal group (NG), the cyclophosphamide model group (CTX), the herb-partitioned moxibustion group (HPM), the CD28 inhibitor + herb-partitioned moxibustion group (aCD28 + HPM), the CTLA-4 inhibitor + herb-partitioned moxibustion group (aCTLA-4 + HPM), and the levamisole group (LEV) (8 rats per group). The immunosuppression model was prepared using cyclophosphamide. HPM treatments was performed via herb-partitioned moxibustion at 4 acupoints, Zhongwan (CV12), Shenque (CV8), Guanyuan (CV4), and Zusanli (ST36). Subsequently, the moxa floss was made into a conical moxa cone, which was then placed on the herbal cake and ignited. Five consecutive moxibustion strokes were performed daily for 10 consecutive days. In addition to the same moxibustion, each rat in the aCD28 + HPM group was injected intraperitoneally with 0.5 mg/kg of CD28 inhibitor per rat on the first day of treatment, and 100 μL of CTLA-4 inhibitor was injected into the aCTLA-4 + HPM group on Days 1, 4, and 7. For the positive control, levamisole (LEV) was administered by gavage at a dose of 2 mg/kg once daily for 10 days. RESULTS Compared with those in CTX model rats, the WBC counts in the HPM and other groups were significantly higher. The immobility time of EPM in the HPM group was significantly lower than that of the CTX group. The HE stainin results also showed that after treatment, the the marginal zone area of the spleen tissue in the HPM increased, the number of lymphatic sheath lymphocytes around the small central artery of the spleen increased, and the amount of red pulp containing a small amount of pigmentation was partially reduced. Compared with those in the CTX group, the serum levels of CD28, CTLA-4, B7-1, and B7-2 were significantly lower, and the levels of α-MSH, TrkB, and BDNF were significantly greater in the HPM group. The results of the flow cytometry assay showed a significant increase in the number of CD8 + T lymphocytes after treatment with HPM or other agents compared to that in the CTX group. The immunofluorescence results showed that the levels of CD28 and CTLA-4 lower in spleen tissues than in control tissues, and the binding ability of CD28 to B7-1 and B7-2 was weakened after treatment with HPM and other treatments compared with CTX rats, PCR for CD28, CTLA-4 and B7-1 showed similar results. CONCLUSION In the immunosuppressive rat model induced by cyclophosphamide, HPM upregulated the expression of α-MSH, TrkB, and BDNF, and downregulated the expression of CD28 and CTLA-4, thereby enhancing the activity of CD8+ T lymphocytes, restoring spleen function, improving the immunosuppressive state, restoring immune function, and effectively alleviating depressive symptoms.
Collapse
Affiliation(s)
- Luojie Xiong
- College of Acupuncture, Massage and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China
- Second Clinical College, Shanxi University of Chinese Medicine, Jinzhong, 030619, People's Republic of China
| | - Yuefeng Tian
- Second Clinical College, Shanxi University of Chinese Medicine, Jinzhong, 030619, People's Republic of China.
| | - Xiaoshan Xu
- College of Acupuncture, Massage and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Huifang Wang
- Second Clinical College, Shanxi University of Chinese Medicine, Jinzhong, 030619, People's Republic of China
| | - Wei Li
- Second Clinical College, Shanxi University of Chinese Medicine, Jinzhong, 030619, People's Republic of China
| | - Chuntao Zhai
- Second Clinical College, Shanxi University of Chinese Medicine, Jinzhong, 030619, People's Republic of China
| |
Collapse
|
3
|
Barber AJ, del Genio CL, Swain AB, Pizzi EM, Watson SC, Tapiavala VN, Zanazzi GJ, Gaur AB. Age, Sex and Alzheimer's disease: A longitudinal study of 3xTg-AD mice reveals sex-specific disease trajectories and inflammatory responses mirrored in postmortem brains from Alzheimer's patients. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.23.573209. [PMID: 38187539 PMCID: PMC10769453 DOI: 10.1101/2023.12.23.573209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Background Aging and sex are major risk factors for developing late-onset Alzheimer's disease. Compared to men, women are not only nearly twice as likely to develop Alzheimer's, but they also experience worse neuropathological burden and cognitive decline despite living longer with the disease. It remains unclear how and when sex differences in biological aging emerge and contribute to Alzheimer's disease pathogenesis. We hypothesized that these differences lead to distinct pathological and molecular Alzheimer's disease signatures in males and females, which could be harnessed for therapeutic and biomarker development. Methods We aged male and female, 3xTg-AD and B6129 (WT) control mice across their respective lifespans while longitudinally collecting brain, liver, spleen, and plasma samples (n=3-8 mice per sex, strain, and age group). We performed histological analyses on all tissues and assessed neuropathological hallmarks of Alzheimer's disease, markers of hepatic inflammation, as well as splenic mass and morphology. Additionally, we measured concentrations of cytokines, chemokines, and growth factors in the plasma. We conducted RNA sequencing (RNA-Seq) analysis on bulk brain tissue and examined differentially expressed genes (DEGs) between 3xTg-AD and WT samples and across ages in each sex. We also examined DEGs between clinical Alzheimer's and control parahippocampal gyrus brain tissue samples from the Mount Sinai Brain Bank (MSBB) study in each sex. Results 3xTg-AD females significantly outlived 3xTg-AD males and exhibited progressive Alzheimer's neuropathology, while 3xTg-AD males demonstrated progressive hepatic inflammation, splenomegaly, circulating inflammatory proteins, and next to no Alzheimer's neuropathological hallmarks. Instead, 3xTg-AD males experienced an accelerated upregulation of immune-related gene expression in the brain relative to females, further suggesting distinct inflammatory disease trajectories between the sexes. Clinical investigations revealed that 3xTg-AD brain aging phenotypes are not an artifact of the animal model, and individuals with Alzheimer's disease develop similar sex-specific alterations in canonical pathways related to neuronal signaling and immune function. Interestingly, we observed greater upregulation of complement-related gene expression, and lipopolysaccharide (LPS) was predicted as the top upstream regulator of DEGs in diseased males of both species. Conclusions Our data demonstrate that chronic inflammation and complement activation are associated with increased mortality, revealing that age-related changes in immune response act as a primary driver of sex differences in Alzheimer's disease trajectories. We propose a model of disease pathogenesis in 3xTg-AD males in which aging and transgene-driven disease progression trigger an inflammatory response, mimicking the effects of LPS stimulation despite the absence of infection.
Collapse
Affiliation(s)
- Alicia J. Barber
- Department of Neurology, Geisel School of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
- Integrative Neuroscience at Dartmouth, Dartmouth College, Hanover, NH, USA
| | - Carmen L. del Genio
- Department of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | | | - Elizabeth M. Pizzi
- The Jackson Laboratory, Bar Harbor, ME, USA
- Neuroscience Program, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA
| | | | | | - George J. Zanazzi
- Department of Pathology, Geisel School of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Arti B. Gaur
- Department of Neurology, Geisel School of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| |
Collapse
|
4
|
Tian S, Ye T, Cheng X. The behavioral, pathological and therapeutic features of the triple transgenic Alzheimer's disease (3 × Tg-AD) mouse model strain. Exp Neurol 2023; 368:114505. [PMID: 37597764 DOI: 10.1016/j.expneurol.2023.114505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/07/2023] [Accepted: 08/15/2023] [Indexed: 08/21/2023]
Abstract
As a classic animal model of Alzheimer's disease (AD), the 3 × Tg-AD mouse not only recapitulates most of anatomical hallmarks observed in AD pathology but also displays cognitive alterations in memory and learning tasks. The 3 × Tg-AD can better show the two characteristics of AD, amyloid β (Aβ) and neurofibrillary tangles (NFT). Therefore, 3 × Tg-AD strain is widely used in AD pathogenesis research and new drug development of AD. In this paper, the construction methods, pathological changes, and treatment characteristics of 3 × Tg-AD mouse models commonly used in AD research are summarized and commented, hoping to provide reference for researchers to choose and establish experimental patterns.
Collapse
Affiliation(s)
- Sheng Tian
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao 999078, PR China; Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250300, China
| | - Tianyuan Ye
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250300, China
| | - Xiaorui Cheng
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao 999078, PR China; Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250300, China.
| |
Collapse
|
5
|
Liorni N, Napoli A, Castellana S, Giallongo S, Řeháková D, Re OL, Koutná I, Mazza T, Vinciguerra M. Integrative CUT&Tag-RNA-Seq analysis of histone variant macroH2A1-dependent orchestration of human induced pluripotent stem cell reprogramming. Epigenomics 2023; 15:863-877. [PMID: 37846557 DOI: 10.2217/epi-2023-0267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023] Open
Abstract
Aim: Human induced pluripotent stem cells (iPSCs) are inefficiently derived from somatic cells by overexpression of defined transcription factors. Overexpression of H2A histone variant macroH2A1.1, but not macroH2A1.2, leads to increased iPSC reprogramming by unclear mechanisms. Materials & methods: Cleavage under targets and tagmentation (CUT&Tag) allows robust epigenomic profiling of a low cell number. We performed an integrative CUT&Tag-RNA-Seq analysis of macroH2A1-dependent orchestration of iPSCs reprogramming using human endothelial cells. Results: We demonstrate wider genome occupancy, predicted transcription factors binding, and gene expression regulated by macroH2A1.1 during reprogramming, compared to macroH2A1.2. MacroH2A1.1, previously associated with neurodegenerative pathologies, specifically activated ectoderm/neural processes. Conclusion: CUT&Tag and RNA-Seq data integration is a powerful tool to investigate the epigenetic mechanisms occurring during cell reprogramming.
Collapse
Affiliation(s)
- Niccolò Liorni
- Bioinformatics Unit, Fondazione IRCCS Casa Sollievo della Sofferenza,71013, San Giovanni Rotondo, Italy
| | - Alessandro Napoli
- Bioinformatics Unit, Fondazione IRCCS Casa Sollievo della Sofferenza,71013, San Giovanni Rotondo, Italy
| | - Stefano Castellana
- Bioinformatics Unit, Fondazione IRCCS Casa Sollievo della Sofferenza,71013, San Giovanni Rotondo, Italy
| | - Sebastiano Giallongo
- International Clinical Research Center, St. Anne's University Hospital, 65691, Brno, Czech Republic
- Department of Biomedical & Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Daniela Řeháková
- International Clinical Research Center, St. Anne's University Hospital, 65691, Brno, Czech Republic
- Institute of Experimental Biology, Faculty of Science, Masaryk University, 62500, Brno, Czech Republic
| | - Oriana Lo Re
- International Clinical Research Center, St. Anne's University Hospital, 65691, Brno, Czech Republic
- Department of Translational Stem Cell Biology, Research Institute, Medical University of Varna (RIMUV), 9002, Varna, Bulgaria
| | - Irena Koutná
- International Clinical Research Center, St. Anne's University Hospital, 65691, Brno, Czech Republic
- Department of Histology & Embryology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic
| | - Tommaso Mazza
- Bioinformatics Unit, Fondazione IRCCS Casa Sollievo della Sofferenza,71013, San Giovanni Rotondo, Italy
| | - Manlio Vinciguerra
- International Clinical Research Center, St. Anne's University Hospital, 65691, Brno, Czech Republic
- Department of Translational Stem Cell Biology, Research Institute, Medical University of Varna (RIMUV), 9002, Varna, Bulgaria
- Faculty of Health, Liverpool John Moores University, L2 2ER, Liverpool, UK
| |
Collapse
|
6
|
Temporal Appearance of Enhanced Innate Anxiety in Alzheimer Model Mice. Biomedicines 2023; 11:biomedicines11020262. [PMID: 36830799 PMCID: PMC9953677 DOI: 10.3390/biomedicines11020262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/20/2023] Open
Abstract
The prevalence of Alzheimer's disorder (AD) is increasing worldwide, and the co-morbid anxiety is an important, albeit often neglected problem, which might appear early during disease development. Animal models can be used to study this question. Mice, as prey animals, show an innate defensive response against a predator odor, providing a valuable tool for anxiety research. Our aim was to test whether the triple-transgenic mice model of AD shows signs of innate anxiety, with specific focus on the temporal appearance of the symptoms. We compared 3xTg-AD mice bearing human mutations of amyloid precursor protein, presenilin 1, and tau with age-matched controls. First, separate age-groups (between 2 and 18 months) were tested for the avoidance of 2-methyl-2-thiazoline, a fox odor component. To test whether hypolocomotion is a general sign of innate anxiety, open-field behavior was subsequently followed monthly in both sexes. The 3xTg-AD mice showed more immobility, approached the fox odor container less often, and spent more time in the avoidance zone. This effect was detectable already in two-month-old animals irrespective of sex, not visible around six months of age, and was more pronounced in aged females than males. The 3xTg-AD animals moved generally less. They also spent less time in the center of the open-field, which was detectable mainly in females older than five months. In contrast to controls, the aged 3xTg-AD was not able to habituate to the arena during a 30-min observation period irrespective of their sex. Amyloid beta and phospho-Tau accumulated gradually in the hippocampus, amygdala, olfactory bulb, and piriform cortex. In conclusion, the early appearance of predator odor- and open space-induced innate anxiety detected already in two-month-old 3xTg-AD mice make this genetically predisposed strain a good model for testing anxiety both before the onset of AD-related symptoms as well as during the later phase. Synaptic dysfunction by protein deposits might contribute to these disturbances.
Collapse
|
7
|
Nava Catorce M, Acero G, Gevorkian G. Age- and sex-dependent alterations in the peripheral immune system in the 3xTg-AD mouse model of Alzheimer's disease: Increased proportion of CD3+CD4-CD8- double-negative T cells in the blood. J Neuroimmunol 2021; 360:577720. [PMID: 34543880 DOI: 10.1016/j.jneuroim.2021.577720] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 09/07/2021] [Accepted: 09/12/2021] [Indexed: 01/22/2023]
Abstract
It is well documented that sporadic Alzheimer's disease (AD) is a multifactorial disease and considered to be a result of several pathological events, both in the periphery and in the brain. The role of the peripheral immune system in the etiology and/or progression of the disease is not fully understood yet, and the results in humans are contradictory so far. Several animal models of AD have been generated and thoroughly characterized to elucidate disease mechanisms and evaluate numerous therapeutic strategies in preclinical studies. In the present study, we carried out a longitudinal evaluation of blood lymphocytes from male and female 3xTg-AD mice to document important immunological abnormalities in the periphery. We documented the age-dependent decrease in the percentage of CD3+ and CD4+ lymphocytes and an increase in the percentage CD3+CD4-CD8- (DN T) cells in the blood of 3xTg-AD mice compared with non-transgenic animals. Severe splenomegaly was observed in 3xTg-AD mice in contrast to wild-type animals. Importantly, all these abnormalities in the peripheral immune system appeared earlier and were more pronounced in males compared with females of the same age, which may account for the shorter lifespan of male mice. We suggest that future research should include the measurement of CD3+ and DN T cells as a potential immunological marker of disease progression in AD patients.
Collapse
Affiliation(s)
- Miryam Nava Catorce
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 70228, Cuidad Universitaria, CDMX, CP 04510, Mexico
| | - Gonzalo Acero
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 70228, Cuidad Universitaria, CDMX, CP 04510, Mexico
| | - Goar Gevorkian
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 70228, Cuidad Universitaria, CDMX, CP 04510, Mexico.
| |
Collapse
|