1
|
Brown FD, Ishengoma E, Mayer G, Pabón-Mora N, Santos ME, Sears KE, de Sena Oliveira I. Uncovering developmental diversity in the field. Development 2024; 151:dev203084. [PMID: 39158021 DOI: 10.1242/dev.203084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Many developmental biologists seldom leave the lab for research, relying instead on establishing colonies of traditional and emerging model systems. However, to fully understand the mechanisms and principles of development and evolution, including the role of ecology and the environment, it is important to study a diverse range of organisms in context. In this Perspective, we hear from five research teams from around the world about the importance and challenges of going into the field to study their organisms of interest. We also invite you to share your own fieldwork stories on the Node.
Collapse
Affiliation(s)
- Federico D Brown
- Departamento de Zoologia - Instituto Biociências, Universidade de São Paulo, 05508-090 São Paulo, Brazil
- Prometeo-Senescyt Program, Escuela Superior Politécnica del Litoral, ESPOL, P.O. Box 09-01-5863, Guayaquil 090902, Ecuador
- Centro de Biologia Marinha (CEBIMar), Universidade de São Paulo, 11612-109, São Sebastião, Brazil
| | - Edson Ishengoma
- Department of Biological Sciences, Mkwawa University College of Education, University of Dar es Salaam, Dar es Salaam, Tanzania
| | - Georg Mayer
- Department of Zoology, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
| | - Natalia Pabón-Mora
- Universidad de Antioquia, Instituto de Biología, Grupo Evo-Devo en Plantas, Medellín 050010, Colombia
| | - M Emília Santos
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Karen E Sears
- Department of Ecology and Evolutionary Biology and Department of Molecular, Cellular, and Developmental Biology, University of California at Los Angeles, Los Angeles 90095, USA
| | - Ivo de Sena Oliveira
- Department of Zoology, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
| |
Collapse
|
2
|
Pabón-Mora N, González F. The gynostemium: More than the sum of its parts with emerging floral complexities. CURRENT OPINION IN PLANT BIOLOGY 2024; 81:102609. [PMID: 39083986 DOI: 10.1016/j.pbi.2024.102609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/04/2024] [Accepted: 07/12/2024] [Indexed: 08/02/2024]
Abstract
Partial or complete floral organ fusion, which occurs in most angiosperm lineages, promotes integration of whorls leading to specialization and complexity. One of the most remarkable floral organ fusions occurs in the gynostemium, a highly specialized structure formed by the congenital fusion of the androecium and the upper portion of the gynoecium. Here we review the gynostemia evolution across flowering plants, the morphological requirements for the synorganization of the two fertile floral whorls, and the molecular basis most likely responsible for such intimate fusion process.
Collapse
Affiliation(s)
| | - Favio González
- Universidad Nacional de Colombia, Facultad de Ciencias, Instituto de Ciencias Naturales, Sede Bogotá, Colombia
| |
Collapse
|
3
|
Cheng JL, Wei XP, Chen Y, Qi YD, Zhang BG, Liu HT. Comparative transcriptome analysis reveals candidate genes related to the sex differentiation of Schisandra chinensis. Funct Integr Genomics 2023; 23:344. [PMID: 37991590 DOI: 10.1007/s10142-023-01264-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/23/2023]
Abstract
Schisandra chinensis is a monoecious plant with unisex flowers. The fruit of S. chinensis is of high medical with economic value. The yield of S. chinensis fruit is related to the ratio of its female and male flowers. However, there is little research on its floral development and sex differentiation. To elucidate the possible mechanism for the sex differentiation of S. chinensis, we collected 18 samples of female and male flowers from three developmental stages and performed a comparative RNA-seq analysis aimed at identifying differentially expressed genes (DEGs) that may be related to sex differentiation. The results showed 936, 7179, and 6890 differentially expressed genes between female and male flowers at three developmental stages, respectively, and 466 candidate genes may play roles in sex differentiation. KEGG analysis showed genes involved in the flavonoid biosynthesis pathway and DNA replication pathway were essential for the development of female flowers. 51 MADS-box genes and 10 YABBY genes were identified in S. chinensis. The DEGs analysis indicated that MADS-box and YABBY genes were strongly related to the sex determination of S. chinensis. RT-qPCR confirmed the RNA-seq results of 20 differentially expressed genes, including three male-biased genes and 17 female-biased genes. A possible regulatory model of sex differentiation in S. chinensis was proposed according to our results. This study helps reveal the sex-differentiation mechanism of S. chinensis and lays the foundation for regulating the male-female ratio of S. chinensis in the future.
Collapse
Affiliation(s)
- Ji-Long Cheng
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xue-Ping Wei
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- Engineering Research Center of Tradition Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Yu Chen
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yao-Dong Qi
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Engineering Research Center of Tradition Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ben-Gang Zhang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Engineering Research Center of Tradition Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hai-Tao Liu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Engineering Research Center of Tradition Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
4
|
Gonçalves B. Case not closed: the mystery of the origin of the carpel. EvoDevo 2021; 12:14. [PMID: 34911578 PMCID: PMC8672599 DOI: 10.1186/s13227-021-00184-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/05/2021] [Indexed: 11/25/2022] Open
Abstract
The carpel is a fascinating structure that plays a critical role in flowering plant reproduction and contributed greatly to the evolutionary success and diversification of flowering plants. The remarkable feature of the carpel is that it is a closed structure that envelopes the ovules and after fertilization develops into the fruit which protects, helps disperse, and supports seed development into a new plant. Nearly all plant-based foods are either derived from a flowering plant or are a direct product of the carpel. Given its importance it's no surprise that plant and evolutionary biologists have been trying to explain the origin of the carpel for a long time. Before carpel evolution seeds were produced on open leaf-like structures that are exposed to the environment. When the carpel evolved in the stem lineage of flowering plants, seeds became protected within its closed structure. The evolutionary transition from that open precursor to the closed carpel remains one of the greatest mysteries of plant evolution. In recent years, we have begun to complete a picture of what the first carpels might have looked like. On the other hand, there are still many gaps in our understanding of what the precursor of the carpel looked like and what changes to its developmental mechanisms allowed for this evolutionary transition. This review aims to present an overview of existing theories of carpel evolution with a particular emphasis on those that account for the structures that preceded the carpel and/or present testable developmental hypotheses. In the second part insights from the development and evolution of diverse plant organs are gathered to build a developmental hypothesis for the evolutionary transition from a hypothesized laminar open structure to the closed structure of the carpel.
Collapse
|
5
|
Ramírez-Ramírez JA, Madrigal Y, Alzate JF, Pabón-Mora N. Evolution and expression of the MADS-box flowering transition genes AGAMOUS-like 24/SHORT VEGETATIVE PHASE with emphasis in selected Neotropical orchids. Cells Dev 2021; 168:203755. [PMID: 34758403 DOI: 10.1016/j.cdev.2021.203755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 10/24/2021] [Accepted: 10/31/2021] [Indexed: 11/18/2022]
Abstract
In angiosperms the reproductive transition results in the transformation of a vegetative apical meristem (SAM) into an inflorescence meristem (IM), capable of forming floral meristems (FM). Two key players in the flowering transition are AGAMOUS-like 24 (AGL24) and SHORT VEGETATIVE PHASE (SVP). They are eudicot MADS-box paralogs performing opposite roles, as AGL24 positively regulates flowering while SVP represses the reproductive transition in Arabidopsis. We confirm that the Arabidopsis functional reference cannot be readily extrapolated to all eudicots as there are additional duplications of AGL24 in early divergent eudicots and core eudicots with significant sequence variation. In addition, we found that in monocots, two additional independent duplication events have resulted in at least three clades of AGL24/SVP homologs, some only found in Orchidaceae. Protein sequence analyses and comparative evolutionary rates point to higher rates of relaxed negative selection in the Core Eudicot AGL24 B and the Orch SVP-like B clades, in eudicots and monocots respectively. On the other hand, expression data points to plesiomorphic pleiotropic roles of AGL24/SVP genes likely similar to SVP core eudicot genes, and the acquisition of new roles as flowering positive regulators in Core Eudicot AGL24 A genes. Our research presents evidence on the diversification and recruitment of AGL24/SVP homologs in flowering transition in orchids. Although, broad expression of most copies does not allow to determine if they act as flowering repressors or promoters, the restricted expression of some homologs in the SAM suggests putative roles in maintaining the vegetative phase. If so studying in detail the function of AGL24/SVP homologs in orchids is critical to identify putative flowering repressors in a lineage where other canonical repressors remain elusive.
Collapse
Affiliation(s)
- Jessica A Ramírez-Ramírez
- Facultad de Ciencias Exactas y Naturales, Instituto de Biología, Universidad de Antioquia, Medellín, Colombia.
| | - Yesenia Madrigal
- Facultad de Ciencias Exactas y Naturales, Instituto de Biología, Universidad de Antioquia, Medellín, Colombia.
| | - Juan F Alzate
- Centro Nacional de Secuenciación Genómica, Sede de Investigación Universitaria, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia.
| | - Natalia Pabón-Mora
- Facultad de Ciencias Exactas y Naturales, Instituto de Biología, Universidad de Antioquia, Medellín, Colombia.
| |
Collapse
|
6
|
Moschin S, Nigris S, Ezquer I, Masiero S, Cagnin S, Cortese E, Colombo L, Casadoro G, Baldan B. Expression and Functional Analyses of Nymphaea caerulea MADS-Box Genes Contribute to Clarify the Complex Flower Patterning of Water Lilies. FRONTIERS IN PLANT SCIENCE 2021; 12:730270. [PMID: 34630477 PMCID: PMC8492926 DOI: 10.3389/fpls.2021.730270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Nymphaeaceae are early diverging angiosperms with large flowers characterized by showy petals and stamens not clearly whorled but presenting a gradual morphological transition from the outer elements to the inner stamens. Such flower structure makes these plant species relevant for studying flower evolution. MADS-domain transcription factors are crucial components of the molecular network that controls flower development. We therefore isolated and characterized MADS-box genes from the water lily Nymphaea caerulea. RNA-seq experiments on floral buds have been performed to obtain the transcript sequences of floral organ identity MADS-box genes. Maximum Likelihood phylogenetic analyses confirmed their belonging to specific MADS-box gene subfamilies. Their expression was quantified by RT-qPCR in all floral organs at two stages of development. Protein interactions among these transcription factors were investigated by yeast-two-hybrid assays. We found especially interesting the involvement of two different AGAMOUS-like genes (NycAG1 and NycAG2) in the water lily floral components. They were therefore functionally characterized by complementing Arabidopsis ag and shp1 shp2 mutants. The expression analysis of MADS-box genes across flower development in N. caerulea described a complex scenario made of numerous genes in numerous floral components. Their expression profiles in some cases were in line with what was expected from the ABC model of flower development and its extensions, while in other cases presented new and interesting gene expression patterns, as for instance the involvement of NycAGL6 and NycFL. Although sharing a high level of sequence similarity, the two AGAMOUS-like genes NycAG1 and NycAG2 could have undergone subfunctionalization or neofunctionalization, as only one of them could partially restore the euAG function in Arabidopsis ag-3 mutants. The hereby illustrated N. caerulea MADS-box gene expression pattern might mirror the morphological transition from the outer to the inner floral organs, and the presence of transition organs such as the petaloid stamens. This study is intended to broaden knowledge on the role and evolution of floral organ identity genes and the genetic mechanisms causing biodiversity in angiosperm flowers.
Collapse
Affiliation(s)
- Silvia Moschin
- Botanical Garden, University of Padua, Padua, Italy
- Department of Biology, University of Padua, Padua, Italy
| | - Sebastiano Nigris
- Botanical Garden, University of Padua, Padua, Italy
- Department of Biology, University of Padua, Padua, Italy
| | - Ignacio Ezquer
- Department of Biosciences, University of Milan, Milan, Italy
| | - Simona Masiero
- Department of Biosciences, University of Milan, Milan, Italy
| | - Stefano Cagnin
- Department of Biology, University of Padua, Padua, Italy
- CRIBI Biotechnology Center, University of Padua, Padua, Italy
| | - Enrico Cortese
- Department of Biology, University of Padua, Padua, Italy
| | - Lucia Colombo
- Department of Biosciences, University of Milan, Milan, Italy
| | | | - Barbara Baldan
- Botanical Garden, University of Padua, Padua, Italy
- Department of Biology, University of Padua, Padua, Italy
| |
Collapse
|
7
|
Zumajo-Cardona C, Pabón-Mora N, Ambrose BA. The Evolution of euAPETALA2 Genes in Vascular Plants: From Plesiomorphic Roles in Sporangia to Acquired Functions in Ovules and Fruits. Mol Biol Evol 2021; 38:2319-2336. [PMID: 33528546 PMCID: PMC8136505 DOI: 10.1093/molbev/msab027] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The field of evolutionary developmental biology can help address how morphological novelties evolve, a key question in evolutionary biology. In Arabidopsis thaliana, APETALA2 (AP2) plays a role in the development of key plant innovations including seeds, flowers, and fruits. AP2 belongs to the AP2/ETHYLENE RESPONSIVE ELEMENT BINDING FACTOR family which has members in all viridiplantae, making it one of the oldest and most diverse gene lineages. One key subclade, present across vascular plants is the euAPETALA2 (euAP2) clade, whose founding member is AP2. We reconstructed the evolution of the euAP2 gene lineage in vascular plants to better understand its impact on the morphological evolution of plants, identifying seven major duplication events. We also performed spatiotemporal expression analyses of euAP2/TOE3 genes focusing on less explored vascular plant lineages, including ferns, gymnosperms, early diverging angiosperms and early diverging eudicots. Altogether, our data suggest that euAP2 genes originally contributed to spore and sporangium development, and were subsequently recruited to ovule, fruit and floral organ development. Finally, euAP2 protein sequences are highly conserved; therefore, changes in the role of euAP2 homologs during development are most likely due to changes in regulatory regions.
Collapse
Affiliation(s)
- Cecilia Zumajo-Cardona
- New York Botanical Garden, Bronx, NY 10458, United States.,The Graduate Center, City University of New York, New York, NY 10016, United States
| | - Natalia Pabón-Mora
- Instituto de Biología, Universidad de Antioquia, Medellín 050010, Colombia
| | | |
Collapse
|
8
|
Pabón-Mora N, Madrigal Y, Alzate JF, Ambrose BA, Ferrándiz C, Wanke S, Neinhuis C, González F. Evolution of Class II TCP genes in perianth bearing Piperales and their contribution to the bilateral calyx in Aristolochia. THE NEW PHYTOLOGIST 2020; 228:752-769. [PMID: 32491205 DOI: 10.1111/nph.16719] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 05/20/2020] [Indexed: 05/21/2023]
Abstract
Controlled spatiotemporal cell division and expansion are responsible for floral bilateral symmetry. Genetic studies have pointed to class II TCP genes as major regulators of cell division and floral patterning in model core eudicots. Here we study their evolution in perianth-bearing Piperales and their expression in Aristolochia, a rare occurrence of bilateral perianth outside eudicots and monocots. The evolution of class II TCP genes reveals single-copy CYCLOIDEA-like genes and three paralogs of CINCINNATA (CIN) in early diverging angiosperms. All class II TCP genes have independently duplicated in Aristolochia subgenus Siphisia. Also CIN2 genes duplicated before the diversification of Saruma and Asarum. Sequence analysis shows that CIN1 and CIN3 share motifs with Cyclin proteins and CIN2 genes have lost the miRNA319a binding site. Expression analyses of all paralogs of class II TCP genes in Aristolochia fimbriata point to a role of CYC and CIN genes in maintaining differential perianth expansion during mid- and late flower developmental stages by promoting cell division in the distal and ventral portion of the limb. It is likely that class II TCP genes also contribute to cell division in the leaf, the gynoecium and the ovules in A. fimbriata.
Collapse
Affiliation(s)
- Natalia Pabón-Mora
- Instituto de Biología, Universidad de Antioquia, Medellín, 050010, Colombia
- Technische Universität Dresden, Institut für Botanik, Dresden, 01062, Germany
| | - Yesenia Madrigal
- Instituto de Biología, Universidad de Antioquia, Medellín, 050010, Colombia
| | - Juan F Alzate
- Facultad de Medicina, Universidad de Antioquia, Medellín, 050010, Colombia
| | | | - Cristina Ferrándiz
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas - Universitat Politècnica de València, Valencia, 46022, Spain
| | - Stefan Wanke
- Technische Universität Dresden, Institut für Botanik, Dresden, 01062, Germany
| | - Christoph Neinhuis
- Technische Universität Dresden, Institut für Botanik, Dresden, 01062, Germany
| | - Favio González
- Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, 111321, Colombia
| |
Collapse
|