1
|
Souza GTS, Lopes JSS, Fernandes GT, Magalhães Neto AM, Lemos JFS, Andrade CMB. Analysis of lipid profile before and after a simulated Brazilian jiu-jitsu para-sport fight: Multiple case analysis. Heliyon 2025; 11:e41107. [PMID: 39811372 PMCID: PMC11729650 DOI: 10.1016/j.heliyon.2024.e41107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 01/16/2025] Open
Abstract
Analysis of energy pathways is useful in helping to understand adaptations to specific sports practices, which vary according to the type of effort and individual characteristics of the athletes. In this sense, this study aimed to describe the physiological changes related to lipid markers in amputee athletes who practice para-sport jiu-jitsu. This is an observational study, which included three male amputee athletes, aged between 41 and 46 years old and with more than 24 months of experience at a professional level. The collection procedures included the verification of anthropometric measurements (body mass and height), handgrip strength, body fat and lipid profile, before and after a simulated para-sport jiu-jitsu fight. The main results of the study refer to elevations in the values of total lipids (13.2 %); total cholesterol (11.8 %); and phospholipids (7.7 %) in the three participants. The findings of other indices had more discrepant results, ranging from 14 % (very low density lipoprotein and triacylglycerol) to 65 % (high density lipoprotein). In addition, a high percentage of body fat was observed among the participants. The data presented require attention, since understanding metabolic demands is crucial to provide favorable conditions for sports practice at safe levels and expected sports performance.
Collapse
Affiliation(s)
| | - Jaqueline Santos Silva Lopes
- Federal University of Mato Grosso (UFMT), Cuiabá Campus, Postgraduate Program in Health Sciences (PPGCS), Brazil
| | - Guilherme Trevisan Fernandes
- Federal University of Mato Grosso (UFMT), Cuiabá Campus, Postgraduate Program in Health Sciences (PPGCS), Brazil
| | - Anibal Monteiro Magalhães Neto
- Federal University of Mato Grosso (UFMT), Araguaia Campus, Postgraduate Program in Basic and Applied Immunology and Parasitology (PPGIP), Brazil
| | - Jonatha Flávio Souza Lemos
- Federal University of Mato Grosso (UFMT), Cuiabá Campus, Postgraduate Program in Health Sciences (PPGCS), Brazil
| | | |
Collapse
|
2
|
Milos T, Vuic B, Balic N, Farkas V, Nedic Erjavec G, Svob Strac D, Nikolac Perkovic M, Pivac N. Cerebrospinal fluid in the differential diagnosis of Alzheimer's disease: an update of the literature. Expert Rev Neurother 2024; 24:1063-1079. [PMID: 39233323 DOI: 10.1080/14737175.2024.2400683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/01/2024] [Indexed: 09/06/2024]
Abstract
INTRODUCTION The importance of cerebrospinal fluid (CSF) biomarkers in Alzheimer's disease (AD) diagnosis is rapidly increasing, and there is a growing interest in the use of CSF biomarkers in monitoring the response to therapy, especially in the light of newly available approaches to the therapy of neurodegenerative diseases. AREAS COVERED In this review we discuss the most relevant measures of neurodegeneration that are being used to distinguish patients with AD from healthy controls and individuals with mild cognitive impairment, in order to provide an overview of the latest information available in the scientific literature. We focus on markers related to amyloid processing, markers associated with neurofibrillary tangles, neuroinflammation, neuroaxonal injury and degeneration, synaptic loss and dysfunction, and markers of α-synuclein pathology. EXPERT OPINION In addition to neuropsychological evaluation, core CSF biomarkers (Aβ42, t-tau, and p-tau181) have been recommended for improvement of timely, accurate and differential diagnosis of AD, as well as to assess the risk and rate of disease progression. In addition to the core CSF biomarkers, various other markers related to synaptic dysfunction, neuroinflammation, and glial activation (neurogranin, SNAP-25, Nfl, YKL-40, TREM2) are now investigated and have yet to be validated for future potential clinical use in AD diagnosis.
Collapse
Affiliation(s)
- Tina Milos
- Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb, Croatia
| | - Barbara Vuic
- Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb, Croatia
| | - Nikola Balic
- Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb, Croatia
| | - Vladimir Farkas
- Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb, Croatia
| | | | | | | | - Nela Pivac
- Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb, Croatia
- University of Applied Sciences Hrvatsko Zagorje Krapina, Krapina, Croatia
| |
Collapse
|
3
|
Miner AE, Groh JR, Tripodis Y, Adler CH, Balcer LJ, Bernick C, Zetterberg H, Blennow K, Peskind E, Ashton NJ, Gaudet CE, Martin B, Palmisano JN, Banks SJ, Barr WB, Wethe JV, Cantu RC, Dodick DW, Katz DI, Mez J, van Amerongen S, Cummings JL, Shenton ME, Reiman EM, Stern RA, Alosco ML. Examination of plasma biomarkers of amyloid, tau, neurodegeneration, and neuroinflammation in former elite American football players. Alzheimers Dement 2024; 20:7529-7546. [PMID: 39351900 PMCID: PMC11567811 DOI: 10.1002/alz.14231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/24/2024] [Accepted: 07/27/2024] [Indexed: 11/17/2024]
Abstract
INTRODUCTION Blood-based biomarkers offer a promising approach for the detection of neuropathologies from repetitive head impacts (RHI). We evaluated plasma biomarkers of amyloid, tau, neurodegeneration, and inflammation in former football players. METHODS The sample included 180 former football players and 60 asymptomatic, unexposed male participants (aged 45-74). Plasma assays were conducted for beta-amyloid (Aβ) 40, Aβ42, hyper-phosphorylated tau (p-tau) 181+231, total tau (t-tau), neurofilament light (NfL), glial fibrillary acidic protein (GFAP), interleukin-6 (IL-6), Aβ42/p-tau181 and Aβ42/Aβ40 ratios. We evaluated their ability to differentiate the groups and associations with RHI proxies and traumatic encephalopathy syndrome (TES). RESULTS P-tau181 and p-tau231(padj = 0.016) were higher and Aβ42/p-tau181 was lower(padj = 0.004) in football players compared to controls. Discrimination accuracy for p-tau was modest (area under the curve [AUC] = 0.742). Effects were not attributable to AD-related pathology. Younger age of first exposure (AFE) correlated with higher NfL (padj = 0.03) and GFAP (padj = 0.033). Plasma GFAP was higher in TES-chronic traumatic encephalopathy (TES-CTE) Possible/Probable (padj = 0.008). DISCUSSION Plasma p-tau181 and p-tau231, GFAP, and NfL may offer some usefulness for the characterization of RHI-related neuropathologies. HIGHLIGHTS Former football players had higher plasma p-tau181 and p-tau231 and lower Aβ42/ptau-181 compared to asymptomatic, unexposed men. Younger age of first exposure was associated with increased plasma NfL and GFAP in older but not younger participants. Plasma GFAP was higher in participants with TES-CTE possible/probable compared to TES-CTE no/suggestive.
Collapse
Grants
- ZEN-21-848495 Alzheimer's Association 2021 Zenith Award
- ALZ2022-0006 Hjärnfonden, Sweden
- U01 NS093334 NINDS NIH HHS
- ALFGBG-965240 Hjärnfonden, Sweden
- JPND2021-00694 European Union Joint Programme-Neurodegenerative Disease Research
- UKDRI-1003 UK Dementia Research Institute at UCL
- 2022-00732 UK Dementia Research Institute at UCL
- SG-23-1038904 QC Alzheimer's Association 2022-2025 Grant
- AF-939721 Swedish Alzheimer Foundation
- AF-930351 Swedish Alzheimer Foundation
- RF1 NS132290 NINDS NIH HHS
- AF-994551 Swedish Alzheimer Foundation
- ADSF-21-831381-C AD Strategic Fund and the Alzheimer's Association
- Bluefield Project, Cure Alzheimer's Fund
- JPND2019-466-236 European Union Joint Program for Neurodegenerative Disorders
- 2017-00915 UK Dementia Research Institute at UCL
- Olav Thon Foundation, the Erling-Persson Family Foundation
- FO2017-0243 Hjärnfonden, Sweden
- ADSF-21-831376-C AD Strategic Fund and the Alzheimer's Association
- European Union's Horizon 2020
- ADSF-24-1284328-C AD Strategic Fund and the Alzheimer's Association
- RF1NS132290 National Institute of Neurological Disorders and Stroke/National Institute on Aging
- Kirsten and Freddy Johansen Foundation, Copenhagen, Denmark
- ALFGBG-715986 Hjärnfonden, Sweden
- #ALFGBG-71320 Swedish State Support for Clinical Research
- AF-968270 Swedish Alzheimer Foundation
- ADSF-21-831377-C AD Strategic Fund and the Alzheimer's Association
- FO2022-0270 Stiftelsen för Gamla Tjänarinnor, Hjärnfonden, Sweden
- 101053962 European Union's Horizon Europe
- 201809-2016862 Alzheimer Drug Discovery Foundation
- La Fondation Recherche Alzheimer
- U01NS093334 National Institute of Neurological Disorders and Stroke (NINDS)
- National Institute for Health and Care Research University College London Hospitals Biomedical Research Centre
Collapse
|
4
|
Blanks W, Hanshaw M, Perez-Chadid DA, Lucke-Wold B. Emerging frontiers in Chronic Traumatic Encephalopathy: early diagnosis and implications for neurotherapeutic interventions. Expert Rev Neurother 2024; 24:953-961. [PMID: 39118236 DOI: 10.1080/14737175.2024.2385952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024]
Abstract
INTRODUCTION Chronic Traumatic Encephalopathy (CTE) is a neurodegenerative disorder associated with repetitive head trauma. Historically, the diagnosis has been primarily clinical, which has hindered definitive early diagnosis and proactive intervention. AREAS COVERED The authors analyze the recent advancements in early diagnosis of CTE by examining biomarkers, imaging, and clinical decision tools. They discuss the identification of neuropathologies - such as tau aggregates - through novel techniques ranging from blood sampling and to brain density scanning. The reader will walk away with a better understanding of current advancements in early detection and be better equipped to deal with encephalopathies secondary to trauma in clinical practice. EXPERT OPINION Tremendous progress has been made in understanding the pathophysiology of CTE. Despite these advancements, CTE treatment is still primarily symptomatic rather than underlying disease. Future research should focus on integrating current understanding of CTE pathophysiology with treatment modalities.
Collapse
Affiliation(s)
- William Blanks
- School of Medicine, West Virginia University, Morgantown, USA
| | - Marcus Hanshaw
- School of Medicine, University of Florida, Gainesville, USA
| | | | | |
Collapse
|
5
|
Li D, He X, Li Y, Wu S, Liu J. The effects of hyperbaric oxygen therapy on neuroprotection and recovery after brain resuscitation. Int J Neurosci 2024:1-7. [PMID: 38646692 DOI: 10.1080/00207454.2024.2346172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 04/17/2024] [Indexed: 04/23/2024]
Abstract
OBJECTIVE Analyze the impact of hyperbaric oxygen therapy on neuroprotection and recovery post severe traumatic brain injury (sTBI) resuscitation. METHODS Retrospective analysis of clinical data from 83 sTBI patients admitted between January 2022 to January 2024. Patients were divided into control (n = 41) and observation (n = 42) groups based on treatment received. Control received standard therapy, while the observation group received hyperbaric oxygen therapy. Effects on clinical outcomes, neuroinjury markers (S100β, GFAP, UCH-L1, NSE), neurotrophic factors (NGF, BDNF), neurological function indicators (NIHSS, CSS), and adverse reactions were compared. RESULTS The observation group showed a higher total effective rate (80.95%) compared to control (60.98%) (p < 0.05). Neuroinjury markers decreased post-treatment in both groups, with the observation group lower (p < 0.05). NGF and BDNF levels increased post-treatment in both groups, with the observation group higher (p < 0.05). NIHSS and CSS scores decreased post-treatment in both groups, with the observation group lower (p < 0.05). No significant difference in adverse reactions between groups (p > 0.05). CONCLUSION Hyperbaric oxygen therapy effectively treats sTBI by improving brain resuscitation success, reducing neuroinjury factors, enhancing neurotrophic factors, and promoting neurological function recovery, without increasing adverse reaction risk.
Collapse
Affiliation(s)
- Di Li
- Emergency Department, Affiliated Hospital of Hebei Engineering University, Handan, China
| | - Xiaoqin He
- Department of Laboratory, Weihai Municipal Hospital, Weihai, China
| | - Yan Li
- Emergency Department, Affiliated Hospital of Hebei Engineering University, Handan, China
| | - Shubiao Wu
- Department of Orthopaedics, Affiliated Hospital of Hebei Engineering University, Handan, China
| | - Jianhui Liu
- Emergency Department, Affiliated Hospital of Hebei Engineering University, Handan, China
| |
Collapse
|
6
|
Silvestro S, Raffaele I, Quartarone A, Mazzon E. Innovative Insights into Traumatic Brain Injuries: Biomarkers and New Pharmacological Targets. Int J Mol Sci 2024; 25:2372. [PMID: 38397046 PMCID: PMC10889179 DOI: 10.3390/ijms25042372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/08/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
A traumatic brain injury (TBI) is a major health issue affecting many people across the world, causing significant morbidity and mortality. TBIs often have long-lasting effects, disrupting daily life and functionality. They cause two types of damage to the brain: primary and secondary. Secondary damage is particularly critical as it involves complex processes unfolding after the initial injury. These processes can lead to cell damage and death in the brain. Understanding how these processes damage the brain is crucial for finding new treatments. This review examines a wide range of literature from 2021 to 2023, focusing on biomarkers and molecular mechanisms in TBIs to pinpoint therapeutic advancements. Baseline levels of biomarkers, including neurofilament light chain (NF-L), ubiquitin carboxy-terminal hydrolase-L1 (UCH-L1), Tau, and glial fibrillary acidic protein (GFAP) in TBI, have demonstrated prognostic value for cognitive outcomes, laying the groundwork for personalized treatment strategies. In terms of pharmacological progress, the most promising approaches currently target neuroinflammation, oxidative stress, and apoptotic mechanisms. Agents that can modulate these pathways offer the potential to reduce a TBI's impact and aid in neurological rehabilitation. Future research is poised to refine these therapeutic approaches, potentially revolutionizing TBI treatment.
Collapse
Affiliation(s)
| | | | | | - Emanuela Mazzon
- IRCCS Centro Neurolesi Bonino Pulejo, Via Provinciale Palermo, SS 113, Contrada Casazza, 98124 Messina, Italy; (S.S.); (I.R.); (A.Q.)
| |
Collapse
|