1
|
Martinez P, Bailly X, Sprecher SG, Hartenstein V. The Acoel nervous system: morphology and development. Neural Dev 2024; 19:9. [PMID: 38907301 PMCID: PMC11191258 DOI: 10.1186/s13064-024-00187-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/15/2024] [Indexed: 06/23/2024] Open
Abstract
Acoel flatworms have played a relevant role in classical (and current) discussions on the evolutionary origin of bilaterian animals. This is mostly derived from the apparent simplicity of their body architectures. This tenet has been challenged over the last couple of decades, mostly because detailed studies of their morphology and the introduction of multiple genomic technologies have unveiled a complexity of cell types, tissular arrangements and patterning mechanisms that were hidden below this 'superficial' simplicity. One tissue that has received a particular attention has been the nervous system (NS). The combination of ultrastructural and single cell methodologies has revealed unique cellular diversity and developmental trajectories for most of their neurons and associated sensory systems. Moreover, the great diversity in NS architectures shown by different acoels offers us with a unique group of animals where to study key aspects of neurogenesis and diversification od neural systems over evolutionary time.In this review we revisit some recent developments in the characterization of the acoel nervous system structure and the regulatory mechanisms that contribute to their embryological development. We end up by suggesting some promising avenues to better understand how this tissue is organized in its finest cellular details and how to achieve a deeper knowledge of the functional roles that genes and gene networks play in its construction.
Collapse
Affiliation(s)
- Pedro Martinez
- Departament de Genètica, Microbiologia I Estadística, Universitat de Barcelona, Av. Diagonal 643, Barcelona, 08028, Spain.
- ICREA (Institut Català de Recerca I Estudis Avancats), Barcelona, Spain.
| | - Xavier Bailly
- Station Biologique de Roscoff, Multicellular Marine Models (M3) Team, FR2424, CNRS / Sorbonne Université - Place Georges Teissier, Roscoff, 29680, France
| | - Simon G Sprecher
- Department of Biology, University of Fribourg, 10, Ch. Du Musée, Fribourg, 1700, Switzerland
| | - Volker Hartenstein
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles (UCLA), Los Angeles, CA, USA.
| |
Collapse
|
2
|
Sachslehner A, Zieger E, Calcino A, Wanninger A. HES and Mox genes are expressed during early mesoderm formation in a mollusk with putative ancestral features. Sci Rep 2021; 11:18030. [PMID: 34504115 PMCID: PMC8429573 DOI: 10.1038/s41598-021-96711-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 08/13/2021] [Indexed: 11/08/2022] Open
Abstract
The mesoderm is considered the youngest of the three germ layers. Although its morphogenesis has been studied in some metazoans, the molecular components underlying this process remain obscure for numerous phyla including the highly diverse Mollusca. Here, expression of Hairy and enhancer of split (HES), Mox, and myosin heavy chain (MHC) was investigated in Acanthochitona fascicularis, a representative of Polyplacophora with putative ancestral molluscan features. While AfaMHC is expressed throughout myogenesis, AfaMox1 is only expressed during early stages of mesodermal band formation and in the ventrolateral muscle, an autapomorphy of the polyplacophoran trochophore. Comparing our findings to previously published data across Metazoa reveals Mox expression in the mesoderm in numerous bilaterians including gastropods, polychaetes, and brachiopods. It is also involved in myogenesis in molluscs, annelids, tunicates, and craniates, suggesting a dual role of Mox in mesoderm and muscle formation in the last common bilaterian ancestor. AfaHESC2 is expressed in the ectoderm of the polyplacophoran gastrula and later in the mesodermal bands and in putative neural tissue, whereas AfaHESC7 is expressed in the trochoblasts of the gastrula and during foregut formation. This confirms the high developmental variability of HES gene expression and demonstrates that Mox and HES genes are pleiotropic.
Collapse
Affiliation(s)
- Attila Sachslehner
- Department of Evolutionary Biology, Unit for Integrative Zoology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Elisabeth Zieger
- Department of Evolutionary Biology, Unit for Integrative Zoology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Andrew Calcino
- Department of Evolutionary Biology, Unit for Integrative Zoology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Andreas Wanninger
- Department of Evolutionary Biology, Unit for Integrative Zoology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria.
| |
Collapse
|
3
|
Duruz J, Kaltenrieder C, Ladurner P, Bruggmann R, Martìnez P, Sprecher SG. Acoel Single-Cell Transcriptomics: Cell Type Analysis of a Deep Branching Bilaterian. Mol Biol Evol 2021; 38:1888-1904. [PMID: 33355655 PMCID: PMC8097308 DOI: 10.1093/molbev/msaa333] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Bilaterian animals display a wide variety of cell types, organized into defined anatomical structures and organ systems, which are mostly absent in prebilaterian animals. Xenacoelomorpha are an early-branching bilaterian phylum displaying an apparently relatively simple anatomical organization that have greatly diverged from other bilaterian clades. In this study, we use whole-body single-cell transcriptomics on the acoel Isodiametra pulchra to identify and characterize different cell types. Our analysis identifies the existence of ten major cell type categories in acoels all contributing to main biological functions of the organism: metabolism, locomotion and movements, behavior, defense, and development. Interestingly, although most cell clusters express core fate markers shared with other animal clades, we also describe a surprisingly large number of clade-specific marker genes, suggesting the emergence of clade-specific common molecular machineries functioning in distinct cell types. Together, these results provide novel insight into the evolution of bilaterian cell types and open the door to a better understanding of the origins of the bilaterian body plan and their constitutive cell types.
Collapse
Affiliation(s)
- Jules Duruz
- Department of Biology, Institute of Zoology, University of Fribourg, Fribourg, Switzerland
| | - Cyrielle Kaltenrieder
- Department of Biology, Institute of Zoology, University of Fribourg, Fribourg, Switzerland
| | - Peter Ladurner
- Institute of Zoology and Center of Molecular Bioscience Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Rémy Bruggmann
- Institute of Cell Biology, University of Bern, Bern, Switzerland.,Interfaculty Bioinformatics Unit, University of Bern, Bern, Switzerland
| | - Pedro Martìnez
- Departament de Genètica, Universitat de Barcelona, Barcelona, Catalonia, Spain.,Institut Català de Recerca i Estudis Avancats (ICREA), Passeig de Lluís Companys, Barcelona, Spain
| | - Simon G Sprecher
- Department of Biology, Institute of Zoology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
4
|
Kimura JO, Ricci L, Srivastava M. Embryonic development in the acoel Hofstenia miamia. Development 2021; 148:270768. [PMID: 34196362 DOI: 10.1242/dev.188656] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/20/2021] [Indexed: 01/03/2023]
Abstract
Acoels are marine worms that belong to the phylum Xenacoelomorpha, a deep-diverging bilaterian lineage. This makes acoels an attractive system for studying the evolution of major bilaterian traits. Thus far, acoel development has not been described in detail at the morphological and transcriptomic levels in a species in which functional genetic studies are possible. We present a set of developmental landmarks for embryogenesis in the highly regenerative acoel Hofstenia miamia. We generated a developmental staging atlas from zygote to hatched worm based on gross morphology, with accompanying bulk transcriptome data. Hofstenia embryos undergo a stereotyped cleavage program known as duet cleavage, which results in two large vegetal pole 'macromeres' and numerous small animal pole 'micromeres'. These macromeres become internalized as micromere progeny proliferate and move vegetally. We also noted a second, previously undescribed, cell-internalization event at the animal pole, following which we detected major body axes and tissues corresponding to all three germ layers. Our work on Hofstenia embryos provides a resource for mechanistic investigations of acoel development, which will yield insights into the evolution of bilaterian development and regeneration.
Collapse
Affiliation(s)
- Julian O Kimura
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - Lorenzo Ricci
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - Mansi Srivastava
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
5
|
Hulett RE, Potter D, Srivastava M. Neural architecture and regeneration in the acoel Hofstenia miamia. Proc Biol Sci 2020; 287:20201198. [PMID: 32693729 PMCID: PMC7423668 DOI: 10.1098/rspb.2020.1198] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The origin of bilateral symmetry, a major transition in animal evolution, coincided with the evolution of organized nervous systems that show regionalization along major body axes. Studies of Xenacoelomorpha, the likely outgroup lineage to all other animals with bilateral symmetry, can inform the evolutionary history of animal nervous systems. Here, we characterized the neural anatomy of the acoel Hofstenia miamia. Our analysis of transcriptomic data uncovered orthologues of enzymes for all major neurotransmitter synthesis pathways. Expression patterns of these enzymes revealed the presence of a nerve net and an anterior condensation of neural cells. The anterior condensation was layered, containing several cell types with distinct molecular identities organized in spatially distinct territories. Using these anterior cell types and structures as landmarks, we obtained a detailed timeline for regeneration of the H. miamia nervous system, showing that the anterior condensation is restored by eight days after amputation. Our work detailing neural anatomy in H. miamia will enable mechanistic studies of neural cell type diversity and regeneration and provide insight into the evolution of these processes.
Collapse
Affiliation(s)
- Ryan E Hulett
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| | - Deirdre Potter
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Mansi Srivastava
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| |
Collapse
|
6
|
Sur A, Renfro A, Bergmann PJ, Meyer NP. Investigating cellular and molecular mechanisms of neurogenesis in Capitella teleta sheds light on the ancestor of Annelida. BMC Evol Biol 2020; 20:84. [PMID: 32664907 PMCID: PMC7362552 DOI: 10.1186/s12862-020-01636-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/03/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Diverse architectures of nervous systems (NSs) such as a plexus in cnidarians or a more centralized nervous system (CNS) in insects and vertebrates are present across Metazoa, but it is unclear what selection pressures drove evolution and diversification of NSs. One underlying aspect of this diversity lies in the cellular and molecular mechanisms driving neurogenesis, i.e. generation of neurons from neural precursor cells (NPCs). In cnidarians, vertebrates, and arthropods, homologs of SoxB and bHLH proneural genes control different steps of neurogenesis, suggesting that some neurogenic mechanisms may be conserved. However, data are lacking for spiralian taxa. RESULTS To that end, we characterized NPCs and their daughters at different stages of neurogenesis in the spiralian annelid Capitella teleta. We assessed cellular division patterns in the neuroectoderm using static and pulse-chase labeling with thymidine analogs (EdU and BrdU), which enabled identification of NPCs that underwent multiple rounds of division. Actively-dividing brain NPCs were found to be apically-localized, whereas actively-dividing NPCs for the ventral nerve cord (VNC) were found apically, basally, and closer to the ventral midline. We used lineage tracing to characterize the changing boundary of the trunk neuroectoderm. Finally, to start to generate a genetic hierarchy, we performed double-fluorescent in-situ hybridization (FISH) and single-FISH plus EdU labeling for neurogenic gene homologs. In the brain and VNC, Ct-soxB1 and Ct-neurogenin were expressed in a large proportion of apically-localized, EdU+ NPCs. In contrast, Ct-ash1 was expressed in a small subset of apically-localized, EdU+ NPCs and subsurface, EdU- cells, but not in Ct-neuroD+ or Ct-elav1+ cells, which also were subsurface. CONCLUSIONS Our data suggest a putative genetic hierarchy with Ct-soxB1 and Ct-neurogenin at the top, followed by Ct-ash1, then Ct-neuroD, and finally Ct-elav1. Comparison of our data with that from Platynereis dumerilii revealed expression of neurogenin homologs in proliferating NPCs in annelids, which appears different than the expression of vertebrate neurogenin homologs in cells that are exiting the cell cycle. Furthermore, differences between neurogenesis in the head versus trunk of C. teleta suggest that these two tissues may be independent developmental modules, possibly with differing evolutionary trajectories.
Collapse
Affiliation(s)
- A. Sur
- Department of Biology, Clark University, 950 Main Street, Worcester, MA 01610 USA
| | - A. Renfro
- Department of Biology, Clark University, 950 Main Street, Worcester, MA 01610 USA
| | - P. J. Bergmann
- Department of Biology, Clark University, 950 Main Street, Worcester, MA 01610 USA
| | - N. P. Meyer
- Department of Biology, Clark University, 950 Main Street, Worcester, MA 01610 USA
| |
Collapse
|
7
|
Arboleda E, Hartenstein V, Martinez P, Reichert H, Sen S, Sprecher S, Bailly X. An Emerging System to Study Photosymbiosis, Brain Regeneration, Chronobiology, and Behavior: The Marine Acoel Symsagittifera roscoffensis. Bioessays 2018; 40:e1800107. [PMID: 30151860 DOI: 10.1002/bies.201800107] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/23/2018] [Indexed: 01/23/2023]
Abstract
The acoel worm Symsagittifera roscoffensis, an early offshoot of the Bilateria and the only well-studied marine acoel that lives in a photosymbiotic relationship, exhibits a centralized nervous system, brain regeneration, and a wide repertoire of complex behaviors such as circatidal rhythmicity, photo/geotaxis, and social interactions. While this animal can be collected by the thousands and is studied historically, significant progress is made over the last decade to develop it as an emerging marine model. The authors here present the feasibility of culturing it in the laboratory and describe the progress made on different areas, including genomic and tissue architectures, highlighting the associated challenges. In light of these developments, and on the ability to access abundant synchronized embryos, the authors put forward S. roscoffensis as a marine system to revisit questions in the areas of photosymbiosis, regeneration, chronobiology, and the study of complex behaviors from a molecular and evolutionary perspective.
Collapse
Affiliation(s)
- Enrique Arboleda
- Station Biologique de Roscoff, Place Georges Teissier, 29680 Roscoff, France
| | | | - Pedro Martinez
- Institut Català de Recerca i EstudisAvancats (ICREA), Passeig de Lluís Companys, 23, 08010 Barcelona, Spain
| | - Heinrich Reichert
- Departement de Biologie Universite de Fribourg, 1700 Fribourg, Switzerland
| | - Sonia Sen
- Institute of Neuroscience, Institute of Molecular Biology, Howard Hughes Medical Institute, Eugene, OR 97403
| | | | - Xavier Bailly
- CNRS, Station Biologique de Roscoff, 29680 Roscoff, France
| |
Collapse
|