1
|
Hafeman DM, Uher R, Merranko J, Zwicker A, Goldstein B, Goldstein TR, Axelson D, Monk K, Sakolsky D, Iyengar S, Diler R, Nimgaonkar V, Birmaher B. Person-level contributions of bipolar polygenic risk score to the prediction of new-onset bipolar disorder in at-risk offspring. J Affect Disord 2025; 368:359-365. [PMID: 39299598 DOI: 10.1016/j.jad.2024.09.107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/12/2024] [Accepted: 09/14/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Previous work indicates that polygenic risk scores (PRS) for bipolar disorder (BD) are elevated in adults and youth with BD, but whether BD-PRS can inform person-level diagnostic prediction is unknown. Here, we test whether BD-PRS improves performance of a previously published risk calculator (RC) for BD. METHODS 156 parents with BD-I/II and their offspring ages 6-18 were recruited and evaluated with standardized diagnostic assessments every two years for >12 years. DNA was extracted from saliva samples, genotyping performed, and BD-PRS calculated based on a 2021 meta-analysis. Using a bootstrapped and cross-validated penalized Cox regression, we assessed whether BD-PRS (alone and interacting with clinical variables) improved RC performance. RESULTS Of 227 offspring, 38 developed BD during follow-up. The penalized regression selected BD-PRS and interactions between BD-PRS and parental age at mood disorder onset (AAO), depression, and anxiety. The resulting RC discriminated offspring who developed BD (vs. those that did not) with good accuracy (AUC = 0.81); removing BD-PRS and its interaction terms was associated with a significant decrement to the AUC (decrement = 0.07, p = 0.039). Further exploration of selected interaction terms indicated that all were significant (p-values<0.02), indicating that BD-PRS has a larger effect on the outcome in offspring with depression and anxiety, whose affected parent had a younger AAO. CONCLUSIONS The addition of BD-PRS to clinical/demographic predictors in the RC significantly improved its accuracy. BD-PRS predicted BD on the person-level, particularly in offspring of parents with earlier AAO who already had symptoms of anxiety and depression at intake.
Collapse
Affiliation(s)
- Danella M Hafeman
- University of Pittsburgh School of Medicine, Department of Psychiatry, Western Psychiatric Hospital, University of Pittsburgh Medical Center, United States of America.
| | - Rudolf Uher
- Dalhousie University, Department of Psychiatry, Canada
| | - John Merranko
- University of Pittsburgh School of Medicine, Department of Psychiatry, Western Psychiatric Hospital, University of Pittsburgh Medical Center, United States of America
| | | | - Benjamin Goldstein
- Center for Addiction and Mental Health, University of Toronto Faculty of Medicine, Canada
| | - Tina R Goldstein
- University of Pittsburgh School of Medicine, Department of Psychiatry, Western Psychiatric Hospital, University of Pittsburgh Medical Center, United States of America
| | - David Axelson
- Nationwide Children's Hospital and The Ohio State College of Medicine, United States of America
| | - Kelly Monk
- University of Pittsburgh School of Medicine, Department of Psychiatry, Western Psychiatric Hospital, University of Pittsburgh Medical Center, United States of America
| | - Dara Sakolsky
- University of Pittsburgh School of Medicine, Department of Psychiatry, Western Psychiatric Hospital, University of Pittsburgh Medical Center, United States of America
| | - Satish Iyengar
- University of Pittsburgh, Department of Statistics, United States of America
| | - Rasim Diler
- University of Pittsburgh School of Medicine, Department of Psychiatry, Western Psychiatric Hospital, University of Pittsburgh Medical Center, United States of America
| | - Vishwajit Nimgaonkar
- University of Pittsburgh School of Medicine, Department of Psychiatry, Western Psychiatric Hospital, University of Pittsburgh Medical Center, United States of America
| | - Boris Birmaher
- University of Pittsburgh School of Medicine, Department of Psychiatry, Western Psychiatric Hospital, University of Pittsburgh Medical Center, United States of America
| |
Collapse
|
2
|
Stocker H, Gentiluomo M, Trares K, Beyer L, Stevenson-Hoare J, Rujescu D, Holleczek B, Beyreuther K, Gerwert K, Schöttker B, Campa D, Canzian F, Brenner H. Mitochondrial DNA abundance in blood is associated with Alzheimer's disease- and dementia-risk. Mol Psychiatry 2024:10.1038/s41380-024-02670-x. [PMID: 39009700 DOI: 10.1038/s41380-024-02670-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 06/22/2024] [Accepted: 07/08/2024] [Indexed: 07/17/2024]
Abstract
The mitochondrial cascade hypothesis of Alzheimer's disease (AD) has been portrayed through molecular, cellular, and animal studies; however large epidemiological studies are lacking. This study aimed to explore the association of mitochondrial DNA copy number (mtDNAcn), a marker representative of mtDNA abundance per cell, with risk of incident all-cause dementia, AD, and vascular dementia diagnosis within 17 years and dementia-related blood biomarkers (P-tau181, GFAP, and NfL). Additionally, sex-stratified analyses were completed. In this German population-based cohort study (ESTHER), 9940 participants aged 50-75 years were enrolled by general practitioners and followed for 17 years. Participants were included in this study if information on dementia status and blood-based mtDNAcn measured via real-time polymerase chain reaction were available. In a nested case-control approach, a subsample of participants additionally had measurements of P-tau181, GFAP, and NfL in blood samples taken at baseline. Of 4913 participants eligible for analyses, 386 were diagnosed with incident all-cause dementia, including 130 AD and 143 vascular dementia cases, while 4527 participants remained without dementia diagnosis within 17 years. Participants with low mtDNAcn (lowest 10%) experienced 45% and 65% percent increased risk of incident all-cause dementia and AD after adjusting for age and sex (all-cause dementia: HRadj, 95%CI:1.45, 1.08-1.94; AD: HRadj, 95%CI: 1.65, 1.01-2.68). MtDNAcn was not associated to vascular dementia diagnosis and was more strongly associated with all-cause dementia among women. In the nested case-control study (n = 790), mtDNAcn was not significantly associated with the dementia-related blood biomarkers (P-tau181, GFAP, and NfL) levels in blood from baseline before dementia diagnosis. This study provides novel epidemiological evidence connecting mtDNA abundance, measured via mtDNAcn, to incident dementia and AD at the population-based level. Reduced mitochondrial abundance may play a role in pathogenesis, especially among women.
Collapse
Affiliation(s)
- Hannah Stocker
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany.
- Network Aging Research, Heidelberg University, Heidelberg, Germany.
| | | | - Kira Trares
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany
| | - Léon Beyer
- Center for Protein Diagnostics (ProDi), Ruhr-University Bochum, Bochum, Germany
- Faculty of Biology and Biotechnology, Department of Biophysics, Ruhr-University Bochum, Bochum, Germany
| | - Joshua Stevenson-Hoare
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany
| | - Dan Rujescu
- Department of Psychiatry, Medical University of Vienna, Vienna, Austria
| | | | | | - Klaus Gerwert
- Center for Protein Diagnostics (ProDi), Ruhr-University Bochum, Bochum, Germany
- Faculty of Biology and Biotechnology, Department of Biophysics, Ruhr-University Bochum, Bochum, Germany
| | - Ben Schöttker
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany
| | - Daniele Campa
- Department of Biology, University of Pisa, Pisa, Italy
| | - Federico Canzian
- Genomic Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
3
|
Sabarathinam S. Unraveling the therapeutic potential of quercetin and quercetin-3-O-glucuronide in Alzheimer's disease through network pharmacology, molecular docking, and dynamic simulations. Sci Rep 2024; 14:14852. [PMID: 38937497 PMCID: PMC11211499 DOI: 10.1038/s41598-024-61779-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 05/09/2024] [Indexed: 06/29/2024] Open
Abstract
Quercetin is a flavonoid with notable pharmacological effects and promising therapeutic potential. Quercetin plays a significant role in neuroinflammation, which helps reduce Alzheimer's disease (AD) severity. Quercetin (Q) and quercetin 3-O-glucuronide (Q3OG) are some of the most potent antioxidants available from natural sources. However, the natural form of quercetin converted into Q3OG when reacted with intestinal microbes. The study aims to ensure the therapeutic potential of Q and Q3OG. In this study, potential molecular targets of Q and Q3OG were first identified using the Swiss Target Prediction platform and pathogenic targets of AD were identified using the DisGeNET database. Followed by compound and disease target overlapping, 77 targets were placed in that AKT1, EGFR, MMP9, TNF, PTGS2, MMP2, IGF1R, MCL1, MET and PARP1 was the top-ranked target, which was estimated by CytoHubba plug-in. The Molecular docking was performed for Q and Q3OG towards the PDB:1UNQ target. The binding score of Q and Q3OG was - 6.2 kcal/mol and - 6.58 kcal/mol respectively. Molecular dynamics simulation was conducted for Q and Q3OG towards the PDB:1UNQ target at 200 ns. This study's results help identify the multiple target sites for the bioactive compounds. Thus, synthesizing new chemical entity-based quercetin on structural modification may aid in eradicating AD complications.
Collapse
Affiliation(s)
- Sarvesh Sabarathinam
- Drug Testing Laboratory, Interdisciplinary Institute of Indian System of Medicine (IIISM), SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India.
| |
Collapse
|
4
|
Yu X, Tao J, Xiao T, Duan X. 4,4'-methylenediphenol reduces Aβ-induced toxicity in a Caenorhabditis elegans model of Alzheimer's disease. Front Aging Neurosci 2024; 16:1393721. [PMID: 38872629 PMCID: PMC11171718 DOI: 10.3389/fnagi.2024.1393721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/22/2024] [Indexed: 06/15/2024] Open
Abstract
Introduction Gastrodia elata Blume is a widely used medicinal and edible herb with a rich chemical composition. Moreover, prescriptions containing Gastrodia elata are commonly used for the prevention and treatment of cardiovascular, cerebrovascular, and aging-related diseases. Recent pharmacological studies have confirmed the antioxidant and neuroprotective effects of Gastrodia elata, and, in recent years, this herb has also been used in the treatment of Alzheimer's disease (AD) and other neurodegenerative disorders. We have previously shown that 4,4'-methylenediphenol, a key active ingredient of Gastrodia elata, can mitigate amyloid-β (Aβ)-induced paralysis in AD model worms as well as prolong the lifespan of the animals, thus displaying potential as a treatment of AD. Methods We investigated the effects of 4,4'-methylenediphenol on AD and aging through paralysis, lifespan, and behavioral assays. In addition, we determined the anti-AD effects of 4,4'-methylenediphenol by reactive oxygen species (ROS) assay, lipofuscin analysis, thioflavin S staining, metabolomics analysis, GFP reporter gene worm assay, and RNA interference assay and conducted in-depth studies on its mechanism of action. Results 4,4'-Methylenediphenol not only delayed paralysis onset and senescence in the AD model worms but also enhanced their motility and stress tolerance. Meanwhile, 4,4'-methylenediphenol treatment also reduced the contents of reactive oxygen species (ROS) and lipofuscin, and decreased Aβ protein deposition in the worms. Broad-spectrum targeted metabolomic analysis showed that 4,4'-methylenediphenol administration had a positive effect on the metabolite profile of the worms. In addition, 4,4'-methylenediphenol promoted the nuclear translocation of DAF-16 and upregulated the expression of SKN-1, SOD-3, and GST-4 in the respective GFP reporter lines, accompanied by an enhancement of antioxidant activity and a reduction in Aβ toxicity; importantly, our results suggested that these effects of 4,4'-methylenediphenol were mediated, at least partly, via the activation of DAF-16. Conclusion We have demonstrated that 4,4'-methylenediphenol can reduce Aβ-induced toxicity in AD model worms, suggesting that it has potential for development as an anti-AD drug. Our findings provide ideas and references for further research into the anti-AD effects of Gastrodia elata and its active ingredients.
Collapse
Affiliation(s)
| | | | | | - Xiaohua Duan
- Yunnan Key Laboratory of Dai and Yi Medicines, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| |
Collapse
|
5
|
Xu Y, Sun Z, Jonaitis E, Deming Y, Lu Q, Johnson SC, Engelman CD. Mid-to-Late Life Healthy Lifestyle Modifies Genetic Risk for Longitudinal Cognitive Aging among Asymptomatic Individuals. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.26.24307953. [PMID: 38853902 PMCID: PMC11160812 DOI: 10.1101/2024.05.26.24307953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
IMPORTANCE Genetic and lifestyle factors contribute to an individual's risk of developing Alzheimer's disease. However, it is unknown whether and how adherence to healthy lifestyles can mitigate the genetic risk of Alzheimer's. OBJECTIVE The aim of this study is to investigate whether adherence to healthy lifestyles can modify the impact of genetic predisposition to Alzheimer's disease on later-life cognitive decline. DESIGN SETTING AND PARTICIPANTS This prospective cohort study included 891 adults of European ancestry, aged 40 to 65, who were without dementia and had complete healthy-lifestyle and cognition data during the follow-up. Participants joined the Wisconsin Registry for Alzheimer's Prevention (WRAP) beginning in 2001. We conducted replication analyses using a subsample with similar baseline age range from the Health and Retirement Study (HRS). EXPOSURES We assessed participants' exposures using a continuous non-APOE polygenic risk score for Alzheimer's, a binary indicator for APOE-ε4 carrier status, and a weighted healthy-lifestyle score, including factors such as no current smoking, regular physical activity, healthy diet, light to moderate alcohol consumption, and frequent cognitive activities. MAIN OUTCOMES AND MEASURES We z-standardized cognitive scores for global (Preclinical Alzheimer's Cognitive Composite score 3 - PACC3) and domain-specific assessments (delayed recall and immediate learning). RESULTS We followed 891 individuals for up to 10 years (mean [SD] baseline age, 58 [6] years, 31% male, 38% APOE-ε4 carriers). After false discovery rate (FDR) correction, we found statistically significant PRS × lifestyle × age interactions on preclinical cognitive decline but the evidence is stronger among APOE-ε4 carriers. Among APOE-ε4 carriers, PRS-related differences in overall and memory-related domains between people scoring 0-1 and 4-5 regarding healthy lifestyles became evident around age 67 after FDR correction. These findings were robust across several sensitivity analyses and were replicated in the population-based HRS. CONCLUSION A favorable lifestyle can mitigate the genetic risk associated with current known non-APOE genetic variants for longitudinal cognitive decline, and these protective effects are particularly pronounced among APOE-ε4 carriers.
Collapse
Affiliation(s)
- Yuexuan Xu
- G.H. Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University
| | - Zhongxuan Sun
- Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin-Madison
| | - Erin Jonaitis
- Wisconsin Alzheimer’s Institute, University of Wisconsin-Madison
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin-Madison
| | - Yuetiva Deming
- G.H. Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison
| | - Qiongshi Lu
- Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin-Madison
| | - Sterling C. Johnson
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison
- Wisconsin Alzheimer’s Institute, University of Wisconsin-Madison
| | - Corinne D. Engelman
- G.H. Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University
| |
Collapse
|
6
|
Wang X, Shi Z, Qiu Y, Sun D, Zhou H. Peripheral GFAP and NfL as early biomarkers for dementia: longitudinal insights from the UK Biobank. BMC Med 2024; 22:192. [PMID: 38735950 PMCID: PMC11089788 DOI: 10.1186/s12916-024-03418-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 05/01/2024] [Indexed: 05/14/2024] Open
Abstract
BACKGROUND Peripheral glial fibrillary acidic protein (GFAP) and neurofilament light chain (NfL) are sensitive markers of neuroinflammation and neuronal damage. Previous studies with highly selected participants have shown that peripheral GFAP and NfL levels are elevated in the pre-clinical phase of Alzheimer's disease (AD) and dementia. However, the predictive value of GFAP and NfL for dementia requires more evidence from population-based cohorts. METHODS This was a prospective cohort study to evaluate UK Biobank participants enrolled from 2006 to 2010 using plasma GFAP and NfL measurements measured by Olink Target Platform and prospectively followed up for dementia diagnosis. Primary outcome was the risk of clinical diagnosed dementia. Secondary outcomes were cognition. Linear regression was used to assess the associations between peripheral GFAP and NfL with cognition. Cox proportional hazard models with cross-validations were used to estimate associations between elevated GFAP and NfL with risk of dementia. All models were adjusted for covariates. RESULTS A subsample of 48,542 participants in the UK Biobank with peripheral GFAP and NfL measurements were evaluated. With an average follow-up of 13.18 ± 2.42 years, 1312 new all-cause dementia cases were identified. Peripheral GFAP and NfL increased up to 15 years before dementia diagnosis was made. After strictly adjusting for confounders, increment in NfL was found to be associated with decreased numeric memory and prolonged reaction time. A greater annualized rate of change in GFAP was significantly associated with faster global cognitive decline. Elevation of GFAP (hazard ratio (HR) ranges from 2.25 to 3.15) and NfL (HR ranges from 1.98 to 4.23) increased the risk for several types of dementia. GFAP and NfL significantly improved the predictive values for dementia using previous models (area under the curve (AUC) ranges from 0.80 to 0.89, C-index ranges from 0.86 to 0.91). The AD genetic risk score and number of APOE*E4 alleles strongly correlated with GFAP and NfL levels. CONCLUSIONS These results suggest that peripheral GFAP and NfL are potential biomarkers for the early diagnosis of dementia. In addition, anti-inflammatory therapies in the initial stages of dementia may have potential benefits.
Collapse
Affiliation(s)
- Xiaofei Wang
- Department of Neurology, West China Hospital, Sichuan University, No.28 Dianxin Nan Street, Chengdu, 610041, China
| | - Ziyan Shi
- Department of Neurology, West China Hospital, Sichuan University, No.28 Dianxin Nan Street, Chengdu, 610041, China
| | - Yuhan Qiu
- Department of Neurology, West China Hospital, Sichuan University, No.28 Dianxin Nan Street, Chengdu, 610041, China
| | - Dongren Sun
- Department of Neurology, West China Hospital, Sichuan University, No.28 Dianxin Nan Street, Chengdu, 610041, China
| | - Hongyu Zhou
- Department of Neurology, West China Hospital, Sichuan University, No.28 Dianxin Nan Street, Chengdu, 610041, China.
| |
Collapse
|
7
|
Pauwels EK, Boer GJ. Alzheimer's Disease: A Suitable Case for Treatment with Precision Medicine? Med Princ Pract 2024; 33:000538251. [PMID: 38471490 PMCID: PMC11324226 DOI: 10.1159/000538251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/06/2024] [Indexed: 03/14/2024] Open
Abstract
Alzheimer's disease (AD) is the most common cause of neurodegenerative impairment in elderly people. Clinical characteristics include short-term memory loss, confusion, hallucination, agitation, and behavioural disturbance. Owing to evolving research in biomarkers AD can be discovered at early onset, but the disease is currently considered a continuum, which suggests that pharmacotherapy is most efficacious in the preclinical phase, possibly 15 - 20 years before discernible onset. Present developments in AD therapy aim to respond to this understanding and go beyond the drug families that relieve clinical symptoms. Another important factor in this development is the emergence of precision medicine that aims to tailor treatment to specific patients or patient subgroups. This relatively new platform would categorize AD patients on the basis of parameters like clinical aspects, brain imaging, genetic profiling, clinical genetics and epidemiological factors. This review enlarges on recent progress in the design and clinical use of antisense molecules, antibodies, antioxidants, small molecules and gene editing to stop AD progress and possibly reverse the disease on the basis of relevant biomarkers.
Collapse
Affiliation(s)
- Ernest K.J. Pauwels
- Leiden University and Leiden University Medical Center, Leiden, The Netherlands
| | - Gerard J. Boer
- Netherlands Institute for Brain Research, Royal Academy of Arts and Sciences, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Zhou S, Tu L, Chen W, Yan G, Guo H, Wang X, Hu Q, Liu H, Li F. Alzheimer's disease, a metabolic disorder: Clinical advances and basic model studies (Review). Exp Ther Med 2024; 27:63. [PMID: 38234618 PMCID: PMC10792406 DOI: 10.3892/etm.2023.12351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/22/2023] [Indexed: 01/19/2024] Open
Abstract
Alzheimer's disease (AD) is a type of neurodegenerative disease characterized by cognitive impairment that is aggravated with age. The pathological manifestations include extracellular amyloid deposition, intracellular neurofibrillary tangles and loss of neurons. As the world population ages, the incidence of AD continues to increase, not only posing a significant threat to the well-being and health of individuals but also bringing a heavy burden to the social economy. There is epidemiological evidence suggesting a link between AD and metabolic diseases, which share pathological similarities. This potential link would deserve further consideration; however, the pathogenesis and therapeutic efficacy of AD remain to be further explored. The complex pathogenesis and pathological changes of AD pose a great challenge to the choice of experimental animal models. To understand the role of metabolic diseases in the development of AD and the potential use of drugs for metabolic diseases, the present article reviews the research progress of the comorbidity of AD with diabetes, obesity and hypercholesterolemia, and summarizes the different roles of animal models in the study of AD to provide references for researchers.
Collapse
Affiliation(s)
- Shanhu Zhou
- Department of Neurology, Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei 430081, P.R. China
| | - Limin Tu
- Department of Neurology, Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei 430081, P.R. China
| | - Wei Chen
- Department of Neurology, Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei 430081, P.R. China
| | - Gangli Yan
- Department of Neurology, Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei 430081, P.R. China
| | - Hongmei Guo
- Department of Neurology, Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei 430081, P.R. China
| | - Xinhua Wang
- Department of Neurology, Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei 430081, P.R. China
| | - Qian Hu
- Department of Neurology, Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei 430081, P.R. China
| | - Huiqing Liu
- Department of Neurology, Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei 430081, P.R. China
| | - Fengguang Li
- Department of Neurology, Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei 430081, P.R. China
| |
Collapse
|